1
|
Zhang R, Wang Z, Tian Y, Yin Q, Cheng X, Lian M, Zhou B, Zhang X, Yang L. Efficacy of Antimicrobial Peptide DP7, Designed by Machine-Learning Method, Against Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2019; 10:1175. [PMID: 31191493 PMCID: PMC6546875 DOI: 10.3389/fmicb.2019.01175] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/08/2019] [Indexed: 02/05/2023] Open
Abstract
Antimicrobial peptides (AMPs) provide a promising strategy against infections involving multidrug-resistant pathogens. In previous studies, we designed a short 12 amino acid AMP DP7, using a machine-learning method based on an amino acid activity contribution matrix. DP7 shows broad-spectrum antimicrobial activities both in vitro and in vivo. Here, we aim to investigate the efficacy of DP7 against multidrug resistant Staphylococcus aureus (S. aureus) and reveal the potential mechanisms. First, by measuring the killing kinetics of DP7 against S. aureus and comparing these results with antibiotics with different antimicrobial mechanisms, we hypothesize that DP7, in addition to its known ability to induce cell wall cation damage, can also exert a full killing effect. With FITC-conjugated or biotin-labeled DP7, we tracked DP7's attachment, membrane permeation and subsequent intracellular distribution in S. aureus. These results indicated that the possible targets of DP7 were within the bacterial cells. Transcriptome sequencing of S. aureus exposed to DP7 identified 333 differentially expressed genes (DEGs) influenced by DP7, involving nucleic acid metabolism, amino acid biosynthesis, cell wall destruction and pathogenesis, respectively, indicating the comprehensive killing efficacy of DP7. In addition, the genome sequencing results of the induced DP7 resistant strain S. aureus DP7-R revealed two-point mutations in the mprF and guaA gene. Moreover, in a murine model for MRSA blood stream infection, intravenously treating mice with DP7 showed a good protective effect on mice. In conclusion, DP7 is an effective bactericide for S. aureus, which deserves further study for clinical application and drug development.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yaomei Tian
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Qi Yin
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xingjun Cheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Mao Lian
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Bailing Zhou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xueyan Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Li Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Erpf PE, Fraser JA. The Long History of the Diverse Roles of Short ORFs: sPEPs in Fungi. Proteomics 2018; 18:e1700219. [PMID: 29465163 DOI: 10.1002/pmic.201700219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Indexed: 12/30/2022]
Abstract
Since the completion of the genome sequence of the model eukaryote Saccharomyces cerevisiae, there have been significant advancements in the field of genome annotation, in no small part due to the availability of datasets that make large-scale comparative analyses possible. As a result, since its completion there has been a significant change in annotated ORF size distribution in this first eukaryotic genome, especially in short ORFs (sORFs) predicted to encode polypeptides less than 150 amino acids in length. Due to their small size and the difficulties associated with their study, it is only relatively recently that these genomic features and the sORF-encoded peptides (sPEPs) they encode have become a focus of many researchers. Yet while this class of peptides may seem new and exciting, the study of this part of the proteome is nothing new in S. cerevisiae, a species where the biological importance of sPEPs has been elegantly illustrated over the past 30 years. Here the authors showcase a range of different sORFs found in S. cerevisiae and the diverse biological roles of their encoded sPEPs, and provide an insight into the sORFs found in other fungal species, particularly those pathogenic to humans.
Collapse
Affiliation(s)
- Paige E Erpf
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Li X, Yang Y, Zhan C, Zhang Z, Liu X, Liu H, Bai Z. Transcriptional analysis of impacts of glycerol transporter 1 on methanol and glycerol metabolism in Pichia pastoris. FEMS Yeast Res 2017; 18:4582313. [DOI: 10.1093/femsyr/fox081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/29/2017] [Indexed: 01/13/2023] Open
Affiliation(s)
- Xiang Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Chunjun Zhan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhenyang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hebin Liu
- Department of Biological Science, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou 215123, China
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
4
|
The arginine attenuator peptide interferes with the ribosome peptidyl transferase center. Mol Cell Biol 2012; 32:2396-406. [PMID: 22508989 DOI: 10.1128/mcb.00136-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungal arginine attenuator peptide (AAP) is encoded by a regulatory upstream open reading frame (uORF). The AAP acts as a nascent peptide within the ribosome tunnel to stall translation in response to arginine (Arg). The effect of AAP and Arg on ribosome peptidyl transferase center (PTC) function was analyzed in Neurospora crassa and wheat germ translation extracts using the transfer of nascent AAP to puromycin as an assay. In the presence of a high concentration of Arg, the wild-type AAP inhibited PTC function, but a mutated AAP that lacked stalling activity did not. While AAP of wild-type length was most efficient at stalling ribosomes, based on primer extension inhibition (toeprint) assays and reporter synthesis assays, a window of inhibitory function spanning four residues was observed at the AAP's C terminus. The data indicate that inhibition of PTC function by the AAP in response to Arg is the basis for the AAP's function of stalling ribosomes at the uORF termination codon. Arg could interfere with PTC function by inhibiting peptidyltransferase activity and/or by restricting PTC A-site accessibility. The mode of PTC inhibition appears unusual because neither specific amino acids nor a specific nascent peptide chain length was required for AAP to inhibit PTC function.
Collapse
|
5
|
Hood HM, Neafsey DE, Galagan J, Sachs MS. Evolutionary roles of upstream open reading frames in mediating gene regulation in fungi. Annu Rev Microbiol 2009; 63:385-409. [PMID: 19514854 DOI: 10.1146/annurev.micro.62.081307.162835] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Upstream open reading frames (uORFs) are frequently present in the 5'-leader regions of fungal mRNAs. They can affect translation by controlling the ability of ribosomes that scan from the mRNA 5' end to reach the downstream genic reading frame. The translation of uORFs can also affect mRNA stability. For several genes, including Saccharomyces cerevisiae GCN4, S. cerevisiae CPA1, and Neurospora crassa arg-2, regulation by uORFs controls expression in response to specific physiological signals. The roles of many uORFs that are identified by genome-level approaches, as have been initiated for Saccharomyces, Aspergillus, and Cryptococcus species, remain to be determined. Some uORFs may have regulatory roles, while others may exist to insulate the genic reading frame from the negative impacts of upstream translation start sites in the mRNA 5' leader.
