1
|
Vasil'eva IA, Semenova EA, Moor NA. Interaction of human phenylalanyl-tRNA synthetase with specific tRNA according to thiophosphate footprinting. BIOCHEMISTRY (MOSCOW) 2009; 74:175-85. [PMID: 19267673 DOI: 10.1134/s0006297909020084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The interaction of human cytoplasmic phenylalanyl-tRNA synthetase (an enzyme with yet unknown 3D-structure) with homologous tRNA(Phe) under functional conditions was studied by footprinting based on iodine cleavage of thiophosphate-substituted tRNA transcripts. Most tRNA(Phe) nucleotides recognized by the enzyme in the anticodon (G34), anticodon stem (G30-C40, A31-U39), and D-loop (G20) have effectively or moderately protected phosphates. Other important specificity elements (A35 and A36) were found to form weak nonspecific contacts. The D-stem, T-arm, and acceptor stem are also among continuous contacts of the tRNA(Phe) backbone with the enzyme, thus suggesting the presence of additional recognition elements in these regions. The data indicate that mechanisms of interaction between phenylalanyl-tRNA synthetases and specific tRNAs are different in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- I A Vasil'eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | |
Collapse
|
2
|
Sakurai M, Watanabe YI, Watanabe K, Ohtsuki T. A protein extension to shorten RNA: elongated elongation factor-Tu recognizes the D-arm of T-armless tRNAs in nematode mitochondria. Biochem J 2006; 399:249-56. [PMID: 16859488 PMCID: PMC1609916 DOI: 10.1042/bj20060781] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nematode mitochondria possess extremely truncated tRNAs. Of 22 tRNAs, 20 lack the entire T-arm. The T-arm is necessary for the binding of canonical tRNAs and EF (elongation factor)-Tu (thermo-unstable). The nematode mitochondrial translation system employs two different EF-Tu factors named EF-Tu1 and EF-Tu2. Our previous study showed that nematode Caenorhabditis elegans EF-Tu1 binds specifically to T-armless tRNA. C. elegans EF-Tu1 has a 57-amino acid C-terminal extension that is absent from canonical EF-Tu, and the T-arm-binding residues of canonical EF-Tu are not conserved. In this study, the recognition mechanism of T-armless tRNA by EF-Tu1 was investigated. Both modification interference assays and primer extension analysis of cross-linked ternary complexes revealed that EF-Tu1 interacts not only with the tRNA acceptor stem but also with the D-arm. This is the first example of an EF-Tu recognizing the D-arm of a tRNA. The binding activity of EF-Tu1 was impaired by deletion of only 14 residues from the C-terminus, indicating that the C-terminus of EF-Tu1 is required for its binding to T-armless tRNA. These results suggest that C. elegans EF-Tu1 recognizes the D-arm instead of the T-arm by a mechanism involving its C-terminal region. This study sheds light on the co-evolution of RNA and RNA-binding proteins in nematode mitochondria.
Collapse
Affiliation(s)
- Masayuki Sakurai
- *Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
- †Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoh-ichi Watanabe
- ‡Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kimitsuna Watanabe
- *Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Takashi Ohtsuki
- *Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
- To whom correspondence should be addressed (email ). Present address: Department of Bioscience and Biotechnology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
3
|
Affiliation(s)
- Richard Giegé
- Département Machineries Traductionnelles, UPR 9002 Architecture et Reactivite de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, 67084 Strasbourg Cedex, France.
| |
Collapse
|
4
|
Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL. Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J 2004; 22:6537-49. [PMID: 14657026 PMCID: PMC291810 DOI: 10.1093/emboj/cdg615] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
By altering chromatin structure, histone acetyltransferases (HATs) act as transcriptional regulators. We observed in a model of primary neurons that histone acetylation levels decreased at the onset of apoptosis. The CREB-binding protein (CBP) is a HAT of particular interest because it also acts as a co-activator controlling, among others, CREB-dependent transcriptional activity. It has been demonstrated that CREB exerts neuroprotective functions, but the fate of CBP during neuronal apoptosis remained unclear till now. This work provided evidence that CBP is specifically targeted by caspases and calpains at the onset of neuronal apoptosis, and CBP was futher identified as a new caspase-6 substrate. This ultimately impinged on the CBP/p300 HAT activity that decreased with time during apoptosis entry, whereas total cellular HAT activity remained unchanged. Interestingly, CBP loss and histone deacetylation were observed in two different pathological contexts: amyloid precursor protein-dependent signaling and amyotrophic lateral sclerosis model mice, indicating that these modifications are likely to contribute to neurodegenerative diseases. In terms of function, we demonstrated that fine-tuning of CBP HAT activity is necessary to ensure neuroprotection.
