1
|
Braun F, Recalde A, Bähre H, Seifert R, Albers SV. Putative Nucleotide-Based Second Messengers in the Archaeal Model Organisms Haloferax volcanii and Sulfolobus acidocaldarius. Front Microbiol 2021; 12:779012. [PMID: 34880846 PMCID: PMC8646023 DOI: 10.3389/fmicb.2021.779012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022] Open
Abstract
Research on nucleotide-based second messengers began in 1956 with the discovery of cyclic adenosine monophosphate (3',5'-cAMP) by Earl Wilbur Sutherland and his co-workers. Since then, a broad variety of different signaling molecules composed of nucleotides has been discovered. These molecules fulfill crucial tasks in the context of intracellular signal transduction. The vast majority of the currently available knowledge about nucleotide-based second messengers originates from model organisms belonging either to the domain of eukaryotes or to the domain of bacteria, while the archaeal domain is significantly underrepresented in the field of nucleotide-based second messenger research. For several well-stablished eukaryotic and/or bacterial nucleotide-based second messengers, it is currently not clear whether these signaling molecules are present in archaea. In order to shed some light on this issue, this study analyzed cell extracts of two major archaeal model organisms, the euryarchaeon Haloferax volcanii and the crenarchaeon Sulfolobus acidocaldarius, using a modern mass spectrometry method to detect a broad variety of currently known nucleotide-based second messengers. The nucleotides 3',5'-cAMP, cyclic guanosine monophosphate (3',5'-cGMP), 5'-phosphoadenylyl-3',5'-adenosine (5'-pApA), diadenosine tetraphosphate (Ap4A) as well as the 2',3'-cyclic isomers of all four RNA building blocks (2',3'-cNMPs) were present in both species. In addition, H. volcanii cell extracts also contain cyclic cytosine monophosphate (3',5'-cCMP), cyclic uridine monophosphate (3',5'-cUMP) and cyclic diadenosine monophosphate (3',5'-c-di-AMP). The widely distributed bacterial second messengers cyclic diguanosine monophosphate (3',5'-c-di-GMP) and guanosine (penta-)/tetraphosphate [(p)ppGpp] could not be detected. In summary, this study gives a comprehensive overview on the presence of a large set of currently established or putative nucleotide-based second messengers in an eury- and a crenarchaeal model organism.
Collapse
Affiliation(s)
- Frank Braun
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Alejandra Recalde
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hanover, Germany
| | - Roland Seifert
- Research Core Unit Metabolomics, Hannover Medical School, Hanover, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
An alternative resource allocation strategy in the chemolithoautotrophic archaeon Methanococcus maripaludis. Proc Natl Acad Sci U S A 2021; 118:2025854118. [PMID: 33879571 DOI: 10.1073/pnas.2025854118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most microorganisms in nature spend the majority of time in a state of slow or zero growth and slow metabolism under limited energy or nutrient flux rather than growing at maximum rates. Yet, most of our knowledge has been derived from studies on fast-growing bacteria. Here, we systematically characterized the physiology of the methanogenic archaeon Methanococcus maripaludis during slow growth. M. maripaludis was grown in continuous culture under energy (formate)-limiting conditions at different dilution rates ranging from 0.09 to 0.002 h-1, the latter corresponding to 1% of its maximum growth rate under laboratory conditions (0.23 h-1). While the specific rate of methanogenesis correlated with growth rate as expected, the fraction of cellular energy used for maintenance increased and the maintenance energy per biomass decreased at slower growth. Notably, proteome allocation between catabolic and anabolic pathways was invariant with growth rate. Unexpectedly, cells maintained their maximum methanogenesis capacity over a wide range of growth rates, except for the lowest rates tested. Cell size, cellular DNA, RNA, and protein content as well as ribosome numbers also were largely invariant with growth rate. A reduced protein synthesis rate during slow growth was achieved by a reduction in ribosome activity rather than via the number of cellular ribosomes. Our data revealed a resource allocation strategy of a methanogenic archaeon during energy limitation that is fundamentally different from commonly studied versatile chemoheterotrophic bacteria such as E. coli.
