1
|
Sigel A, Sigel H, Sigel RKO. Coordination Chemistry of Nucleotides and Antivirally Active Acyclic Nucleoside Phosphonates, including Mechanistic Considerations. Molecules 2022; 27:2625. [PMID: 35565975 PMCID: PMC9103026 DOI: 10.3390/molecules27092625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022] Open
Abstract
Considering that practically all reactions that involve nucleotides also involve metal ions, it is evident that the coordination chemistry of nucleotides and their derivatives is an essential corner stone of biological inorganic chemistry. Nucleotides are either directly or indirectly involved in all processes occurring in Nature. It is therefore no surprise that the constituents of nucleotides have been chemically altered-that is, at the nucleobase residue, the sugar moiety, and also at the phosphate group, often with the aim of discovering medically useful compounds. Among such derivatives are acyclic nucleoside phosphonates (ANPs), where the sugar moiety has been replaced by an aliphatic chain (often also containing an ether oxygen atom) and the phosphate group has been replaced by a phosphonate carrying a carbon-phosphorus bond to make the compounds less hydrolysis-sensitive. Several of these ANPs show antiviral activity, and some of them are nowadays used as drugs. The antiviral activity results from the incorporation of the ANPs into the growing nucleic acid chain-i.e., polymerases accept the ANPs as substrates, leading to chain termination because of the missing 3'-hydroxyl group. We have tried in this review to describe the coordination chemistry (mainly) of the adenine nucleotides AMP and ATP and whenever possible to compare it with that of the dianion of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA2- = adenine(N9)-CH2-CH2-O-CH2-PO32) [or its diphosphate (PMEApp4-)] as a representative of the ANPs. Why is PMEApp4- a better substrate for polymerases than ATP4-? There are three reasons: (i) PMEA2- with its anti-like conformation (like AMP2-) fits well into the active site of the enzyme. (ii) The phosphonate group has an enhanced metal ion affinity because of its increased basicity. (iii) The ether oxygen forms a 5-membered chelate with the neighboring phosphonate and favors thus coordination at the Pα group. Research on ANPs containing a purine residue revealed that the kind and position of the substituent at C2 or C6 has a significant influence on the biological activity. For example, the shift of the (C6)NH2 group in PMEA to the C2 position leads to 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer with only a moderate antiviral activity. Removal of (C6)NH2 favors N7 coordination, e.g., of Cu2+, whereas the ether O atom binding of Cu2+ in PMEA facilitates N3 coordination via adjacent 5- and 7-membered chelates, giving rise to a Cu(PMEA)cl/O/N3 isomer. If the metal ions (M2+) are M(α,β)-M(γ)-coordinated at a triphosphate chain, transphosphorylation occurs (kinases, etc.), whereas metal ion binding in a M(α)-M(β,γ)-type fashion is relevant for polymerases. It may be noted that with diphosphorylated PMEA, (PMEApp4-), the M(α)-M(β,γ) binding is favored because of the formation of the 5-membered chelate involving the ether O atom (see above). The self-association tendency of purines leads to the formation of dimeric [M2(ATP)]2(OH)- stacks, which occur in low concentration and where one half of the molecule undergoes the dephosphorylation reaction and the other half stabilizes the structure-i.e., acts as the "enzyme" by bridging the two ATPs. In accord herewith, one may enhance the reaction rate by adding AMP2- to the [Cu2(ATP)]2(OH)- solution, as this leads to the formation of mixed stacked Cu3(ATP)(AMP)(OH)- species, in which AMP2- takes over the structuring role, while the other "half" of the molecule undergoes dephosphorylation. It may be added that Cu3(ATP)(PMEA) or better Cu3(ATP)(PMEA)(OH)- is even a more reactive species than Cu3(ATP)(AMP)(OH)-. - The matrix-assisted self-association and its significance for cell organelles with high ATP concentrations is summarized and discussed, as is, e.g., the effect of tryptophanate (Trp-), which leads to the formation of intramolecular stacks in M(ATP)(Trp)3- complexes (formation degree about 75%). Furthermore, it is well-known that in the active-site cavities of enzymes the dielectric constant, compared with bulk water, is reduced; therefore, we have summarized and discussed the effect of a change in solvent polarity on the stability and structure of binary and ternary complexes: Opposite effects on charged O sites and neutral N sites are observed, and this leads to interesting insights.