Collapse
Affiliation(s)
- Heather M Hood
- Department of Science and Engineering, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | | | |
Collapse
|
6
|
Meister A. Mechanism and regulation of the glutamine-dependent carbamyl phosphate synthetase of Escherichia coli. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 62:315-74. [PMID: 2658488 DOI: 10.1002/9780470123089.ch7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- A Meister
- Department of Biochemistry, Cornell University Medical College, New York, New York 10021
| |
Collapse
|
7
|
Hood HM, Spevak CC, Sachs MS. Evolutionary changes in the fungal carbamoyl-phosphate synthetase small subunit gene and its associated upstream open reading frame. Fungal Genet Biol 2006; 44:93-104. [PMID: 16979358 DOI: 10.1016/j.fgb.2006.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Revised: 07/11/2006] [Accepted: 07/19/2006] [Indexed: 11/28/2022]
Abstract
The Neurospora crassa arg-2 and the Saccharomyces cerevisiae ortholog CPA1 encode the arginine-specific carbamoyl-phosphate synthetase (CPS-A) small subunit. Arginine decreases synthesis of this subunit through the action of a 5' upstream open reading frame in the mRNA that encodes a cis-regulatory element, the arginine attenuator peptide (AAP), which stalls ribosomes in response to arginine. We performed a comparative analysis of the genomic structure and predicted peptide sequence of the AAP and CPS-A small subunit across many fungi. Differences at the genomic level included variation in intron number and position within the AAP and CPS-A coding regions and differences in known regulatory motifs. Although differences exist in AAP sequence, there were three absolutely conserved amino acid residues in the predicted peptide, including an aspartic acid crucial for arginine-dependent regulation of arg-2 and CPA1. A diverged Basidiomycete AAP was shown to retain function as an Arg-specific negative regulator of translation.
Collapse
Affiliation(s)
- Heather M Hood
- Department of Environmental and Biomolecular Systems, Oregon Health & Science University, Beaverton, OR 97006-8921, USA
| | | | | |
Collapse
|
8
|
Llamas I, Suárez A, Quesada E, Béjar V, del Moral A. Identification and characterization of the carAB genes responsible for encoding carbamoylphosphate synthetase in Halomonas eurihalina. Extremophiles 2003; 7:205-11. [PMID: 12768451 DOI: 10.1007/s00792-002-0311-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2002] [Accepted: 12/02/2002] [Indexed: 10/28/2022]
Abstract
Halomonas eurihalina is a moderately halophilic bacterium which produces exopolysaccharides potentially of great use in many fields of industry and ecology. Strain F2-7 of H. eurihalina synthesizes an anionic exopolysaccharide known as polymer V2-7, which not only has emulsifying activity but also becomes viscous under acidic conditions, and therefore we consider it worthwhile making a detailed study of the genetics of this strain. By insertional mutagenesis using the mini-Tn 5 Km2 transposon we isolated and characterized a mutant strain, S36 K, which requires both arginine and uracil for growth and does not excrete EPS. S36 K carries a mutation within the carB gene that encodes the synthesis of the large subunit of the carbamoylphosphate synthetase enzyme, which in turn catalyzes the synthesis of carbamoylphosphate, an important precursor of arginine and pyrimidines. We describe here the cloning and characterization of the carAB genes, which encode carbamoylphosphate synthetase in Halomonas eurihalina, and discuss this enzyme's possible role in the pathways for the synthesis of exopolysaccharides in strain F2-7.
Collapse
Affiliation(s)
- Inmaculada Llamas
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | | | | | | | | |
Collapse
|
9
|
Abstract
Studies of the budding yeast Saccharomyces cerevisiae have greatly advanced our understanding of the posttranscriptional steps of eukaryotic gene expression. Given the wide range of experimental tools applicable to S. cerevisiae and the recent determination of its complete genomic sequence, many of the key challenges of the posttranscriptional control field can be tackled particularly effectively by using this organism. This article reviews the current knowledge of the cellular components and mechanisms related to translation and mRNA decay, with the emphasis on the molecular basis for rate control and gene regulation. Recent progress in characterizing translation factors and their protein-protein and RNA-protein interactions has been rapid. Against the background of a growing body of structural information, the review discusses the thermodynamic and kinetic principles that govern the translation process. As in prokaryotic systems, translational initiation is a key point of control. Modulation of the activities of translational initiation factors imposes global regulation in the cell, while structural features of particular 5' untranslated regions, such as upstream open reading frames and effector binding sites, allow for gene-specific regulation. Recent data have revealed many new details of the molecular mechanisms involved while providing insight into the functional overlaps and molecular networking that are apparently a key feature of evolving cellular systems. An overall picture of the mechanisms governing mRNA decay has only very recently begun to develop. The latest work has revealed new information about the mRNA decay pathways, the components of the mRNA degradation machinery, and the way in which these might relate to the translation apparatus. Overall, major challenges still to be addressed include the task of relating principles of posttranscriptional control to cellular compartmentalization and polysome structure and the role of molecular channelling in these highly complex expression systems.
Collapse
Affiliation(s)
- J E McCarthy
- Posttranscriptional Control Group, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, United Kingdom.
| |
Collapse
|
10
|
Affiliation(s)
- M S Sachs
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291-1000, USA.
| |
Collapse
|
11
|
Baek JM, Kenerley CM. The arg2 gene of Trichoderma virens: cloning and development of a homologous transformation system. Fungal Genet Biol 1998; 23:34-44. [PMID: 9501476 DOI: 10.1006/fgbi.1997.1025] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The arg2 gene which encodes the small subunit of carbamoyl phosphate synthetase for Trichoderma virens has been cloned and used to develop a homologous transformation system. A genomic clone containing the arg2 gene was isolated from a cosmid library of T. virens based on complementation of an arginine auxotrophic mutant of this fungus. The predicted amino acid sequence of the arg2 gene shows 56-82% identity with homologous polypeptides from other fungi. It also contains an upstream open reading frame which encodes 24 amino acids. As is observed with other gene sequences encoding this polypeptide in filamentous fungi, the N-terminus of the predicted polypeptide showed characteristic features of a mitochondrial signal sequence. The arg2 gene was used for genetic transformation of T. virens in frequencies of up to 370 transformants/microgram of DNA. Heat-shock treatment of T. virens protoplasts increased the transformation frequency by fivefold, but more than 85% of the transformants were abortive. Both single-copy, homologous integration events and ectopic, non-homologous integration events were detected by Southern analyses of genomic DNA from transformed strains.
Collapse
Affiliation(s)
- J M Baek
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station 77843, USA
| | | |
Collapse
|
12
|
Bernard A, Erbs P, Demuyter P, Jund R. In vivo mutational analysis of highly conserved amino acid residues of the small subunit Cpa1p of the carbamylphosphate synthetase of Saccharomyces cerevisiae. Yeast 1997; 13:1021-8. [PMID: 9290206 DOI: 10.1002/(sici)1097-0061(19970915)13:11<1021::aid-yea158>3.0.co;2-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The role of selected amino acid residues located in the putative catalytic domain and of two conserved histidine residues within the small subunit of the carbamylphosphate synthetase (CPS) specific to the arginine biosynthesis pathway of the yeast Saccharomyces cerevisiae was studied using site-directed mutagenesis to change all residues to aspartic acid. Carbamylphosphate synthesis catalysed by modified CPS was tested in vivo. The C264D, H307D and H349D mutants were unable to grow on minimal medium, indicating the importance of these three residues for efficient CPS activity, whereas, four other mutated residues located in the catalytic site (including a proline residue) do not affect the growth rate. These results in comparison to those obtained with the CPS of Escherichia coli, implicate residues Cys 264 and His 349 in the glutaminase catalytic activity, and His 307 in the binding of glutamine to the active site. Using these three defective mutants, we investigated the in vivo utilization of ammonia by CPS. C264D and H307D mutants are able to use ammonia as a substrate when provided in sufficiently high concentrations (up to 200 mM). The H349D mutant, however, did not grow even at ammonium sulfate concentrations above 400 mM, suggesting that this substitution is critical to NH3-dependent CPS activity although the ammonia binding site is presumably located within the large subunit of the enzyme.