Collapse
|
3
|
Mitroshin IV, Garber MB, Gabdulkhakov AG. Investigation of Structure of the Ribosomal L12/P Stalk. BIOCHEMISTRY (MOSCOW) 2017; 81:1589-1601. [PMID: 28260486 DOI: 10.1134/s0006297916130022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review contains recent data on the structure of the functionally important ribosomal domain, L12/P stalk, of the large ribosomal subunit. It is the most mobile site of the ribosome; it has been found in ribosomes of all living cells, and it is involved in the interaction between ribosomes and translation factors. The difference between the structures of the ribosomal proteins forming this protuberance (despite their general resemblance) determines the specificity of interaction between eukaryotic and prokaryotic ribosomes and the respective protein factors of translation. In this review, works on the structures of ribosomal proteins forming the L12/P-stalk in bacteria, archaea, and eukaryotes and data on structural aspects of interactions between these proteins and rRNA are described in detail.
Collapse
Affiliation(s)
- I V Mitroshin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
4
|
Abstract
The 60-nt GTPase center (GAC) of 23S rRNA has a phylogenetically conserved secondary structure with two hairpin loops and a 3-way junction. It folds into an intricate tertiary structure upon addition of Mg(2+) ions, which is stabilized by the L11 protein in cocrystal structures. Here, we monitor the kinetics of its tertiary folding and Mg(2+)-dependent intermediate states by observing selected nucleobases that contribute specific interactions to the GAC tertiary structure in the cocrystals. The fluorescent nucleobase 2-aminopurine replaced three individual adenines, two of which make long-range stacking interactions and one that also forms hydrogen bonds. Each site reveals a unique response to Mg(2+) addition and temperature, reflecting its environmental change from secondary to tertiary structure. Stopped-flow fluorescence experiments revealed that kinetics of tertiary structure formation upon addition of MgCl2 are also site specific, with local conformational changes occurring from 5 ms to 4s and with global folding from 1 to 5s. Site-specific substitution with (15)N-nucleobases allowed observation of stable hydrogen bond formation by NMR experiments. Equilibrium titration experiments indicate that a stable folding intermediate is present at stoichiometric concentrations of Mg(2+) and suggest that there are two initial sites of Mg(2+) ion association.
Collapse
|
5
|
Jékely G. Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimeric cell. Biol Direct 2008; 3:31. [PMID: 18652645 PMCID: PMC2503971 DOI: 10.1186/1745-6150-3-31] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 07/24/2008] [Indexed: 11/18/2022] Open
Abstract
Background The origin of the nucleus is a central problem about the origin of eukaryotes. The common ancestry of nuclear pore complexes (NPC) and vesicle coating complexes indicates that the nucleus evolved via the modification of a pre-existing endomembrane system. Such an autogenous scenario is cell biologically feasible, but it is not clear what were the selective or neutral mechanisms that had led to the origin of the nuclear compartment. Results A key selective force during the autogenous origin of the nucleus could have been the need to segregate ribosome factories from the cytoplasm where ribosomal proteins (RPs) of the protomitochondrium were synthesized. After its uptake by an anuclear cell the protomitochondrium transferred several of its RP genes to the host genome. Alphaproteobacterial RPs and archaebacterial-type host ribosomes were consequently synthesized in the same cytoplasm. This could have led to the formation of chimeric ribosomes. I propose that the nucleus evolved when the host cell compartmentalised its ribosome factories and the tightly linked genome to reduce ribosome chimerism. This was achieved in successive stages by first evolving karyopherin and RanGTP dependent chaperoning of RPs, followed by the evolution of a membrane network to serve as a diffusion barrier, and finally a hydrogel sieve to ensure selective permeability at nuclear pores. Computer simulations show that a gradual segregation of cytoplasm and nucleoplasm via these steps can progressively reduce ribosome chimerism. Conclusion Ribosome chimerism can provide a direct link between the selective forces for and the mechanisms of evolving nuclear transport and compartmentalisation. The detailed molecular scenario presented here provides a solution to the gradual evolution of nuclear compartmentalization from an anuclear stage. Reviewers This article was reviewed by Eugene V Koonin, Martijn Huynen, Anthony M. Poole and Patrick Forterre.