Collapse
Affiliation(s)
- Astrid Sigel
- Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland;
| | - Helmut Sigel
- Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland;
| | - Roland K. O. Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
2
|
Complex formation of cadmium with sugar residues, nucleobases, phosphates, nucleotides, and nucleic acids. Met Ions Life Sci 2013; 11:191-274. [PMID: 23430775 DOI: 10.1007/978-94-007-5179-8_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cadmium(II), commonly classified as a relatively soft metal ion, prefers indeed aromatic-nitrogen sites (e.g., N7 of purines) over oxygen sites (like sugar-hydroxyl groups). However, matters are not that simple, though it is true that the affinity of Cd(2+) towards ribose-hydroxyl groups is very small; yet, a correct orientation brought about by a suitable primary binding site and a reduced solvent polarity, as it is expected to occur in a folded nucleic acid, may facilitate metal ion-hydroxyl group binding very effectively. Cd(2+) prefers the guanine(N7) over the adenine(N7), mainly because of the steric hindrance of the (C6)NH(2) group in the adenine residue. This Cd(2+)-(N7) interaction in a guanine moiety leads to a significant acidification of the (N1)H meaning that the deprotonation reaction occurs now in the physiological pH range. N3 of the cytosine residue, together with the neighboring (C2)O, is also a remarkable Cd(2+) binding site, though replacement of (C2)O by (C2)S enhances the affinity towards Cd(2+) dramatically, giving in addition rise to the deprotonation of the (C4)NH(2) group. The phosphodiester bridge is only a weak binding site but the affinity increases further from the mono- to the di- and the triphosphate. The same also holds for the corresponding nucleotides. Complex stability of the pyrimidine-nucleotides is solely determined by the coordination tendency of the phosphate group(s), whereas in the case of purine-nucleotides macrochelate formation takes place by the interaction of the phosphate-coordinated Cd(2+) with N7. The extents of the formation degrees of these chelates are summarized and the effect of a non-bridging sulfur atom in a thiophosphate group (versus a normal phosphate group) is considered. Mixed ligand complexes containing a nucleotide and a further mono- or bidentate ligand are covered and it is concluded that in these species N7 is released from the coordination sphere of Cd(2+). In the case that the other ligand contains an aromatic residue (e.g., 2,2'-bipyridine or the indole ring of tryptophanate) intramolecular stack formation takes place. With buffers like Tris or Bistris mixed ligand complexes are formed. Cd(2+) coordination to dinucleotides and to dinucleoside monophosphates provides some insights regarding the interaction between Cd(2+) and nucleic acids. Cd(2+) binding to oligonucleotides follows the principles of coordination to its units. The available crystal studies reveal that N7 of purines is the prominent binding site followed by phosphate oxygens and other heteroatoms in nucleic acids. Due to its high thiophilicity, Cd(2+) is regularly used in so-called thiorescue experiments, which lead to the identification of a direct involvement of divalent metal ions in ribozyme catalysis.
Collapse
|
3
|
|
4
|
|
5
|
Cappannelli M, Gaggelli E, Jezowska-Bojczuk M, Molteni E, Mucha A, Porciatti E, Valensin D, Valensin G. 1H and 13C NMR study of the complex formed by copper(II) with the nucleoside antibiotic sinefungin. J Inorg Biochem 2007; 101:1005-12. [PMID: 17531321 DOI: 10.1016/j.jinorgbio.2007.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/08/2007] [Accepted: 03/11/2007] [Indexed: 11/17/2022]
Abstract
Sinefungin (SFG) is an antifungal and antiparasitic nucleoside antibiotic composed by ornithine and adenosine moieties both having the potential to bind copper(II). NMR studies performed at physiological pH have shown that the alpha-amino and the carboxylate groups in the ornithine unit are the preferred donor sites for Cu(II) binding. On the contrary, at acidic pH, Cu(II) complexation starts from adenosine nitrogen being the alpha-amino group still protonated and not available for metal binding. The proton paramagnetic relaxation enhancements measured at neutral pH allowed to obtain the 3D structure of the 1:2 Cu(II)-SFG complex. Molecular dynamics calculations were revealing for the existence of secondary Cu(II) interaction with the purine nitrogens of the adenosine moiety.
Collapse
Affiliation(s)
- Massimo Cappannelli
- Department of Chemistry, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Sigel H, Griesser R. Nucleoside 5'-triphosphates: self-association, acid-base, and metal ion-binding properties in solution. Chem Soc Rev 2005; 34:875-900. [PMID: 16172677 DOI: 10.1039/b505986k] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adenosine 5'-triphosphate (ATP(4-)) and related nucleoside 5'-triphosphates (NTP(4-)) serve as substrates in the form of metal ion complexes in enzymic reactions taking part thus in central metabolic processes. With this in mind, the coordination chemistry of NTPs is critically reviewed and the conditions are defined for studies aiming to describe the properties of monomeric complexes because at higher concentrations (>1 mM) self-stacking may take place. The metal ion (M(2+)) complexes of purine-NTPs are more stable than those of pyrimidine-NTPs; this stability enhancement is attributed, in accord with NMR studies, to macrochelate formation of the phosphate-coordinated M(2+) with N7 of the purine residue and the formation degrees of the resulting isomeric complexes are listed. Furthermore, the formation of mixed-ligand complexes (including also those with buffer molecules), the effect of a reduced solvent polarity on complex stability and structure (giving rise to selectivity), the use of nucleotide analogues as antiviral agents, and the effect of metal ions on group transfer reactions are summarized.