Collapse
Affiliation(s)
- A Bernard
- Laboratoire de Génétique, UPR 9003 CNRS, Institut de Recherche contre les Cancers de l'Appareil Digestif (IRCAD), Hospices Civils, Strasbourg, France
| | | | | | | |
Collapse
|
13
|
Poirey R, Cziepluch C, Tobiasch E, Pujol A, Kordes E, Jauniaux JC. Sequence and analysis of a 36.2 kb fragment from the right arm of yeast chromosome XV reveals 19 open reading frames including SNF2 (5' end), CPA1, SLY41, a putative transport ATPase, a putative ribosomal protein and an SNF2 homologue. Yeast 1997; 13:479-82. [PMID: 9153758 DOI: 10.1002/(sici)1097-0061(199704)13:5<479::aid-yea104>3.0.co;2-g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The complete sequence of a 36 196 bp DNA segment located on the right arm of chromosome XV of Saccharomyces cerevisiae has been determined and analysed. The sequence includes the 5' coding region of the SNF2 gene, the CPA1 leader peptide sequence and 17 open reading frames (ORFs) of at least 100 amino acids. Two of these correspond to previously known genes (CPA1, SLY41), whereas 15 correspond to new genes. The putative translation products of three ORFs show significant similarity with known proteins: one is a putative transport ATPase, another appears to be a ribosomal protein, and the third is an Snf2p homologue.
Collapse
Affiliation(s)
- R Poirey
- Angewandte Tumorvirologie, Abteilung 0610, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Luo Z, Sachs MS. Role of an upstream open reading frame in mediating arginine-specific translational control in Neurospora crassa. J Bacteriol 1996; 178:2172-7. [PMID: 8636015 PMCID: PMC177922 DOI: 10.1128/jb.178.8.2172-2177.1996] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Neurospora crassa arg-2 transcript contains an upstream open reading frame (uORF) specifying a 24-residue leader peptide and is subject to a novel form of negative translational regulation in response to arginine. The role of the arg-2 uORF in arginine-specific negative regulation was investigated by using translational fusions of wild-type and mutant arg-2 sequences to the Escherichia coli lacZ reporter gene specifying beta-galactosidase. The wild-type uORF conferred Arg-specific regulation on the reporter gene in N. crassa, but mutated or truncated uORFs did not, as determined by measurements of beta-galactosidase activity produced in N. crassa strains expressing arg-2-lacZ fusion genes. All effects on reporter gene expression were posttranscriptional, as determined by measurement of RNA levels. Both sequence-dependent and sequence-independent effects of uORFs were observed. Genes containing the wild-type uORF or a 21-codon mutated uORF showed reduced translation in comparison with that of a gene lacking a uORF. Both uORF-containing transcripts showed reduced association with polysomes relative to transcripts lacking a uORF, but only the transcript with the wild-type uORF showed a reduced average number of ribosomes associated with it in response to arginine addition. Direct translational fusions between uORF sequences and lacZ sequences indicated that the uORF is translated. Overlapping the uORF with the lacZ initiation codon indicated that ribosome reinitiation at a downstream start codon is not integral to uORF-mediated, Arg-specific translational regulation. These studies provide direct biochemical evidence for arg-2 uORF function in translational control.
Collapse
Affiliation(s)
- Z Luo
- Department of Chemistry, Biochemistry and Molecular Biology, Oregon Graduate Institute of Science & Technology, Portland 97291-1000, USA
| | | |
Collapse
|
15
|
Crabeel M, de Rijcke M, Seneca S, Heimberg H, Pfeiffer I, Matisova A. Further definition of the sequence and position requirements of the arginine control element that mediates repression and induction by arginine in Saccharomyces cerevisiae. Yeast 1995; 11:1367-80. [PMID: 8585320 DOI: 10.1002/yea.320111405] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Repression or induction of the genes involved in arginine biosynthesis or catabolism, respectively, both require participation of the ArgRp/Mcm1p regulatory complex. Our previous work showed that those opposite effects were mediated by a similar arginine-responsive element of 23 nucleotides (that we now call ARC, for ARginine Control) situated close to the start of transcription in the repressed promoters and far upstream of the TATA-element in the induced promoters. To define more precisely the sequence and position requirements of the ARC element, we have now characterized by mutagenesis the promoter elements of the arginine-repressible ARG1 and ARG8 genes. We also identify a functional ARC in the CPA1 promoter, thereby confirming, in agreement with our previous mRNA pulse-labelling data, the participation of a transcriptional component in the arginine regulation of that gene otherwise submitted to a translational regulation. From the 12 ARC elements now characterized, we have derived a consensus sequence and show that such a synthetic element is able to mediate ArgRp/Mcm1p-dependent arginine regulation. An important new finding illustrated by ARG1 and CPA1, is that contrary to what all the previous data suggested, repression can be mediated by ARC elements located far upstream of the TATA-box. The new data suggest that the arginine repressor might inhibit transcription in an active process.
Collapse
Affiliation(s)
- M Crabeel
- Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel and Onderzoekingsinstituut CERIA-COOVI, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Huang H, Tudor M, Weiss CA, Hu Y, Ma H. The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein. PLANT MOLECULAR BIOLOGY 1995; 28:549-67. [PMID: 7632923 DOI: 10.1007/bf00020401] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The Arabidopsis AGL3 gene was previously identified on the basis of sequence similarity to the floral homeotic gene AGAMOUS (AG), which encodes a protein with a conserved MADS domain that is also found in human and yeast transcription factors (SRF and MCM1, respectively). Analysis of newly isolated full-length cDNA clones as well as genomic clones indicates that AGL3 is indeed a MADS-box gene with a general intron-exon structure similar to other plant MADS-box genes. However, unlike the others, which are expressed specifically in flowers, AGL3 is expressed in all above-ground vegetative organs, as well as in flowers, but not in roots. Furthermore, since AGL3 is MADS-domain protein, it is likely that it is also a DNA-binding protein regulating transcription. To characterize AGL3 as a DNA-binding protein in vitro, we expressed the AGL3 protein in Escherichia coli, and characterized its DNA-binding properties. We show that AGL3 binds to sequences which resemble the target sequences of SRF and MCM1, and have determined the consensus sequence to which AGL3 binds using random oligonucleotides. These results suggest that AGL3 is a widely distributed DNA-binding protein, which may be involved the transcriptional regulation of genes in many cells.