Collapse
Affiliation(s)
- Caroline Rouaux
- Laboratoire de Signalisation Moléculaire et Neurodégénérescence-EA 3433, 11 rue Humann, 67085 Strasbourg cedex, France.
| | | | | | | | | | | |
Collapse
|
5
|
Fukai S, Nureki O, Sekine SI, Shimada A, Vassylyev DG, Yokoyama S. Mechanism of molecular interactions for tRNA(Val) recognition by valyl-tRNA synthetase. RNA (NEW YORK, N.Y.) 2003; 9:100-111. [PMID: 12554880 PMCID: PMC1370374 DOI: 10.1261/rna.2760703] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2002] [Accepted: 09/23/2002] [Indexed: 05/24/2023]
Abstract
The molecular interactions between valyl-tRNA synthetase (ValRS) and tRNA(Val), with the C34-A35-C36 anticodon, from Thermus thermophilus were studied by crystallographic analysis and structure-based mutagenesis. In the ValRS-bound structure of tRNA(Val), the successive A35-C36 residues (the major identity elements) of tRNA(Val) are base-stacked upon each other, and fit into a pocket on the alpha-helix bundle domain of ValRS. Hydrogen bonds are formed between ValRS and A35-C36 of tRNA(Val) in a base-specific manner. The C-terminal coiled-coil domain of ValRS interacts electrostatically with A20 and hydrophobically with the G19*C56 tertiary base pair. The loss of these interactions by the deletion of the coiled-coil domain of ValRS increased the K(M) value for tRNA(Val) 28-fold and decreased the k(cat) value 19-fold in the aminoacylation. The tRNA(Val) K(M) and k(cat) values were increased 21-fold and decreased 32-fold, respectively, by the disruption of the G18*U55 and G19*C56 tertiary base pairs, which associate the D- and T-loops for the formation of the L-shaped tRNA structure. Therefore, the coiled-coil domain of ValRS is likely to stabilize the L-shaped tRNA structure during the aminoacylation reaction.
Collapse
Affiliation(s)
- Shuya Fukai
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Konevetz DA, Beck IE, Beloglazova NG, Sulimenkov IV, Sil'nikov VN, Zenkova MA, Shishkin GV, Vlassov VV. Artificial ribonucleases: synthesis and RNA cleaving properties of cationic conjugates bearing imidazole residues. Tetrahedron 1999. [DOI: 10.1016/s0040-4020(98)01048-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Giegé R, Sissler M, Florentz C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 1998; 26:5017-35. [PMID: 9801296 PMCID: PMC147952 DOI: 10.1093/nar/26.22.5017] [Citation(s) in RCA: 616] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Correct expression of the genetic code at translation is directly correlated with tRNA identity. This survey describes the molecular signals in tRNAs that trigger specific aminoacylations. For most tRNAs, determinants are located at the two distal extremities: the anticodon loop and the amino acid accepting stem. In a few tRNAs, however, major identity signals are found in the core of the molecule. Identity elements have different strengths, often depend more on k cat effects than on K m effects and exhibit additive, cooperative or anti-cooperative interplay. Most determinants are in direct contact with cognate synthetases, and chemical groups on bases or ribose moieties that make functional interactions have been identified in several systems. Major determinants are conserved in evolution; however, the mechanisms by which they are expressed are species dependent. Recent studies show that alternate identity sets can be recognized by a single synthetase, and emphasize the importance of tRNA architecture and anti-determinants preventing false recognition. Identity rules apply to tRNA-like molecules and to minimalist tRNAs. Knowledge of these rules allows the manipulation of identity elements and engineering of tRNAs with switched, altered or multiple specificities.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Evolution, Molecular
- Genetic Code
- Humans
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
Collapse
Affiliation(s)
- R Giegé
- Unité Propre de Recherche 9002, 'Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance', Scientifique, 15 rue René Descartes, F-67084, Strasbourg Cedex, France.
| | | | | |
Collapse
|
9
|
Shi PY, Maizels N, Weiner AM. CCA addition by tRNA nucleotidyltransferase: polymerization without translocation? EMBO J 1998; 17:3197-206. [PMID: 9606201 PMCID: PMC1170658 DOI: 10.1093/emboj/17.11.3197] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The CCA-adding enzyme repairs the 3'-terminal CCA sequence of all tRNAs. To determine how the enzyme recognizes tRNA, we probed critical contacts between tRNA substrates and the archaeal Sulfolobus shibatae class I and the eubacterial Escherichia coli class II CCA-adding enzymes. Both CTP addition to tRNA-C and ATP addition to tRNA-CC were dramatically inhibited by alkylation of the same tRNA phosphates in the acceptor stem and TPsiC stem-loop. Both enzymes also protected the same tRNA phosphates in tRNA-C and tRNA-CC. Thus the tRNA substrate must remain fixed on the enzyme surface during CA addition. Indeed, tRNA-C cross-linked to the S. shibatae enzyme remains fully active for addition of CTP and ATP. We propose that the growing 3'-terminus of the tRNA progressively refolds to allow the solitary active site to reuse a single CTP binding site. The ATP binding site would then be created collaboratively by the refolded CC terminus and the enzyme, and nucleotide addition would cease when the nucleotide binding pocket is full. The template for CCA addition would be a dynamic ribonucleoprotein structure.