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
8
|
Affiliation(s)
- R. Bruce Martin
- Chemistry Department, University of Virginia, Charlottesville, Virginia 22903
| |
Collapse
|
9
|
Diebler H, Secco F, Venturini M. The interactions of Mg2+ and Ni2+ with several oligo-adenylic acids: Equilibria and kinetics. J Inorg Biochem 1991. [DOI: 10.1016/0162-0134(91)80033-e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Tribolet R, Sigel H. Self-association of adenosine 5'-monophosphate (5'-AMP) as a function of pH and in comparison with adenosine, 2'-AMP and 3'-AMP. Biophys Chem 1987; 27:119-30. [PMID: 3663840 DOI: 10.1016/0301-4622(87)80052-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The concentration dependence of the chemical shifts for protons H-2, H-8, and H-1' of adenosine (Ado), 2'-AMP, 3'-AMP and 5'-AMP was measured in D2O at 27 degrees C under several degrees of protonation. All results are consistent with the isodesmic model of indefinite noncooperative stacking. The association constants for Ado decrease with increasing protonation: Ado (K = 15 M-1) greater than D(Ado)+/Ado (6.0 M-1) greater than D(Ado)+ (0.9 M-1). In contrast, a maximum is observed with 5'-AMP: 5'-AMP2- (K = 2.1 M-1) less than D(5'-AMP)- (3.4 M-1) less than D2(5'-AMP) +/- /D(5'-AMP)- (5.6 M-1) greater than D2(5'-AMP) +/- (approximately 2 M-1) greater than D3(5'-AMP)+ (less than or equal to 1 M-1). Self-stacking is most pronounced here if 50% of the adenine residues are protonated at N-1; complete base protonation reduces the stacking tendency drastically. Comparing the self-association of 2'-, 3'- and 5'-AMP shows that there is no influence of the phosphate-group position in the 2-fold negatively charged species, i.e., K congruent to 2 M-1 for all three AMP2- species. More importantly, there is also no significant influence observed if the stacking tendency of the three D2(AMP) +/- /D(AMP)-1:1 mixtures is compared (K congruent to 6-7 M-1); moreover, the measured association constants are within experimental error identical with the constant determined for D(Ado)+/Ado (K = 6.0 M-1). This indicates that any coulombic contribution between the -PO3(H)- group and the H+ (N-1) unit of the adenine residue to the stability of the mentioned stacks in D2O is small. However, experiments in 50% (v/v) dioxane-D8/D2O with the D2(5'-AMP) +/- /D(5'-AMP)- 1:1 system reveal, despite its low solubility, that coulombic interactions contribute to the self-association in an environment with a reduced polarity (compared to that of water). The implications of these observations for biological systems are briefly indicated.
Collapse
Affiliation(s)
- R Tribolet
- Institute of Inorganic Chemistry, University of Basel, Switzerland
| | | |
Collapse
|
11
|
Sigel H. Isomeric equilibria in complexes of adenosine 5'-triphosphate with divalent metal ions. Solution structures of M(ATP)2- complexes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 165:65-72. [PMID: 3569298 DOI: 10.1111/j.1432-1033.1987.tb11194.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Solution structures of M(ATP)2- complexes are reviewed. First the self-stacking properties of ATP4- and M(ATP)2- are shortly described. It is emphasized that for an evaluation of solution structures of M(ATP)2- complexes only results from diluted solutions (below 1 mM) should be used. Next, a comprehensive set of stability data obtained under such conditions from potentiometric pH titrations is summarized for the complexes of Mg2+, Ca2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+ with ATP, and for comparison also with pyrimidine nucleoside 5'-triphosphates (YTPs), i.e. CTP, UTP and TTP. The stabilities for the M(ATP)2- complexes are mostly larger than those for the corresponding M(YTP)2- species; this increased stability results from the metal ion back-binding to the base residue in M(ATP)2-, i.e. macrochelates are formed. Detailed analysis of the stability data allows calculation of the percentage of the closed form for the several M(ATP)2- complexes: back-binding is most pronounced in Cu(ATP)2- (67 +/- 2%), remarkable in Zn(ATP)2- (28 +/- 7%), and not observable for Ca(ATP)2- (2 +/- 6%). Comparison of these results with those from 1H-NMR and ultraviolet spectrophotometric studies allows the conclusion that two types of base back-bound macrochelates are formed: one with a direct, i.e. innersphere, M2+/N-7 coordination, and one with a water molecule between the metal ion and N-7, i.e. an outersphere interaction occurs [e.g. to about 10% in Mg(ATP)2-] through hydrogen bonding of a coordinated water to N-7. The formation degree of both forms of these closed isomers is quantified. The biological implications of these results are indicated and the versatility of ATP as a ligand is discussed by summarizing pertinent examples.