Collapse
Affiliation(s)
- H Huang
- Cold Spring Harbor Laboratory, NY 11724, USA
| | | | | | | | | |
Collapse
|
17
|
Hoff MJB, Zande LPWGM, Dingemanse MA, Das AT, Labruyere W, Moorman AFM, Charles R, Lamers WH. Isolation and Characterization of the Rat Gene for Carbamoylphosphate Synthetase I. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20271.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Guy HI, Evans DR. Substructure of the amidotransferase domain of mammalian carbamyl phosphate synthetase. J Biol Chem 1995; 270:2190-7. [PMID: 7836449 DOI: 10.1074/jbc.270.5.2190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The amidotransferase or glutaminase (GLNase) domain of mammalian carbamyl phosphate synthetase (CPSase), part of the 243-kDa CAD polypeptide, consists of a carboxyl half that is homologous to all trpG-type amidotransferases and an amino half unique to the carbamyl phosphate synthetases. The two halves of the mammalian GLNase domain have been cloned separately, expressed in Escherichia coli, and purified. The 21-kDa carboxyl half, the catalytic subdomain, is extraordinarily active. The kcat is 347-fold higher and the KGlnm is 40-fold lower than the complete GLNase domain. Unlike the GLNase domain, the catalytic subdomain does not form a stable hybrid complex with the E. coli CPSase synthetase subunit. Nevertheless, titration of the synthetase subunit with the catalytic subdomain partially restores glutamine-dependent CPSase activity. The 19-kDa amino half, the interaction subdomain, binds tightly to the E. coli CPSase large subunit. Thus, the GLNase domain consists of two subdomains which can autonomously fold and function. The catalytic subdomain weakly interacts with the synthetase domain and has all of the residues necessary for catalysis. The interaction subdomain is required for complex formation and also attenuates the intrinsically high activity of the catalytic subdomain and, thus, may be a key element of the interdomain functional linkage.
Collapse
Affiliation(s)
- H I Guy
- Department of Biochemistry, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | |
Collapse
|
19
|
Liu X, Guy HI, Evans DR. Identification of the regulatory domain of the mammalian multifunctional protein CAD by the construction of an Escherichia coli hamster hybrid carbamyl-phosphate synthetase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47049-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Fondrat C, Kalogeropoulos A. Approaching the function of new genes by detection of their potential upstream activation sequences in Saccharomyces cerevisiae: application to chromosome III. Curr Genet 1994; 25:396-406. [PMID: 8082184 DOI: 10.1007/bf00351777] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The systematic sequencing of the yeast genome reveals the presence of many potential genes of unknown function. One way to approach their function is to define which regulatory system controls their transcription. This can also be accomplished by the detection of an upstream activation sequence (UAS). Such a detection can be done by computer, provided that the definition of a UAS includes sufficient and precise rules. We have established such rules for the UASs of the GAL4, RAP1 (RPG box), GCN4, and the HAP2/HAP3/HAP4 regulatory proteins, as well as for a motif (PAC) frequently found upstream of the genes of the RNA polymerase A and C subunits. These rules were applied to the chromosome III DNA sequence, and gave precise predictions.
Collapse
Affiliation(s)
- C Fondrat
- Institut de Génétique et Microbiologie, Centre Universitaire d'Orsay, France
| | | |
Collapse
|
21
|
Kwon DH, Lu CD, Walthall DA, Brown TM, Houghton JE, Abdelal AT. Structure and regulation of the carAB operon in Pseudomonas aeruginosa and Pseudomonas stutzeri: no untranslated region exists. J Bacteriol 1994; 176:2532-42. [PMID: 8169201 PMCID: PMC205390 DOI: 10.1128/jb.176.9.2532-2542.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The carAB operons from Pseudomonas aeruginosa PAO1 and Pseudomonas stutzeri JM300 were characterized by Southern and DNA sequence analyses. The results show that the previously reported sequence for carA (S. C. Wong and A. T. Abdelal, J. Bacteriol. 172:630-642, 1990) is derived from P. stutzeri and not P. aeruginosa, as originally reported. Therefore, the amino-terminal sequence of the purified carA product is identical to that derived from the nucleotide sequence in both organisms, P. stutzeri having four additional amino acids. The results also show that while carA and carB are contiguous in P. stutzeri, as is the case in other bacteria, they are surprisingly separated by an open reading frame (ORF) of 216 amino acids in P. aeruginosa. S1 nuclease mapping experiments with RNA extracted under a variety of growth conditions, as well as experiments using different lacZ fusions, indicate that the carA-ORF-carB operon of P. aeruginosa is transcribed from a single promoter. Moreover, these experiments demonstrate that expression of this single transcript is controlled by both arginine and pyrimidines and that variation in arginine levels specifically modulates transcriptional initiation, while pyrimidine regulation is exerted subsequent to transcriptional initiation. Modification of a rho-independent terminator-like structure, which is present upstream of carA in P. aeruginosa, removed all transcriptional sensitivity of a carA::lacZ fusion to pyrimidines. This result, when coupled with the finding that translation of an 18-amino-acid leader polypeptide (associated with this putative rho-independent terminator), is inversely proportional to pyrimidine concentration in the cell, strongly suggests that regulation of carA by pyrimidines is mediated through an attenuation-type mechanism in P. aeruginosa.
Collapse
Affiliation(s)
- D H Kwon
- Biology Department, Georgia State University, Atlanta 30303
| | | | | | | | | | | |
Collapse
|
22
|
A segment of mRNA encoding the leader peptide of the CPA1 gene confers repression by arginine on a heterologous yeast gene transcript. Mol Cell Biol 1994. [PMID: 8139542 DOI: 10.1128/mcb.14.4.2378] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of the yeast gene CPA1, which encodes the small subunit of the arginine pathway carbamoylphosphate synthetase, is repressed by arginine at a translational level. CPA1 mRNA contains a 250-nucleotide-long leader which includes a 25-codon upstream open reading frame (uORF). Oligonucleotide site-directed mutagenesis of this uORF as well as sequencing of constitutive cis-dominant mutations has suggested that the leader peptide product of the CPA1 uORF is an essential negative element for repression of the CPA1 gene by arginine. In this work, a series of deletions affecting the regions 5' and 3' to the uORF in the leader sequence was constructed. The arginine-dependent repression of CPA1 was little affected in these constructions, indicating that these regions are not essential for the regulatory response. This conclusion was further supported by the finding that inserting the mRNA segment encoding the leader peptide sequence of CPA1 in the leader sequence of another gene, namely, GCN4, places this gene under arginine repression. Similarly, the behavior of fusions of the leader sequence of CPA1 with those of ARG4 or GAL10 confirmed that the regions of this leader located upstream and downstream from the uORF are dispensable for the regulation by arginine. Finally, a set of substitution mutations which modify the uORF nucleotide sequence while leaving unchanged the corresponding amino acid sequence was constructed. The mutations did not affect the repression of CPA1 by arginine. The data presented in this paper consequently agree with the conclusion that the leader peptide itself is the main element required for the translational repression of CPA1.