Collapse
Affiliation(s)
- P Y Shi
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520-8024, USA
| | | | | |
Collapse
|
10
|
Sissler M, Eriani G, Martin F, Giegé R, Florentz C. Mirror image alternative interaction patterns of the same tRNA with either class I arginyl-tRNA synthetase or class II aspartyl-tRNA synthetase. Nucleic Acids Res 1997; 25:4899-906. [PMID: 9396794 PMCID: PMC147145 DOI: 10.1093/nar/25.24.4899] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gene cloning, overproduction and an efficient purification protocol of yeast arginyl-tRNA synthetase (ArgRS) as well as the interaction patterns of this protein with cognate tRNAArgand non-cognate tRNAAspare described. This work was motivated by the fact that the in vitro transcript of tRNAAspis of dual aminoacylation specificity and is not only aspartylated but also efficiently arginylated. The crystal structure of the complex between class II aspartyl-tRNA synthetase (AspRS) and tRNAAsp, as well as early biochemical data, have shown that tRNAAspis recognized by its variable region side. Here we show by footprinting with enzymatic and chemical probes that transcribed tRNAAspis contacted by class I ArgRS along the opposite D arm side, as is homologous tRNAArg, but with idiosyncratic interaction patterns. Besides protection, footprints also show enhanced accessibility of the tRNAs to the structural probes, indicative of conformational changes in the complexed tRNAs. These different patterns are interpreted in relation to the alternative arginine identity sets found in the anticodon loops of tRNAArgand tRNAAsp. The mirror image alternative interaction patterns of unmodified tRNAAspwith either class I ArgRS or class II AspRS, accounting for the dual identity of this tRNA, are discussed in relation to the class defining features of the synthetases. This study indicates that complex formation between unmodified tRNAAspand either ArgRS and AspRS is solely governed by the proteins.
Collapse
MESH Headings
- Anticodon/chemistry
- Arginine-tRNA Ligase/classification
- Arginine-tRNA Ligase/metabolism
- Aspartate-tRNA Ligase/classification
- Aspartate-tRNA Ligase/metabolism
- Base Sequence
- DNA Footprinting
- Escherichia coli
- Fungal Proteins/classification
- Fungal Proteins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Binding
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Transfer, Arg/chemistry
- RNA, Transfer, Arg/metabolism
- RNA, Transfer, Asp/chemistry
- RNA, Transfer, Asp/metabolism
- Recombinant Fusion Proteins/metabolism
- Saccharomyces cerevisiae/metabolism
- Stereoisomerism
- Substrate Specificity
Collapse
Affiliation(s)
- M Sissler
- Unité Propre de Recherche 9002 'Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance', Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | |
Collapse
|
11
|
Petrushenko ZM, Negrutskii BS, Ladokhin AS, Budkevich TV, Shalak VF, El'skaya AV. Evidence for the formation of an unusual ternary complex of rabbit liver EF-1alpha with GDP and deacylated tRNA. FEBS Lett 1997; 407:13-7. [PMID: 9141472 DOI: 10.1016/s0014-5793(97)00242-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Eukaryotic translation elongation factor 1alpha is known to interact in GTP-bound form with aminoacyl-tRNA promoting its binding to the ribosome. In this paper another ternary complex [EF-1alpha*GDP*deacylated tRNA], never considered in widely accepted elongation schemes, is reported for the first time. The formation of this unusual complex, postulated earlier (FEBS Lett. (1996) 382, 18-20), has been detected by four independent methods. [EF-1alpha*GDP]-interacting sites are located in the acceptor stem, TpsiC stem and TpsiC loop of tRNA(Phe) and tRNA(Leu) molecules. Both tRNA and EF-1alpha are found to undergo certain conformational changes during their interaction. The ability of EF-1alpha to form a complex with deacylated tRNA indicates that the factor may perform an important role in tRNA and aminoacyl-tRNA channeling in higher eukaryotic cells.
Collapse
Affiliation(s)
- Z M Petrushenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kiev
| | | | | | | | | | | |
Collapse
|
12
|
Kreutzer R, Kern D, Giegé R, Rudinger J. Footprinting of tRNA(Phe) transcripts from Thermus thermophilus HB8 with the homologous phenylalanyl-tRNA synthetase reveals a novel mode of interaction. Nucleic Acids Res 1995; 23:4598-602. [PMID: 8524648 PMCID: PMC307431 DOI: 10.1093/nar/23.22.4598] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphates of the tRNA(Phe) transcript from Thermus thermophilus interacting with the cognate synthetase were determined by footprinting. Backbone bond protection against cleavage by iodine of the phosphorothioate-containing transcripts was found in the anticodon stem-loop, the D stem-loop and the acceptor stem and weak protection was also seen in the variable loop. Most of the protected phosphates correspond to regions around known identity elements of tRNA(Phe). Enhancement of cleavage at certain positions indicates bending of tRNAPhe upon binding to the enzyme. When applied to the three-dimensional model of tRNA(Phe) from yeast the majority of the protections occur on the D loop side of the molecule, revealing that phenylalanyl-tRNA synthetase has a rather complex and novel pattern of interaction with tRNAPhe, differing from that of other known class II aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- R Kreutzer
- Lehrstuhl für Biochemie, Universität Bayreuth, Germany
| | | | | | | |
Collapse
|
13
|
Giegé R, Puglisi JD, Florentz C. tRNA structure and aminoacylation efficiency. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 45:129-206. [PMID: 8341800 DOI: 10.1016/s0079-6603(08)60869-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- R Giegé
- Unité Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | |
Collapse
|
14
|
Abstract
Aminoacyl-tRNA synthetases interact with their cognate tRNAs in a highly specific fashion. We have examined the phenomenon that upon complex formation E. coli glutaminyl-tRNA synthetase destabilizes tRNA(Gln) causing chain scissions in the presence of Mg2+ ions. The phosphodiester bond cleavage produces 3'-phosphate and 5'-hydroxyl ends. This kind of experiment is useful for detecting conformational changes in tRNA. Our results show that the cleavage is synthetase-specific, that mutant and wild-type tRNA(Gln) species can assume a different conformation, and that modified nucleosides in tRNA enhance the structural stability of the molecule.