Collapse
Affiliation(s)
- Gáspár Jékely
- Max Planck Institute for Developmental Biology, Spemannstrasse 35. 72076 Tübingen, Germany.
| |
Collapse
|
6
|
Nomura T, Nakano K, Maki Y, Naganuma T, Nakashima T, Tanaka I, Kimura M, Hachimori A, Uchiumi T. In vitro reconstitution of the GTPase-associated centre of the archaebacterial ribosome: the functional features observed in a hybrid form with Escherichia coli 50S subunits. Biochem J 2006; 396:565-71. [PMID: 16594895 PMCID: PMC1482815 DOI: 10.1042/bj20060038] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We cloned the genes encoding the ribosomal proteins Ph (Pyrococcus horikoshii)-P0, Ph-L12 and Ph-L11, which constitute the GTPase-associated centre of the archaebacterium Pyrococcus horikoshii. These proteins are homologues of the eukaryotic P0, P1/P2 and eL12 proteins, and correspond to Escherichia coli L10, L7/L12 and L11 proteins respectively. The proteins and the truncation mutants of Ph-P0 were overexpressed in E. coli cells and used for in vitro assembly on to the conserved domain around position 1070 of 23S rRNA (E. coli numbering). Ph-L12 tightly associated as a homodimer and bound to the C-terminal half of Ph-P0. The Ph-P0.Ph-L12 complex and Ph-L11 bound to the 1070 rRNA fragments from the three biological kingdoms in the same manner as the equivalent proteins of eukaryotic and eubacterial ribosomes. The Ph-P0.Ph-L12 complex and Ph-L11 could replace L10.L7/L12 and L11 respectively, on the E. coli 50S subunit in vitro. The resultant hybrid ribosome was accessible for eukaryotic, as well as archaebacterial elongation factors, but not for prokaryotic elongation factors. The GTPase and polyphenylalanine-synthetic activity that is dependent on eukaryotic elongation factors was comparable with that of the hybrid ribosomes carrying the eukaryotic ribosomal proteins. The results suggest that the archaebacterial proteins, including the Ph-L12 homodimer, are functionally accessible to eukaryotic translation factors.
Collapse
Affiliation(s)
- Takaomi Nomura
- *Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Kohji Nakano
- *Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Yasushi Maki
- †Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Takao Naganuma
- †Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Takashi Nakashima
- †Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Isao Tanaka
- ‡Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Makoto Kimura
- §Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan
| | - Akira Hachimori
- *Institute of High Polymer Research, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Toshio Uchiumi
- †Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
7
|
Cellini A, Scoarughi GL, Poggiali P, Santino I, Sessa R, Donini P, Cimmino C. Stringent control in the archaeal genus Sulfolobus. Res Microbiol 2004; 155:98-104. [PMID: 14990261 DOI: 10.1016/j.resmic.2003.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 11/11/2003] [Indexed: 10/26/2022]
Abstract
Six Archaea belonging to the phylum Euryarchaeota were previously analyzed with respect to stringent control. Only one of the strains studied was shown to possess Bacteria-like stringent control over stable RNA accumulation; ppGpp and pppGpp production was totally lacking in all Archaea analyzed. To broaden our knowledge of stringent control in the Archaea, we examined here the accumulation of stable RNA and the production of ppGpp and pppGpp under amino acid starvation in three species of the genus Sulfolobus belonging to the Crenarchaeota, an archaeal phylum distant from the Euryarchaeota. In these species the accumulation of sRNA was arrested when aminoacylation of tRNA was inhibited by pseudomonic acid. Furthermore, stringent control of stable RNA accumulation was relaxed by some protein synthesis inhibitors that do not interfere with aminoacylation of tRNA, a feature typical of bacterial stringent control. Neither ppGpp nor pppGpp could be detected during growth or under amino acid starvation, and the intracellular GTP levels did not decrease in the course of the stringent response. These results show that: (1) stringency is widespread in wild-type thermoacidophilic archaea; (2) in the crenarchaeal species analyzed here SC depends on the deaminoacylation of tRNA; (3) in the strains analyzed ppGpp is not produced during normal growth nor during the stringent reaction; it is therefore not an effector either of SC over sRNA synthesis or of growth control. (p)ppGpp appears to be completely absent from the Archaea and thus constitutes an additional feature that distinguishes the Bacteria from the Archaea.