Collapse
|
23
|
Delbecq P, Werner M, Feller A, Filipkowski RK, Messenguy F, Piérard A. A segment of mRNA encoding the leader peptide of the CPA1 gene confers repression by arginine on a heterologous yeast gene transcript. Mol Cell Biol 1994; 14:2378-90. [PMID: 8139542 PMCID: PMC358605 DOI: 10.1128/mcb.14.4.2378-2390.1994] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The expression of the yeast gene CPA1, which encodes the small subunit of the arginine pathway carbamoylphosphate synthetase, is repressed by arginine at a translational level. CPA1 mRNA contains a 250-nucleotide-long leader which includes a 25-codon upstream open reading frame (uORF). Oligonucleotide site-directed mutagenesis of this uORF as well as sequencing of constitutive cis-dominant mutations has suggested that the leader peptide product of the CPA1 uORF is an essential negative element for repression of the CPA1 gene by arginine. In this work, a series of deletions affecting the regions 5' and 3' to the uORF in the leader sequence was constructed. The arginine-dependent repression of CPA1 was little affected in these constructions, indicating that these regions are not essential for the regulatory response. This conclusion was further supported by the finding that inserting the mRNA segment encoding the leader peptide sequence of CPA1 in the leader sequence of another gene, namely, GCN4, places this gene under arginine repression. Similarly, the behavior of fusions of the leader sequence of CPA1 with those of ARG4 or GAL10 confirmed that the regions of this leader located upstream and downstream from the uORF are dispensable for the regulation by arginine. Finally, a set of substitution mutations which modify the uORF nucleotide sequence while leaving unchanged the corresponding amino acid sequence was constructed. The mutations did not affect the repression of CPA1 by arginine. The data presented in this paper consequently agree with the conclusion that the leader peptide itself is the main element required for the translational repression of CPA1.
Collapse
MESH Headings
- Amino Acid Sequence
- Arginine/pharmacology
- Base Sequence
- Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/biosynthesis
- Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/genetics
- Cloning, Molecular
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- Enzyme Repression
- Escherichia coli
- Gene Expression/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Fungal/drug effects
- Genes, Fungal
- Molecular Sequence Data
- Mutagenesis, Insertional
- Oligodeoxyribonucleotides
- Open Reading Frames
- Protein Biosynthesis/drug effects
- Protein Sorting Signals/biosynthesis
- Protein Sorting Signals/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Restriction Mapping
- Saccharomyces cerevisiae/drug effects
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Sequence Deletion
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- P Delbecq
- Laboratoire de Microbiologie, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Signature sequences are contiguous patterns of amino acids 10-50 residues long that are associated with a particular structure or function in proteins. These may be of three types (by our nomenclature): superfamily signatures, remnant homologies, and motifs. We have performed a systematic search through a database of protein sequences to automatically and preferentially find remnant homologies and motifs. This was accomplished in three steps: 1. We generated a nonredundant sequence database. 2. We used BLAST3 (Altschul and Lipman, Proc. Natl. Acad. Sci. U.S.A. 87:5509-5513, 1990) to generate local pairwise and triplet sequence alignments for every protein in the database vs. every other. 3. We selected "interesting" alignments and grouped them into clusters. We find that most of the clusters contain segments from proteins which share a common structure or function. Many of them correspond to signatures previously noted in the literature. We discuss three previously recognized motifs in detail (FAD/NAD-binding, ATP/GTP-binding, and cytochrome b5-like domains) to demonstrate how the alignments generated by our procedure are consistent with previous work and make structural and functional sense. We also discuss two signatures (for N-acetyltransferases and glycerol-phosphate binding) which to our knowledge have not been previously recognized.
Collapse
Affiliation(s)
- R P Sheridan
- Medical Research Division, Lederle Laboratories, American Cyanamid Corp., Pearl River, New York 10965
| | | |
Collapse
|
25
|
Kim H, Kelly R, Evans D. The structural organization of the hamster multifunctional protein CAD. Controlled proteolysis, domains, and linkers. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50554-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Ma H, Yanofsky MF, Huang H. Isolation and sequence analysis of TGA1 cDNAs encoding a tomato G protein alpha subunit. Gene 1991; 107:189-95. [PMID: 1748292 DOI: 10.1016/0378-1119(91)90318-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have isolated cDNAs for a gene coding for a G protein alpha subunit from tomato (Lycopersicon esculentum, cv. VF36). This gene, named TGA1, was isolated using a cDNA of the Arabidopsis thaliana G protein alpha subunit-encoding gene, GPA1, as a DNA probe. The sequences of four cDNA clones indicate that the deduced amino acid (aa) sequence of the gene product (TG alpha 1) has 384 aa (44906 Da). The predicted TG alpha 1 protein exhibits similarity to all known G protein alpha subunits. The aa are 84.6% identical and 93% similar (identical and conservative changes) to A. thaliana GP alpha 1, and 34% identical and 59% similar to mammalian transducins. Furthermore, it has all of the consensus regions for a GTP-binding protein. Finally, hybridizations of tomato genomic DNA indicate that TGA1 is a single-copy gene.
Collapse
Affiliation(s)
- H Ma
- Cold Spring Harbor Laboratory, NY 11724-2212
| | | | | |
Collapse
|
27
|
|
28
|
Miran SG, Chang SH, Raushel FM. Role of the four conserved histidine residues in the amidotransferase domain of carbamoyl phosphate synthetase. Biochemistry 1991; 30:7901-7. [PMID: 1868065 DOI: 10.1021/bi00246a005] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Carbamoyl phosphate synthetase from Escherichia coli catalyzes the formation of carbamoyl phosphate from ATP, bicarbonate, and glutamine. The amidotransferase activity of this enzyme is catalyzed by the smaller of the two subunits of the heterodimeric protein. The roles of four conserved histidine residues within this subunit were probed by site-directed mutagenesis to asparagine. The catalytic activities of the H272N and H341N mutants are not significantly different than that of the wild-type enzyme. The H353N mutant is unable to utilize glutamine as a nitrogen source in the synthetase reaction or the partial glutaminase reaction. However, binding to the glutamine active site is not impaired in the H353N enzyme since glutamine is found to activate the partial ATPase reaction by 40% with a Kd of 54 microM. The H312N mutant has a Michaelis constant for glutamine that is 2 orders of magnitude larger than the wild-type value, but the maximal rate of glutamine hydrolysis is unchanged. These results are consistent with His-353 functioning as a general acid/base catalyst for proton transfers while His-312 serves a critical role for the binding of glutamine to the active site.