Collapse
Affiliation(s)
- S Beresten
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | | | | |
Collapse
|
15
|
Schatz D, Leberman R, Eckstein F. Interaction of Escherichia coli tRNA(Ser) with its cognate aminoacyl-tRNA synthetase as determined by footprinting with phosphorothioate-containing tRNA transcripts. Proc Natl Acad Sci U S A 1991; 88:6132-6. [PMID: 2068094 PMCID: PMC52036 DOI: 10.1073/pnas.88.14.6132] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A footprinting technique using phosphorothioate-containing RNA transcripts has been developed and applied to identify contacts between Escherichia coli tRNA(Ser) and its cognate aminoacyl-tRNA synthetase. The cloned gene for the tRNA was transcribed in four reactions in which a different NTP was complemented by 5% of the corresponding nucleoside 5'-O-(1-thiotriphosphate). The phosphorothioate groups of such transcripts are cleaved by reaction with iodine to permit sequencing of the transcripts. Footprinting was achieved by performing the same reaction with the phosphorothioate-tRNA-enzyme complex. At 1 mM iodine, selective protection of the tRNA transcripts in the cognate system was observed, with strong protection at positions 52 and 68 and weak protection at positions 46, 53, 67, 69, and 70. It is suggested that these regions of the tRNA interact with the helical arm of the synthetase.
Collapse
Affiliation(s)
- D Schatz
- Max-Planck-Institut für experimentelle Medizin, Abteilung Chemie, Göttingen, Federal Republic of Germany
| | | | | |
Collapse
|
16
|
McClain WH, Foss K, Jenkins RA, Schneider J. Nucleotides that determine Escherichia coli tRNA(Arg) and tRNA(Lys) acceptor identities revealed by analyses of mutant opal and amber suppressor tRNAs. Proc Natl Acad Sci U S A 1990; 87:9260-4. [PMID: 2251270 PMCID: PMC55144 DOI: 10.1073/pnas.87.23.9260] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have constructed an opal suppressor system in Escherichia coli to complement an existing amber suppressor system to study the structural basis of tRNA acceptor identity, particularly the role of middle anticodon nucleotide at position 35. The opal suppressor tRNA contains a UCA anticodon and the mRNA of the suppressed protein (which is easily purified and sequenced) contains a UGA nonsense triplet. Opal suppressor tRNAs of two tRNA(Arg) isoacceptor sequences each gave arginine in the suppressed protein, while the corresponding amber suppressors with U35 in their CUA anticodons each gave arginine plus a second amino acid in the suppressed protein. Since C35 but not U35 is present in the anticodon of wild-type tRNA(Arg) molecules, while the first anticodon position contains either C34 or U34, these results establish that C35 contributes to tRNA(Arg) acceptor identity. Initial characterizations of opal suppressor tRNA(Arg) mutants by suppression efficiency measurements suggest that the fourth nucleotide from the 3' end of tRNA(Arg) (A73 or G73 in different isoacceptors) also contributes to tRNA(Arg) acceptor identity. Wild-type and mutant versions of opal and amber tRNA(Lys) suppressors were examined, revealing that U35 and A73 are important determinants of tRNA(Lys) acceptor identity. Several possibilities are discussed for the general significance of having tRNA acceptor identity in the same positions in different tRNA acceptor types, as exemplified by positions 35 and 73 in tRNA(Arg) and tRNA(Lys).
Collapse
Affiliation(s)
- W H McClain
- Department of Bacteriology, University of Wisconsin, Madison 53706-1567
| | | | | | | |
Collapse
|
17
|
Dietrich A, Romby P, Maréchal-Drouard L, Guillemaut P, Giegé R. Solution conformation of several free tRNALeu species from bean, yeast and Escherichia coli and interaction of these tRNAs with bean cytoplasmic Leucyl-tRNA synthetase. A phosphate alkylation study with ethylnitrosourea. Nucleic Acids Res 1990; 18:2589-97. [PMID: 2187177 PMCID: PMC330741 DOI: 10.1093/nar/18.9.2589] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The solution conformation of eight leucine tRNAs from Phaseolus vulgaris, baker's yeast and Escherichia coli, characterized by long variable regions, and the interaction of four of them with bean cytoplasmic leucyl-tRNA synthetase were studied by phosphate mapping with ethylnitrosourea. Phosphate reactivities in the variable regions agree with the existence of RNA helices closed by miniloops. At the junction of these regions with the T-stem, phosphate 48 is strongly protected, in contrast to small variable region tRNAs where P49 is protected. The constant protection of P22 is another characteristics of leucine tRNAs. Conformational differences between leucine isoacceptors concern the anticodon region, the D-arm and the variable region. In several parts of free tRNALeu species, e.g. in the T-loop, phosphate reactivities are similar to those found in tRNAs of other specificities, indicating conformational similarities among tRNAs. Phosphate alkylation of four leucine tRNAs complexed to leucyl-tRNA synthetase indicates that the 3'-side of the anticodon stem, the D-stem and the hinge region between the anticodon and D-stems are in contact with the plant enzyme.