Collapse
|
12
|
Evans DJ, Green M, Van eldik R. The kinetics and mechanism of the reaction of 2′-deoxy-5′-guanosinemonophosphoric acid and the diaqua form of cis-platin. Inorganica Chim Acta 1987. [DOI: 10.1016/s0020-1693(00)84690-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Tribolet R, Sigel H. Self-association and protonation of adenosine 5'-monophosphate in comparison with its 2'- and 3'-analogues and tubercidin 5'-monophosphate (7-deaza-AMP). EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 163:353-63. [PMID: 3028802 DOI: 10.1111/j.1432-1033.1987.tb10807.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The concentration dependence of the chemical shifts of the protons H-2, H-8 and H-1' for 2'-, 3'- and 5'-AMP2- and of the protons H-2, H-7, H-8 and H-1' for tubercidin 5'-monophosphate (= 7-deaza-AMP2-; TuMP2-) has been measured in D2O at 27 degrees C to elucidate the self-association of the nucleoside monophosphates (NMPs). The results are consistent with the isodesmic model of indefinite non-cooperative stacking; the association constants for all four NMPs are very similar: K approximately 2 M-1. These 1H-NMR measurements and those on the dependence of the chemical shifts on the pD of the solutions indicate that the NMP2- species exist predominately in the anti conformation. Comparison of the shift data for 5'-TuMP and 5'-AMP shows that no hydrogen bonding between N-7 and -PO3H- occurs; hence, the previously observed and confirmed 'wrongway' chemical shift [Martin, R. B. (1985) Acc. Chem. Res 18, 32] connected with the deprotonation of the -PO3H- group most probably results from the anisotropic properties of the phosphate group which is in the anti conformation close to N-7. From the dependence between the chemical shift and the pD of the solutions the acidity constants were calculated for the four protonated NMPs, and for adenosine and D-ribose 5'-monophosphate. The measurements also allow an estimation of the first acidity constant of H3(5'-AMP)+ (pKDD3(AMP) = 0.9 and pKHH3(AMP) = 0.4). The values for pKHH2(NMP) and pKHH(NMP) were also determined from potentiometric pH titrations in aqueous solution (I = 0.1 M, NaNO3; 25 degrees C). The agreement of the results obtained by the two methods is excellent. The position of the phosphate group at the ribose moiety and the presence of N-7 in the base moiety influence somewhat the acid-base properties of the mentioned NMPs. Measurements with 5'-AMP in 50% (v/v) aqueous dioxane show that lowering of the solvent polarity facilitates removal of the proton from the H+(N-1) site while the -PO2-3 group becomes more basic; this increases the pH range in which the monoprotonated H(5'-AMP)- species is stable and which is now also extended into the physiological pH region. Some consequences of this observation for biological systems are indicated.
Collapse
|
14
|
Scheller KH, Sigel H. Self-association of 1,N6-ethenoadenosine 5'-triphosphate (epsilon-ATP) and promotion by metal ions. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 157:147-53. [PMID: 3709530 DOI: 10.1111/j.1432-1033.1986.tb09650.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The concentration dependence of the chemical shifts of the protons H-2, H-8, H-10, H-11, and H-1' of 1,N6-ethenoadenosine 5'-triphosphate (epsilon-ATP4-) has been measured in D2O at 27 degrees C to elucidate the self-association. The results are consistent with the isodesmic model of indefinite noncooperative stacking; the association constant, K = 1.9 +/- 0.2 M-1, is only slightly larger than the value for ATP4-, K = 1.3 +/- 0.2 M-1. The self-stacking tendency of epsilon-ATP4- is promoted by a factor of about 4 by (1:1) coordination of Mg2+ to the phosphate moieties, which probably links these together and also neutralizes part of the negative charge; Zn2+ is only about half as effective as Mg2+ in promoting the self-association. This result contrasts with the self-stacking properties of Mg(ATP)2- and Zn(ATP)2-, Zn2+ being considerably more effective in a 1:1 ATP system. It is assumed that due to the enhanced affinity of the N-6/N-7 site of the epsilon-adenine moiety towards Zn2+ repulsion of the bases occurs resulting thus in a lower stacking tendency; in addition, the simple isodesmic model is no longer applicable to the Zn(epsilon-ATP)2- system: to explain the experimental data, the formation of an intermolecular metal ion bridge in the dimeric stacks is proposed. The experimental conditions required for studies of the properties of monomeric epsilon-ATP systems are described. Care should be exercised in employing epsilon-ATP as a probe for ATP.
Collapse
|