Collapse
Affiliation(s)
- S G Miran
- Department of Chemistry, Texas A&M University, College Station 77843
| | | | | |
Collapse
|
29
|
Ma H, Yanofsky MF, Meyerowitz EM. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 1991; 5:484-95. [PMID: 1672119 DOI: 10.1101/gad.5.3.484] [Citation(s) in RCA: 333] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The predicted products of floral homeotic genes, AGAMOUS (AG) from Arabidopsis thaliana and DEFICIENS A (DEF A) from Antirrhinum majus, have been shown previously to share strong sequence similarity with transcription factors from humans (SRF) and yeast (MCM1). The conserved sequence between these proteins is localized within a domain known to be necessary for the DNA binding and for the dimerization of SRF. We have isolated six new genes from A. thaliana, AGL1-AGL6, which also have this conserved sequence motif. On the basis of the sequence comparison between the AG and AGL genes, they can be assigned to two subfamilies of a large gene family. RNA dot blot analysis indicates that five of these genes (AGL1, AGL2, AGL4, AGL5, and AGL6) are preferentially expressed in flowers. In addition, in situ RNA hybridization experiments with AGL1 and AGL2 show that their mRNAs are detected in some floral organs but not in others. Our results suggest that these genes may act to control many steps of Arabidopsis floral morphogenesis. In contrast, the AGL3 gene is expressed in vegetative tissues as well as in flowers, suggesting that it functions in a broader range of tissues. We discuss possible roles of this gene family during the evolution of flowers.
Collapse
Affiliation(s)
- H Ma
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | | | | |
Collapse
|
30
|
Chaparian MG, Evans DR. The catalytic mechanism of the amidotransferase domain of the Syrian hamster multifunctional protein CAD. Evidence for a CAD-glutamyl covalent intermediate in the formation of carbamyl phosphate. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67805-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Müller PP, Trachsel H. Translation and regulation of translation in the yeast Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 191:257-61. [PMID: 2200670 DOI: 10.1111/j.1432-1033.1990.tb19118.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In recent years the yeast Saccharomyces cerevisiae has become a model system for studies of eukaryotic translation and translation regulation. Analysis of mRNA structure, translation initiation factor sequences and the translation initiation pathway indicate, that translation in S. cerevisiae is very similar to translation in higher eukaryotes. The availability of powerful genetic techniques lead to the dissection in yeast of individual steps in the translation pathway, the detection of biochemical interactions between components involved in translation and the unravelling of complex regulation phenomena.
Collapse
Affiliation(s)
- P P Müller
- Institut für Biochemie und Molekularbiologie, Universität Bern, Switzerland
| | | |
Collapse
|
32
|
Orbach MJ, Sachs MS, Yanofsky C. The Neurospora crassa arg-2 locus. Structure and expression of the gene encoding the small subunit of arginine-specific carbamoyl phosphate synthetase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38545-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
33
|
Simmer JP, Kelly RE, Rinker AG, Scully JL, Evans DR. Mammalian carbamyl phosphate synthetase (CPS). DNA sequence and evolution of the CPS domain of the Syrian hamster multifunctional protein CAD. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)86959-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Gollnick P, Yanofsky C. tRNA(Trp) translation of leader peptide codon 12 and other factors that regulate expression of the tryptophanase operon. J Bacteriol 1990; 172:3100-7. [PMID: 2345136 PMCID: PMC209113 DOI: 10.1128/jb.172.6.3100-3107.1990] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tryptophanase (tna) operon expression in Escherichia coli is induced by tryptophan. This response is mediated by features of a 319-base-pair leader region preceding the major structural genes of the operon. Translation of the coding region (tnaC) for a 24-amino-acid leader peptide is essential for induction. We have used site-directed mutagenesis to investigate the role of the single Trp codon, at position 12 in tnaC, in regulation of the operon. Codon 12 was changed to either a UAG or UGA stop codon or to a CGG arginine codon. Induction by tryptophan was eliminated by any of these changes. Studies with suppressor tRNAs indicated that tRNA(Trp) translation of codon 12 in tnaC is essential for induction of the operon. Reduction of tna expression by a miaA mutation supports a role for translation by tRNA(Trp) in regulation of the operon. Frameshift mutations and suppression that allows translation of tnaC to proceed beyond the normal stop codon result in constitutive tna operon expression. Deletion of a potential site for Rho factor utilization just beyond tnaC also results in partial constitutive expression. These studies suggest possible models for tryptophan induction of tna operon expression involving tRNA(Trp)-mediated frame shifting or readthrough at the tnaC stop codon.
Collapse
Affiliation(s)
- P Gollnick
- Department of Biological Sciences, Stanford University, California 94305-5020
| | | |
Collapse
|
35
|
Arginine restriction induced by delta-N-(phosphonacetyl)-L-ornithine signals increased expression of HIS3, TRP5, CPA1, and CPA2 in Saccharomyces cerevisiae. Mol Cell Biol 1990. [PMID: 2689869 DOI: 10.1128/mcb.9.11.4882] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
delta-N-(Phosphonacetyl)-L-ornithine (PALO), a transition state analog inhibitor of ornithine transcarbamylase, induced arginine limitation in vivo in Saccharomyces cerevisiae. Arginine restriction caused increased expression of HIS3 and TRP5, measured by the beta-galactosidase activity in strains carrying chromosomally integrated fusions of the promoter regions of each gene with the lacZ gene of Escherichia coli. The increase in beta-galactosidase activity induced by PALO was reversed by the addition of arginine and was dependent on GCN4 protein. These results indicate that PALO, like 3-amino-1,2,4-triazole DL-5-methyltryptophan, can be used to study the effect of limitation of a single amino acid, arginine, on the expression of genes under the general amino acid control regulatory system. Arginine deprivation imposed by PALO also caused increased expression of CPA1 and CPA2, coding respectively for the small and large subunits of arginine-specific carbamyl-phosphate synthetase. The observed increase was GCN4 dependent and was genetically separable from arginine-specific repression of CPA1 mRNA translation. The 5'-flanking regions of CPA1 (reported previously) and CPA2 determined in this study each contained at least two copies of the sequence TGACTC, shown to bind GCN4 protein. The beta-galactosidase activities expressed from CPA1- and CPA2-lacZ fusions integrated into the nuclear DNA of gcn4 mutant strains were five to six times less than in the wild type, when both strains were grown under depressed conditions. The gcn4 mutation reduced basal expression of both CPA1 and CPA2. The addition of arginine to strains containing the CPA1-lacZ fusion further reduced beta-galactosidase activity of the gcn4 mutant, indicating independent regulation of the CPA1 gene by the general amino acid control and by arginine-specific repression. In strains overproducing GCN4 protein, the translational control completely overrode transcriptional activation of CPA1 by general amino acid control.
Collapse
|
36
|
Wong SC, Abdelal AT. Unorthodox expression of an enzyme: evidence for an untranslated region within carA from Pseudomonas aeruginosa. J Bacteriol 1990; 172:630-42. [PMID: 2153657 PMCID: PMC208486 DOI: 10.1128/jb.172.2.630-642.1990] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The genes encoding carbamoylphosphate synthetase from Pseudomonas aeruginosa PAO1 were cloned in Escherichia coli. Deletion and transposition analysis determined the locations of carA, encoding the small subunit, and carB, encoding the large subunit, on the chromosomal insert. The nucleotide sequence of carA and the flanking regions was determined. The derived amino acid sequence for the small subunit of carbamoylphosphate synthetase from P. aeruginosa exhibited 68% homology with its counterparts in E. coli and Salmonella typhimurium. The derived sequences in the three organisms were essentially identical in the three polypeptide segments that are conserved in glutamine amidotransferases but showed low homology at the amino- and carboxy-terminal regions. The amino-terminal amino acid sequences were determined for the large and small subunits. The first 15 amino acids of the large subunit were identical to those derived from the carB sequence. However, comparison of the derived sequence for carA with the amino-terminal amino acid sequence for the small subunit suggested that codons 5 to 8 are not translated. The DNA sequence for the region encompassing these four codons was confirmed by direct sequencing of chromosomal DNA after amplification by the polymerase chain reaction. The mRNA sequence was also deduced by in vitro synthesis of cDNA, enzymatic amplification, and sequencing, confirming that 12 nucleotides in the 5' terminal of carA are transcribed but are not translated.