Collapse
Affiliation(s)
- A Dietrich
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | |
Collapse
|
18
|
Dock-Bregeon AC, Garcia A, Giegé R, Moras D. The contacts of yeast tRNA(Ser) with seryl-tRNA synthetase studied by footprinting experiments. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 188:283-90. [PMID: 2180700 DOI: 10.1111/j.1432-1033.1990.tb15401.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Yeast tRNA(Ser) is a member of the class II tRNAs, whose characteristic is the presence of an extended variable loop. This additional structural feature raises questions about the recognition of these class II tRNAs by their cognate synthetase and the possibility of the involvement of the extra arm in the recognition process. A footprinting study of yeast tRNA(Ser) complexed with its cognate synthetase, yeast seryl-tRNA synthetase (an alpha 2 dimer), was undertaken. Chemical (ethylnitrosourea) and enzymatic (nucleases S1 and V1) probes were used in the experiments. A map of the contact points between the tRNA and the synthetase was established and results were analyzed with respect to a three-dimensional model of yeast tRNA(Ser). Regions in close vicinity with the synthetase are clustered on one face of tRNA. The extra arm, which is strongly protected from chemical modifications, appears as an essential part of the contact area. The anticodon triplet and a large part of the anticodon arm are, in contrast, still accessible to the probes when the complex is formed. These results are discussed in the context of the recognition of tRNAs in the aminoacylation reaction.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/antagonists & inhibitors
- Anticodon
- Autoradiography
- Base Sequence
- Electrophoresis, Polyacrylamide Gel
- Endoribonucleases
- Ethylnitrosourea
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Peptide Mapping
- RNA, Transfer, Amino Acyl/analysis
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Serine-tRNA Ligase/analysis
- Serine-tRNA Ligase/antagonists & inhibitors
- Single-Strand Specific DNA and RNA Endonucleases
Collapse
Affiliation(s)
- A C Dock-Bregeon
- Laboratoires de Biochimie et de Cristallographie, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | |
Collapse
|
19
|
Theobald A, Springer M, Grunberg-Manago M, Ebel JP, Giege R. Tertiary structure of Escherichia coli tRNA(3Thr) in solution and interaction of this tRNA with the cognate threonyl-tRNA synthetase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 175:511-24. [PMID: 2457500 DOI: 10.1111/j.1432-1033.1988.tb14223.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The solution structure of Escherichia coli tRNA(3Thr) (anticodon GGU) and the residues of this tRNA in contact with the alpha 2 dimeric threonyl-tRNA synthetase were studied by chemical and enzymatic footprinting experiments. Alkylation of phosphodiester bonds by ethylnitrosourea and of N-7 positions in guanosines and N-3 positions in cytidines by dimethyl sulphate as well as carbethoxylation of N-7 positions in adenosines by diethyl pyrocarbonate were conducted on different conformers of tRNA(3Thr). The enzymatic structural probes were nuclease S1 and the cobra venom ribonuclease. Results will be compared to those of three other tRNAs, tRNA(Asp), tRNA(Phe) and tRNA(Trp), already mapped with these probes. The reactivity of phosphates towards ethylnitrosourea of the unfolded tRNA was compared to that of the native molecule. The alkylation pattern of tRNA(3Thr) shows some similarities to that of yeast tRNA(Phe) and mammalian tRNA(Trp), especially in the D-arm (positions 19 and 24) and with tRNA(Trp), at position 50, the junction between the variable region and the T-stem. In the T-loop, tRNA(3Thr), similarly to the three other tRNAs, shows protections against alkylation at phosphates 59 and 60. However, tRNA(3Thr) is unique as far as very strong protections are also found for phosphates 55 to 58 in the T-loop. Compared with yeast tRNA(Asp), the main differences in reactivity concern phosphates 19, 24 and 50. Mapping of bases with dimethyl sulphate and diethyl pyrocarbonate reveal conformational similarities with yeast tRNA(Phe). A striking conformational feature of tRNA(3Thr) is found in the 3'-side of its anticodon stem, where G40, surrounded by two G residues, is alkylated under native conditions, in contrast to other G residues in stem regions of tRNAs which are unreactive when sandwiched between two purines. This data is indicative of a perturbed helical conformation in the anticodon stem at the level of the 30-40 base pairs. Footprinting experiments, with chemical and enzymatic probes, on the tRNA complexed with its cognate threonyl-tRNA synthetase indicate significant protections in the anticodon stem and loop region, in the extra-loop, and in the amino acid accepting region. The involvement of the anticodon of tRNA(3Thr) in the recognition process with threonyl-tRNA synthetase was demonstrated by nuclease S1 mapping and by the protection of G34 and G35 against alkylation by dimethyl sulphate. These data are discussed in the light of the tRNA/synthetase recognition problem and of the structural and functional properties of the tRNA-like structure present in the operator region of the thrS mRNA.
Collapse
Affiliation(s)
- A Theobald
- Institut de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | |
Collapse
|
20
|
van Belkum A, Verlaan P, Kun JB, Pleij C, Bosch L. Temperature dependent chemical and enzymatic probing of the tRNA-like structure of TYMV RNA. Nucleic Acids Res 1988; 16:1931-50. [PMID: 2833723 PMCID: PMC338191 DOI: 10.1093/nar/16.5.1931] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this paper we report on the thermal unfolding of the tRNA-like structure present at the 3' end of turnip yellow mosaic virus (TYMV) RNA. Diethyl pyrocarbonate (DEP), sodium bisulphite, nuclease S1 and ribonuclease T1 were used as structure probes at a broad range of temperatures. In this way most of the nucleotides present in the tRNA-like moiety were analysed. The melting behaviour of both secondary and tertiary interactions could be followed on the basis of the temperature dependent accessibility of the individual nucleotides or bases towards the various probes. The three-dimensional model of the tRNA-like domain (Dumas et al., J. Biomol. Struct. and Dyn. 4, 707 (1987] was supported by the results to a large extent. The interactions occurring between the T- and D-loop appear to be more complex than proposed in the latter model. Additional evidence for the presence of the RNA pseudoknot (Rietveld et al., Nucleic Acids Res. 10, 1929 (1982] was derived from the fact that the three coaxially stacked helical segments in the aminoacylacceptor arm displayed different melting transitions under certain experimental conditions. Aspects of melting behaviour and thermal stability of double helical regions within the tRNA-like structure are discussed, as well as the applicability of nucleases and modifying reagents at various temperatures in the analysis of RNA structure.