Collapse
Affiliation(s)
- Andrea Cellini
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Via dei Sardi 70, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Triantafillidou D, Persidou E, Lazarou D, Andrikopoulos P, Leontiadou F, Choli-Papadopoulou T. Structural destabilization of the recombinant thermophilic TthL11 ribosomal protein by a single amino acid substitution. Biol Chem 2004; 385:31-9. [PMID: 14977044 DOI: 10.1515/bc.2004.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thermus thermophilus L11 protein has previously been reported to be resistant against tryptic and chymotryptic proteolysis under native conditions. With a single amino acid substitution, namely Trp101Arg, conformational changes were induced that resulted in the exhibition of specific amino acids that served as targets for tryptic and chymotryptic action and rendered the protein highly unstable even during purification. This unexpected process was evidenced by the isolation with size exclusion gel chromatography of the well-structured chymotryptic N-terminal domain in a high amount and its characterization both by Edman degradation and QTOF-EMS spectroscopy. On the other hand, the substitution of Val38Cys, which did not contribute to structural changes, indicates a very possible implication of this amino acid in the protein methylation process. The data reported in this work illustrate the distinctive amino acid dynamics in a thermophilic protein, which, while serving the function common to its counterparts from mesophilic organisms, has had to adapt to the extreme environmental conditions typical of thermophilic organisms.
Collapse
Affiliation(s)
- Dimitra Triantafillidou
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, GR-54006 Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
9
|
Scoarughi GL, Santino I, Sessa R, Cimmino C, Donini P. Effect of amino acid starvation on glucose transport in two archaeal organisms. FEMS Microbiol Lett 2003; 218:47-50. [PMID: 12583896 DOI: 10.1111/j.1574-6968.2003.tb11496.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
When protein synthesis is arrested by amino acid starvation, Escherichia coli wild-type strains show stringent control (SC) over stable RNA (sRNA) accumulation as well as a large number of other growth-related processes. One of the events under SC is transport of metabolites. Thus, under amino acid starvation, E. coli fails to accumulate the non-metabolizable glucose analog alpha-methyl-D-glucoside, whereas isogenic relaxed strains continue to take up this glucose analog. Unlike the Bacteria, most wild-type archaeal strains show relaxed control of sRNA accumulation, although a number of stringent strains have been identified. In order to determine whether stringency in the Archaea affects physiological events different from sRNA accumulation, transport of glucose analogs was examined under amino acid starvation in two stringent archaeal strains, Haloferax volcanii and Sulfolobus acidocaldarius. The experiments were performed with 2-deoxy-D-glucose, which was shown to be transported, but metabolized very limitedly. Unlike E. coli, H. volcanii and S. acidocaldarius continued to transport 2-deoxy-D-glucose under amino acid starvation. Thus, in both Archaea glucose analog transport is not under SC, as it is in E. coli.