Collapse
Affiliation(s)
- S C Wong
- Laboratory for Microbial and Biochemical Sciences, Georgia State University, Atlanta 30303
| | | |
Collapse
|
37
|
Hinnebusch AG. Transcriptional and translational regulation of gene expression in the general control of amino-acid biosynthesis in Saccharomyces cerevisiae. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1990; 38:195-240. [PMID: 2183294 DOI: 10.1016/s0079-6603(08)60712-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- A G Hinnebusch
- Unit on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
38
|
Kinney DM, Lusty CJ. Arginine restriction induced by delta-N-(phosphonacetyl)-L-ornithine signals increased expression of HIS3, TRP5, CPA1, and CPA2 in Saccharomyces cerevisiae. Mol Cell Biol 1989; 9:4882-8. [PMID: 2689869 PMCID: PMC363638 DOI: 10.1128/mcb.9.11.4882-4888.1989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
delta-N-(Phosphonacetyl)-L-ornithine (PALO), a transition state analog inhibitor of ornithine transcarbamylase, induced arginine limitation in vivo in Saccharomyces cerevisiae. Arginine restriction caused increased expression of HIS3 and TRP5, measured by the beta-galactosidase activity in strains carrying chromosomally integrated fusions of the promoter regions of each gene with the lacZ gene of Escherichia coli. The increase in beta-galactosidase activity induced by PALO was reversed by the addition of arginine and was dependent on GCN4 protein. These results indicate that PALO, like 3-amino-1,2,4-triazole DL-5-methyltryptophan, can be used to study the effect of limitation of a single amino acid, arginine, on the expression of genes under the general amino acid control regulatory system. Arginine deprivation imposed by PALO also caused increased expression of CPA1 and CPA2, coding respectively for the small and large subunits of arginine-specific carbamyl-phosphate synthetase. The observed increase was GCN4 dependent and was genetically separable from arginine-specific repression of CPA1 mRNA translation. The 5'-flanking regions of CPA1 (reported previously) and CPA2 determined in this study each contained at least two copies of the sequence TGACTC, shown to bind GCN4 protein. The beta-galactosidase activities expressed from CPA1- and CPA2-lacZ fusions integrated into the nuclear DNA of gcn4 mutant strains were five to six times less than in the wild type, when both strains were grown under depressed conditions. The gcn4 mutation reduced basal expression of both CPA1 and CPA2. The addition of arginine to strains containing the CPA1-lacZ fusion further reduced beta-galactosidase activity of the gcn4 mutant, indicating independent regulation of the CPA1 gene by the general amino acid control and by arginine-specific repression. In strains overproducing GCN4 protein, the translational control completely overrode transcriptional activation of CPA1 by general amino acid control.
Collapse
Affiliation(s)
- D M Kinney
- Department of Molecular Genetics, Public Health Research Institute, New York, New York 10016
| | | |
Collapse
|
39
|
Mei B, Zalkin H. A cysteine-histidine-aspartate catalytic triad is involved in glutamine amide transfer function in purF-type glutamine amidotransferases. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84750-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Souciet JL, Nagy M, Le Gouar M, Lacroute F, Potier S. Organization of the yeast URA2 gene: identification of a defective dihydroorotase-like domain in the multifunctional carbamoylphosphate synthetase-aspartate transcarbamylase complex. Gene 1989; 79:59-70. [PMID: 2570735 DOI: 10.1016/0378-1119(89)90092-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The 6636 bp of the yeast URA2 gene encoding the carbamoylphosphate synthetase-aspartate transcarbamylase complex have been sequenced. The protein is organized into four regions, three of which are functional domains as indicated previously by genetic analysis. The fourth domain corresponds to a defective dihydroorotase called DHOase-like. The URA2 gene complex with the same organization as the equivalent genes in higher eukaryotes suggests an evolution from a common ancestral gene.
Collapse
Affiliation(s)
- J L Souciet
- Laboratoire de Génétique Physiologique, Institut de Biologie Moléculaire et Cellulaire du C.N.R.S., Strasbourg, France
| | | | | | | | | |
Collapse
|
41
|
Picard FJ, Dillon JR. Cloning and organization of seven arginine biosynthesis genes from Neisseria gonorrhoeae. J Bacteriol 1989; 171:1644-51. [PMID: 2493452 PMCID: PMC209793 DOI: 10.1128/jb.171.3.1644-1651.1989] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A genomic library for Neisseria gonorrhoeae, constructed in the lambda cloning vector EMBL4, was screened for clones carrying arginine biosynthesis genes by complementation of Escherichia coli mutants. Clones complementing defects in argA, argB, argE, argG, argIF, carA, and carB were isolated. An E. coli defective in the acetylornithine deacetylase gene (argE) was complemented by the ornithine acetyltransferase gene (argJ) from N. gonorrhoeae. This heterologous complementation is reported for the first time. The carAB operon from E. coli hybridized with the gonococcal clones that carried carA or carB genes under conditions of high stringency, detecting 80% or greater similarity and showing that the nucleotide sequence of the carbamoylphosphate synthetase genes is very similar in these two organisms. Under these conditions for hybridization, the gonococcal clones carrying argB or argF genes did not hybridize with plasmids containing the corresponding E. coli gene. Cocomplementation experiments established gene linkage between carA and carB. Clones complementing a gene defect in argE were also able to complement an argA mutation. This suggests that the enzyme ornithine acetyltransferase from N. gonorrhoeae (encoded by argJ) may be able to complement both argA and argE mutations in E. coli. The arginine biosynthesis genes in N. gonorrhoeae appear to be scattered as in members of the family Pseudomonadaceae.
Collapse
Affiliation(s)
- F J Picard
- Department of Biology, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
42
|
Abstract
We have constructed a series of deletion plasmids which contain the Aspergillus nidulans argB gene for ornithine carbamoyltransferase (OTC). These deletions comprise the 5' upstream sequence of the argB gene. The pro- arg- strain of A. nidulans was transformed with the above plasmids. Several arg+ transformants of integration types I and II, obtained using each of the deletion plasmids, were studied, and their ability to de-repress OTC level by proline starvation was compared. It was concluded that nucleotides located between -150 and -50 bp upstream of the argB gene are significant for its cross-pathway regulation. This regulatory region contains three copies of the TGACTC hexanucleotide which is a cis-acting regulatory sequence of general amino acid control in yeast.