Collapse
Affiliation(s)
- A van Belkum
- Department of Biochemistry, University of Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Ehresmann C, Baudin F, Mougel M, Romby P, Ebel JP, Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res 1987; 15:9109-28. [PMID: 2446263 PMCID: PMC306456 DOI: 10.1093/nar/15.22.9109] [Citation(s) in RCA: 583] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During these last years, a powerful methodology has been developed to study the secondary and tertiary structure of RNA molecules either free or engaged in complex with proteins. This method allows to test the reactivity of every nucleotide towards chemical or enzymatic probes. The detection of the modified nucleotides and RNase cleavages can be conducted by two different paths which are oriented both by the length of the studied RNA and by the nature of the probes used. The first one uses end-labeled RNA molecule and allows to detect only scissions in the RNA chain. The second approach is based on primer extension by reverse transcriptase and detects stops of transcription at modified or cleaved nucleotides. The synthesized cDNA fragments are then sized by electrophoresis on polyacrylamide:urea gels. In this paper, the various structure probes used so far are described, and their utilization is discussed.
Collapse
Affiliation(s)
- C Ehresmann
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
22
|
Tukalo MA, Kubler MD, Kern D, Mougel M, Ehresmann C, Ebel JP, Ehresmann B, Giegé R. trans-Diamminedichloroplatinum(II), a reversible RNA-protein cross-linking agent. Application to the ribosome and to an aminoacyl-tRNA synthetase/tRNA complex. Biochemistry 1987; 26:5200-8. [PMID: 3311162 DOI: 10.1021/bi00390a045] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new approach allowing detection of contact points between RNAs and proteins has been developed using trans-diamminedichloroplatinum(II) as the cross-linking reagent. The advantage of the method relies on the fact that the coordination bonds between platinum and the potential acceptors on proteins and nucleic acids (mainly S of cysteine or methionine residues; N of imidazole rings in histidine residues; N7 of guanine, N1 of adenine, and N3 of cytosine residues) can be reversed, so that the cross-linked oligonucleotides or peptides in contact within a complex can be analyzed directly. The method was worked out with the ribosome from Escherichia coli and the tRNAVal/valyl-tRNA synthetase system from the yeast Saccharomyces cerevisiae. In the first system the platinum approach permitted detection of ribosomal proteins cross-linked to 16S rRNA within the 30S subunits (mainly S18 and to a lower extent S3, S4, S11, and S13/S14); in the second system major oligonucleotides of tRNAVal cross-linked to valyl-tRNA synthetase were detected in the anticodon stem and loop, in the variable loop, and in the 3' terminal amino acid accepting region. These results are discussed in light of the current knowledge on ribosome and tRNAs and of potential applications of the methodology.
Collapse
Affiliation(s)
- M A Tukalo
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Dumas P, Moras D, Florentz C, Giegé R, Verlaan P, Van Belkum A, Pleij CW. 3-D graphics modelling of the tRNA-like 3'-end of turnip yellow mosaic virus RNA: structural and functional implications. J Biomol Struct Dyn 1987; 4:707-28. [PMID: 3270524 DOI: 10.1080/07391102.1987.10507674] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The tRNA-like structure of the aminoacylatable 3'-end of turnip yellow mosaic virus (TYMV) RNA was submitted to 3-D graphics modelling. A model of this structure has been inferred previously from both biochemical results and sequence comparisons which presents a new RNA folding feature, the "pseudoknot". It has been verified that this structure can be constructed without compromising accepted RNA stereochemical rules, namely base stacking and preferential 3'-endo sugar pucker. The model has aided interpretation of previous structural mapping experiments using chemical and enzymatic probes, and new accessibilities of residues could be predicted and tested. Pseudoknots have been considered as potential splice sites because they form antiparallel helical segments in a single RNA molecule. We have examined this possibility with the constructed 3-D model and could verify the hypothesis on a structural basis. The model presents a striking similarity with canonical tRNA and allows a valuable comparison between the protection patterns of yeast tRNA(Val) and tRNA-like viral RNA by cognate yeast valyl-tRNA synthetase against structural probes.