Collapse
Affiliation(s)
- Gian Luca Scoarughi
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università 'La Sapienza', Via dei Sardi 70, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
10
|
Stelzl U, Spahn CM, Nierhaus KH. RNA-protein interactions in ribosomes: in vitro selection from randomly fragmented rRNA. Methods Enzymol 2001; 318:251-68. [PMID: 10889993 DOI: 10.1016/s0076-6879(00)18057-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
MESH Headings
- Base Sequence
- Binding Sites
- Collodion/chemistry
- Electrophoresis, Agar Gel
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Genetic Techniques
- Models, Statistical
- Molecular Sequence Data
- Nucleic Acid Conformation
- Proteins/metabolism
- RNA/chemistry
- RNA/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- Ribosomal Proteins/chemistry
- Ribosomes/metabolism
Collapse
Affiliation(s)
- U Stelzl
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | |
Collapse
|
11
|
Blyn LB, Risen LM, Griffey RH, Draper DE. The RNA-binding domain of ribosomal protein L11 recognizes an rRNA tertiary structure stabilized by both thiostrepton and magnesium ion. Nucleic Acids Res 2000; 28:1778-84. [PMID: 10734197 PMCID: PMC102817 DOI: 10.1093/nar/28.8.1778] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Antibiotics that inhibit ribosomal function may do so by one of several mechanisms, including the induction of incorrect RNA folding or prevention of protein and/or RNA conformational transitions. Thiostrepton, which binds to the 'GTPase center' of the large subunit, has been postulated to prevent conformational changes in either the L11 protein or rRNA to which it binds. Scintillation proximity assays designed to look at the binding of the L11 C-terminal RNA-binding domain to a 23S ribosomal RNA (rRNA) fragment, as well as the ability of thiostrepton to induce that binding, were used to demonstrate the role of Mg(2+), L11 and thio-strepton in the formation and maintenance of the rRNA fragment tertiary structure. Experiments using these assays with both an Escherichia coli rRNA fragment and a thermostable variant of that RNA show that Mg(2+), L11 and thiostrepton all induce the RNA to fold to an essentially identical tertiary structure.
Collapse
Affiliation(s)
- L B Blyn
- Ibis Therapeutics, a Division of Isis Pharmaceuticals, 2292 Faraday Avenue, Carlsbad, CA 92008, USA.
| | | | | | | |
Collapse
|
12
|
GuhaThakurta D, Draper DE. Contributions of basic residues to ribosomal protein L11 recognition of RNA. J Mol Biol 2000; 295:569-80. [PMID: 10623547 DOI: 10.1006/jmbi.1999.3372] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The C-terminal domain of ribosomal protein L11, L11-C76, binds in the distorted minor groove of a helix within a 58 nucleotide domain of 23 S rRNA. To study the electrostatic component of RNA recognition in this protein, arginine and lysine residues have been individually mutated to alanine or methionine residues at the nine sequence positions that are conserved as basic residues among bacterial L11 homologs. In measurements of the salt dependence of RNA-binding, five of these mutants have a reduced value of - partial differentiallog(K(obs))/ partial differentiallog[KCl] as compared to the parent L11-C76 sequence, indicating that these residues interact with the RNA electrostatic field. These five residues are located at the perimeter of the RNA-binding surface of the protein; all five of them form salt bridges with phosphates in the crystal structure of the complex. A sixth residue, Lys47, was found to make an electrostatic contribution to binding when measurements were made at pH 6.0, but not at pH 7.0; its pK in the free protein must be <6.5. The unusual behavior of Lys47 is explained by its burial in the hydrophobic core of the free protein, and unburial in the RNA-bound protein, where it forms a salt bridge with a phosphate. The contributions of these six residues to the electrostatic component of binding are not additive; thus the magnitude of the salt dependence cannot be used to count the number of ionic interactions in this complex. By interacting with irregular features of the RNA backbone, including an S-turn, these basic residues contribute to the specificity of L11 for its target site.