Collapse
Affiliation(s)
- A Goc
- Department of Plant Cytology and Genetics, Copernicus University, Toruń, Poland
| | | |
Collapse
|
43
|
Kilstrup M, Lu CD, Abdelal A, Neuhard J. Nucleotide sequence of the carA gene and regulation of the carAB operon in Salmonella typhimurium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 176:421-9. [PMID: 2843375 DOI: 10.1111/j.1432-1033.1988.tb14299.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The carAB operon of Salmonella typhimurium encoding carbamoyl-phosphate synthetase (CPSase) has been cloned, and the nucleotide sequence of the first gene of the operon, carA, together with 760 base pairs of the 5'-flanking region was determined. The product of the carA gene is the small subunit of CPSase. It catalyzes the transfer of the amide group from glutamine to an NH3-site on the heavy subunit. Primer extension and S1 nuclease mapping of in vivo carAB transcripts revealed that transcription is similar to that of Escherichia coli [Piette, J. et al. (1984) Proc. Natl Acad. Sci. USA 81, 4134-4138] in its initiation at two promoters, P1 and P2, controlled by pyrimidines and arginine, respectively. The arginine control is mediated through binding to the arginine repressor (argR). The involvement of titratable regulatory elements is indicated by the escape from both arginine and pyrimidine control, when the operon is present in multicopies on a plasmid. Measurements of CPSase levels in mutants which allows independent manipulation of the intracellular uracil and cytosine nucleotide pools show, that both uracil and cytosine nucleotides are required for full repression and that limitation of either nucleotide results in derepression of CPSase synthesis. Deletion analyses indicate that regions upstream of the P1 promoter are required for normal expression from this promoter but not from P2.
Collapse
Affiliation(s)
- M Kilstrup
- University of Copenhagen, Institute of Biological Chemistry B, Denmark
| | | | | | | |
Collapse
|
44
|
Maley JA, Davidson JN. Identification of the junction between the glutamine amidotransferase and carbamyl phosphate synthetase domains of the mammalian CAD protein. Biochem Biophys Res Commun 1988; 154:1047-53. [PMID: 2900634 DOI: 10.1016/0006-291x(88)90246-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The hamster CAD gene encodes a protein that catalyzes the first three steps of pyrimidine biosynthesis. We have sequenced a portion of a CAD cDNA and determined the location of the carbamyl phosphate synthetase II coding region. Subdomains coding for the glutamine hydrolyzing and carbamyl phosphate synthesizing functions have been identified through their high degree of similarity to carbamyl phosphate synthetase genes from a variety of organisms. The proline-rich junction between the glutaminase and synthetase domains, however, does not appear to be conserved among carbamyl phosphate synthetases.
Collapse
Affiliation(s)
- J A Maley
- Department of Microbiology and Immunology, Albert B. Chandler Medical Center, University of Kentucky, Lexington 40536-0084
| | | |
Collapse
|
45
|
Hinnebusch AG. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 1988; 52:248-73. [PMID: 3045517 PMCID: PMC373138 DOI: 10.1128/mr.52.2.248-273.1988] [Citation(s) in RCA: 301] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
SAM1, the structural gene for one of the S-adenosylmethionine synthetases in Saccharomyces cerevisiae. Sequence and expression. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)49312-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Weng ML, Zalkin H. Structural role for a conserved region in the CTP synthetase glutamine amide transfer domain. J Bacteriol 1987; 169:3023-8. [PMID: 3298209 PMCID: PMC212343 DOI: 10.1128/jb.169.7.3023-3028.1987] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Site-directed mutations were introduced into a conserved region of the Escherichia coli CTP synthetase glutamine amide transfer domain. The amino acid replacements, valine 349 to serine, glycine 351 to alanine, glycine 352 to proline, and glycine 352 to cysteine, all increased the lability of CTP synthetase. The proline 352 replacement abolished the capacity to form the covalent glutaminyl-cysteine 379 catalytic intermediate, thus preventing glutamine amide transfer function; NH3-dependent CTP synthetase activity was retained. In CTP synthetase (serine 349), both glutamine and NH3-dependent activities were increased approximately 30% relative to that of the wild type. CTP synthetase mutants alanine 351 and cysteine 352 were not overproduced because of apparent instability and proteolytic degradation. We conclude that the conserved region between residues 346 and 355 in the CTP synthetase glutamine amide transfer domain has an important structural role.
Collapse
|
48
|
Werner M, Feller A, Messenguy F, Piérard A. The leader peptide of yeast gene CPA1 is essential for the translational repression of its expression. Cell 1987; 49:805-13. [PMID: 3555844 DOI: 10.1016/0092-8674(87)90618-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The expression of gene CPA1, encoding the glutaminase subunit of the arginine pathway carbamoyl-phosphate synthetase, is repressed by arginine at a posttranscriptional level. The 5' region of CPA1 mRNA contains a 25 codon upstream open reading frame. The importance of this feature for the repression of CPA1 expression has been analyzed by oligonucleotide-directed mutagenesis and by sequencing of constitutive cis-dominant mutations obtained in vivo. The results show that the leader peptide, the product of the upstream open reading frame, plays an essential, negative role in the specific repression of CPA1 by arginine. A model of translational regulation of CPA1 is proposed that takes into account the cis-dominance of the mutations affecting the leader peptide.
Collapse
|
49
|
Souciet JL, Potier S, Hubert JC, Lacroute F. Nucleotide sequence of the pyrimidine specific carbamoyl phosphate synthetase, a part of the yeast multifunctional protein encoded by the URA2 gene. MOLECULAR & GENERAL GENETICS : MGG 1987; 207:314-9. [PMID: 3039294 DOI: 10.1007/bf00331595] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Yeast URA2 encodes a multifunctional carbamoyl phosphate synthetase-aspartate transcarbamylase of 220,000 molecular weight. We determined the nucleotide sequence of the 5' proximal part of the gene which is responsible for the glutamine amide transfer function of the carbamoyl phosphate synthetase activity. Alignment of the enzyme sequence derived from URA2 with sequences from Escherichia coli carA carB and yeast arginine-specific CP A1 CP A2 indicates that monofunctional and bifunctional carbamoyl phosphate synthetases are probably homologous. The URA2-derived enzyme organization is NH2-carbamoyl phosphate synthetase-aspartate transcarbamylase-CO2H.
Collapse
|
50
|
Abstract
We have determined the 7168 nucleotide DNA sequence corresponding to the messenger RNA of the rudimentary gene of Drosophila melanogaster. By sequence comparison with genes involved in the pyrimidine pathway of prokaryotes and lower eukaryotes, we conclude that the rudimentary gene encodes four enzymically different functions. Each function is restricted to a specific coding domain but in an order different from that previously defined by genetic data. We have found that the corresponding mammalian gene, the CAD gene, exhibits a similar functional organization, and we propose schemes for the evolution of the corresponding coding sequences.
Collapse
|