Collapse
Affiliation(s)
- P Dumas
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Florentz C, Giegé R. Contact areas of the turnip yellow mosaic virus tRNA-like structure interacting with yeast valyl-tRNA synthetase. J Mol Biol 1986; 191:117-30. [PMID: 3540311 DOI: 10.1016/0022-2836(86)90427-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tRNA-like structure of turnip yellow mosaic virus is known to be efficiently recognized and aminoacylated by valyl-tRNA synthetase. The present work reports domains in the isolated tRNA-like fragment (159 terminal nucleotides at the 3'-end of the two viral RNAs) in contact with purified yeast valyl-tRNA synthetase. These domains were determined in protection experiments using chemical and enzymatic structural probes. In addition, new data, re-enforcing the validity of the tertiary folding model for the native RNA, are given. In particular, at the level of the amino acid accepting arm it was found that the two phosphate groups flanking the three guanine residues of loop I are inaccessible to ethylnitrosourea. This is in agreement with a higher-order structure of this loop involving "pseudo knotting", as proposed by Rietveld et al. (1982). Valyl-tRNA synthetase efficiently protects the viral RNA against digestion by single-strand-specific S1 nuclease at the level of the anticodon loop. With cobra venom ribonuclease, specific for double-stranded regions of RNA, protection was detected on both sides of the anticodon arm and at the 5'-ends of loop I, a region that is involved in the building up of the acceptor arm. Loop II, which is topologically homologous to the T-loop of canonical tRNA was likewise protected. Weak protection was observed between arms I and II, and at the 3'-side of arm V. This arm, located at the 5'-side of arm IV (homologous to the D-arm of tRNA), does not participate in the pseudo-knotted model of the valine acceptor arm. Ethylnitrosourea was used to determine the phosphates of the tRNA-like structure in close contact with the synthetase. These are grouped in several stretches scattered over the RNA molecule. In agreement with the nuclease digestion results, protected phosphates are located in arms I, II, and III. Additionally, this chemical probe permits detection of other protected phosphates on the 3'-side of arm IV and on both sides of arm V. When displayed in the three-dimensional model of the tRNA-like structure, protected areas are localized on both limbs of the L-shaped RNA. It appears that valyl-tRNA synthetase embraces the entire tRNA-like structure. This is reminiscent of the interaction model of canonical yeast tRNAVal with its cognate synthetase.
Collapse
|
25
|
Romby P, Moras D, Bergdoll M, Dumas P, Vlassov VV, Westhof E, Ebel JP, Giegé R. Yeast tRNAAsp tertiary structure in solution and areas of interaction of the tRNA with aspartyl-tRNA synthetase. A comparative study of the yeast phenylalanine system by phosphate alkylation experiments with ethylnitrosourea. J Mol Biol 1985; 184:455-71. [PMID: 3900415 DOI: 10.1016/0022-2836(85)90294-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ethylnitrosourea is an alkylating reagent preferentially modifying phosphate groups in nucleic acids. It was used to monitor the tertiary structure, in solution, of yeast tRNAAsp and to determine those phosphate groups in contact with the cognate aspartyl-tRNA synthetase. Experiments involve 3' or 5'-end-labelled tRNA molecules, low yield modification of the free or complexed nucleic acid and specific splitting at the modified phosphate groups. The resulting end-labelled oligonucleotides are resolved on polyacrylamide sequencing gels and data analysed by autoradiography and densitometry. Experiments were conducted in parallel on yeast tRNAAsp and on tRNAPhe. In that way it was possible to compare the solution structure of two elongator tRNAs and to interpret the modification data using the known crystal structures of both tRNAs. Mapping of the phosphates in free tRNAAsp and tRNAPhe allowed the detection of differential reactivities for phosphates 8, 18, 19, 20, 22, 23, 24 and 49: phosphates 18, 19, 23, 24 and 49 are more reactive in tRNAAsp, while phosphates 8, 20 and 22 are more reactive in tRNAPhe. All other phosphates display similar reactivities in both tRNAs, in particular phosphate 60 in the T-loop, which is strongly protected. Most of these data are explained by the crystal structures of the tRNAs. Thermal transitions in tRNAAsp could be followed by chemical modifications of phosphates. Results indicate that the D-arm is more flexible than the T-loop. The phosphates in yeast tRNAAsp in contact with aspartyl-tRNA synthetase are essentially contained in three continuous stretches, including those at the corner of the amino acid accepting and D-arm, at the 5' side of the acceptor stem and in the variable loop. When represented in the three-dimensional structure of the tRNAAsp, it clearly appears that one side of the L-shaped tRNA molecule, that comprising the variable loop, is in contact with aspartyl-tRNA synthetase. In yeast tRNAPhe interacting with phenylalanyl-tRNA synthetase, the distribution of protected phosphates is different, although phosphates in the anticodon stem and variable loop are involved in both systems. With tRNAPhe, the data cannot be accommodated by the interaction model found for tRNAAsp, but they are consistent with the diagonal side model proposed by Rich & Schimmel (1977). The existence of different interaction schemes between tRNAs and aminoacyl-tRNA synthetases, correlated with the oligomeric structure of the enzyme, is proposed.
Collapse
|
26
|
Kisselev LL. The role of the anticodon in recognition of tRNA by aminoacyl-tRNA synthetases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1985; 32:237-66. [PMID: 3911276 DOI: 10.1016/s0079-6603(08)60350-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Garret M, Romby P, Giegé R, Litvak S. Interactions between avian myeloblastosis reverse transcriptase and tRNATrp. Mapping of complexed tRNA with chemicals and nucleases. Nucleic Acids Res 1984; 12:2259-71. [PMID: 6200830 PMCID: PMC318660 DOI: 10.1093/nar/12.5.2259] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The interactions between beef tRNATrp with avian myeloblastosis reverse transcriptase have been studied by statistical chemical modifications of phosphate (ethylnitrosourea) and cytidine (dimethyl sulfate) residues, as well as by digestion of complexed tRNA by Cobra venom nuclease and Neurospora crassa endonuclease. Results with nucleases and chemicals show that reverse transcriptase interacts preferentially with the D arm, the anticodon stem and the T psi stem. All these regions are located in the outside of the L-shaped structure of tRNA. This domain of interaction is different to that reported previously in the complex of beef tRNA with the cognate aminoacyl-tRNA synthetase (M. Garret et al.; Eur. J. Biochem. In press). Avian reverse transcriptase destabilizes the region of tRNA where most of the tertiary interactions maintaining the structure of tRNA are located.