Collapse
Affiliation(s)
- D GuhaThakurta
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | |
Collapse
|
13
|
Triantafillidou D, Simitsopoulou M, Franceschi F, Choli-Papadopoulou T. Structural and functional studies on the overproduced L11 protein from Thermus thermophilus. JOURNAL OF PROTEIN CHEMISTRY 1999; 18:215-23. [PMID: 10333296 DOI: 10.1023/a:1020684224200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The L11 ribosomal protein from Thermus thermophilus (TthL11) has been overproduced and purified to homogeneity using a two-step purification protocol. The overproduced protein carries a similar methylation pattern at Lys-3 as does its homolog from Escherichia coli. Chymotrypsin digested only a small part of the TthL11 protein and did not cleave TthL11 into two peptides, as in the case of EcoL11, but produced only a single N-terminal peptide. Tryptic digestion of TthL11 also produced an N-terminal peptide, in contrast to the C-terminal peptide obtained with L11 from Bacillus stearothermophilus. The recombinant protein forms a specific complex with a 55-nt 23S rRNA fragment known to interact with members of the L11 family from several organisms. Cooperative binding of TthL11 and thiostrepton to 23S rRNA leads to an increased protection of TthL11 from tryptic digestion. The similar structural and biochemical properties as well as the significant homology between L11 from E. coli and B. stearothermophilus with the corresponding protein from Thermus thermophilus indicate an evolutionarily conserved protein important for ribosome function.
Collapse
Affiliation(s)
- D Triantafillidou
- Laboratory of Biochemistry, School of Chemistry, Aristotle University of Thessaloniki, Greece
| | | | | | | |
Collapse
|
14
|
Abstract
Structures of a number of ribosomal proteins have now been determined by crystallography and NMR, though the complete structure of a ribosomal protein-rRNA complex has yet to be solved. However, some ribosomal protein structures show strong similarity to well-known families of DNA or RNA binding proteins for which structures in complex with cognate nucleic acids are available. Comparison of the known nucleic acid binding mechanisms of these non-ribosomal proteins with the most highly conserved surfaces of similar ribosomal proteins suggests ways in which the ribosomal proteins may be binding RNA. Three binding motifs, found in four ribosomal proteins so far, are considered here: homeodomain-like alpha-helical proteins (L11), OB fold proteins (S1 and S17) and RNP consensus proteins (S6). These comparisons suggest that ribosomal proteins combine a small number of fundamental strategies to develop highly specific RNA recognition sites.
Collapse
Affiliation(s)
- D E Draper
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
15
|
Scoarughi GL, Cimmino C, Donini P. Helicobacter pylori: a eubacterium lacking the stringent response. J Bacteriol 1999; 181:552-5. [PMID: 9882669 PMCID: PMC93409 DOI: 10.1128/jb.181.2.552-555.1999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Accumulation of 16S rRNA and production of guanosine polyphosphates (pppGpp and ppGpp) were studied during amino acid starvation in three wild-type strains of Helicobacter pylori. All strains exhibit a relaxed phenotype with respect to accumulation of 16S rRNA. This constitutes the first example of a wild-type eubacterium showing a relaxed phenotype. The guanosine polyphosphate levels do not rise as a result of amino acid starvation, as expected for relaxed organisms. However, in both growing and starved cells, basal levels of the two polyphosphates appeared to be present, demonstrating that the enzymatic machinery for guanosine polyphosphate production is present in this organism. These findings are discussed within the framework of the hypothesis that stringent control is a physiological control mechanism more important for the fitness of prokaryotes growing in the general environment than for those that inhabit protected niches.