Collapse
|
28
|
Dock AC, Lorber B, Moras D, Pixa G, Thierry JC, Giégé R. Crystallization of transfer ribonucleic acids. Biochimie 1984; 66:179-201. [PMID: 6204693 DOI: 10.1016/0300-9084(84)90063-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A compilation of crystallization experiments of tRNAs published in literature as well as original results are given and discussed in this paper. Up to now 17 different tRNA species originating from Escherichia coli and from the yeast Saccharomyces cerevisiae have been crystallized. All structural tRNA families are represented, namely the tRNAs with large or small extra-loops and among them the initiator tRNAs. The tRNAs with small variable loops (4 to 5 nucleotides), e.g. tRNAAsp and tRNAPhe, yield the best diffracting crystals. Crystalline polymorphism is a common feature; about 100 different crystal forms have been observed, but only 6 among them enabled structure determination studies by X-ray diffraction. Crystallization strongly depends upon experimental parameters such as the presence of polyamines and magnesium as well as upon the purity and the molecular integrity of the tRNAs. Crystals are usually obtained by vapour diffusion methods using salts (e.g. ammonium sulfate), organic solvents (e.g. isopropanol, dioxane or 2-methyl-2,4-pentane diol) or polyethylene glycol as precipitants. A methodological strategy for crystallyzing new tRNA species is described.
Collapse
|
29
|
Garret M, Labouesse B, Litvak S, Romby P, Ebel JP, Giegé R. Tertiary structure of animal tRNATrp in solution and interaction of tRNATrp with tryptophanyl-tRNA synthetase. ACTA ACUST UNITED AC 1984; 138:67-75. [PMID: 6559132 DOI: 10.1111/j.1432-1033.1984.tb07882.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alkylation in beef tRNATrp of phosphodiester bonds by ethylnitrosourea and of N-7 in guanosines and N-3 in cytidines by dimethyl sulfate and carbethoxylation of N-7 in adenosines by diethyl pyrocarbonate were investigated under various conditions. This enabled us to probe the accessibility of tRNA functional groups and to investigate the structure of tRNATrp in solution as well as its interactions with tryptophanyl-tRNA synthetase. The phosphate reactivity towards ethylnitrosourea of unfolded tRNA was compared to that of native tRNA. The pattern of phosphate alkylation of tRNATrp is very similar to that found with other tRNAs studied before using the same approach with protected phosphates mainly located in the D and T psi arms. Base modification experiments showed a striking similarity in the reactivity of conserved bases known to be involved in secondary and tertiary interactions. Differences are found with yeast tRNAPhe since beef tRNATrp showed a more stable D stem and a less stable T psi stem. When alkylation by ethylnitrosourea was studied with the tRNATrp X tryptophanyl-tRNA synthetase complex we found that phosphates located at the 5' side of the anticodon stem and in the anticodon loop were strongly protected against the reagent. The alkylation at the N-3 position of the two cytidines in the CCA anticodon was clearly diminished in the synthetase X tRNA complex as compared with the modification in free tRNATrp; in contrast the two cytidines of the terminal CCA in the acceptor stem are not protected by the synthetase. The involvement of the anticodon region of tRNATrp in the recognition process with tryptophanyl-tRNA synthetase was confirmed in nuclease S1 mapping experiments.
Collapse
|
30
|
Moras D, Lorber B, Romby P, Ebel JP, Giegé R, Lewit-Bentley A, Roth M. Yeast tRNAAsp-aspartyl-tRNA synthetase: the crystalline complex. J Biomol Struct Dyn 1983; 1:209-23. [PMID: 6401112 DOI: 10.1080/07391102.1983.10507435] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aspartyl-tRNA synthetase from yeast, a dimer of molecular weight 125,000 and its cognate tRNA (Mr = 24,160) were co-crystallized using ammonium sulfate as precipitant agent. The presence in the crystals of both components in the two-to-one stoichiometric ratio was demonstrated by electrophoresis, biological activity assays and crystallographic data. Crystals belong to the cubic space group I432 with cell parameter of 354 A and one complex particle per asymmetric unit. The solvent content of about 78% is favorable for a low resolution structural investigation. By exchanging H2O for D2O in mother liquors, advantage can be taken from contrast variation techniques with neutron radiations. Diffraction data to 20 A resolution were measured at five different contrasts, two of them being close to the theoretical matching point of RNA and protein in the presence of ammonium sulfate. The experimental extinction of the diffracted signal was observed to be close to 36% D2O, significantly different from the predicted value of 41%. The phenomenon can be explained by the existence of a large interface region between the two tRNAs and the enzyme. These parts of the molecules are hidden from the solvent and their protons are less easily exchangeable. Accessibility studies toward chemicals of tRNAAsp in solution and in the presence of synthetase are in agreement with such a model.
Collapse
Affiliation(s)
- D Moras
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|