Collapse
Affiliation(s)
- G L Scoarughi
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università "La Sapienza," 00185 Rome, Italy
| | | | | |
Collapse
|
16
|
Nevskaya N, Tishchenko S, Nikulin A, al-Karadaghi S, Liljas A, Ehresmann B, Ehresmann C, Garber M, Nikonov S. Crystal structure of ribosomal protein S8 from Thermus thermophilus reveals a high degree of structural conservation of a specific RNA binding site. J Mol Biol 1998; 279:233-44. [PMID: 9636713 DOI: 10.1006/jmbi.1998.1758] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S8 is one of the core ribosomal proteins. It binds to 16 S RNA with high affinity and independently of other ribosomal proteins. It also acts as a translational repressor in Escherichia coli by binding to its own mRNA. The structure of Thermus thermophilus S8 has been determined by the method of multiple isomorphous replacement at 2.9 A resolution and refined to a crystallographic R-factor of 16.2% (Rfree 27.5%). The two domains of the structure have an alpha/beta fold and are connected by a long protruding loop. The two molecules in the asymmetric unit of the crystal interact through an extensive hydrophobic core and form a tightly associated dimer, while symmetry-related molecules form a joint beta-sheet of mixed type. This type of protein-protein interaction could be realized within the ribosomal assembly. A comparison of the structures of T. thermophilus and Bacillus stearothermophilus S8 shows that the interdomain loop is eight residues longer in the former and reveals high structural conservation of an extensive region, located in the C-terminal domain. From mutational studies this region was proposed earlier to be involved in specific interaction with RNA. On the basis of these data and on the comparison of the two structures of S8, it is proposed that the three-dimensional structure of specific RNA binding sites in ribosomal proteins is highly conserved among different species.
Collapse
Affiliation(s)
- N Nevskaya
- Institute of Protein Research, Russian Academy of Sciences, Moscow Region, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mechold U, Cashel M, Steiner K, Gentry D, Malke H. Functional analysis of a relA/spoT gene homolog from Streptococcus equisimilis. J Bacteriol 1996; 178:1401-11. [PMID: 8631718 PMCID: PMC177815 DOI: 10.1128/jb.178.5.1401-1411.1996] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We examined the functional attributes of a gene encountered by sequencing the streptokinase gene region of Streptococcus equisimilis H46A. This gene, originally called rel, here termed relS. equisimilis, is homologous to two related Escherichia coli genes, spoT and relA, that function in the metabolism of guanosine 5',3'-polyphosphates [(p)ppGpp]. Studies with a variety of E. coli mutants led us to deduce that the highly expressed rel S. equisimilis gene encodes a strong (p)ppGppase and a weaker (p)ppGpp synthetic activity, much like the spoT gene, with a net effect favoring degradation and no complementation of the absence of the relA gene. We verified that the Rel S. equisimilis protein, purified from an E. coli relA spoT double mutant, catalyzed a manganese-activated (p)ppGpp 3'-pyrophosphohydrolase reaction similar to that of the SpoT enzyme. This Rel S. equisimilis protein preparation also weakly catalyzed a ribosome-independent synthesis of (p)ppGpp by an ATP to GTP 3'-pyrophosphoryltransferase reaction when degradation was restricted by the absence of manganese ions. An analogous activity has been deduced for the SpoT protein from genetic evidence. In addition, the Rel S. equisimilis protein displays immunological cross-reactivity with polyclonal antibodies specific for SpoT but not for RelA. Despite assignment of rel S. equisimilis gene function in E. coli as being similar to that of the native spoT gene, disruptions of rel S. equisimilis in S. equisimilis abolish the parental (p)ppGpp accumulation response to amino acid starvation in a manner expected for relA mutants rather than spoT mutants.
Collapse
Affiliation(s)
- U Mechold
- Institute for Molecular Biology, Jena University, Germany
| | | | | | | | | |
Collapse
|
18
|
Uchiumi T, Wada A, Kominami R. A base substitution within the GTPase-associated domain of mammalian 28 S ribosomal RNA causes high thiostrepton accessibility. J Biol Chem 1995; 270:29889-93. [PMID: 8530386 DOI: 10.1074/jbc.270.50.29889] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A molecular basis for the insensitivity of eukaryotic ribosomes to the antibiotic thiostrepton was investigated using synthetic 100-nucleotide-long fragments covering the GTPase domain of 23/28 S rRNA. Filter binding assay showed no detectable binding of the rat RNA to thiostrepton, but the binding capacity was markedly increased by base substitution of G1878 to A at the position corresponding to 1067 of Escherichia coli 23 S rRNA. The association constant (K alpha) for the rat A 1878 mutant was 0.60 x 10(6) M-1, which was comparable with that of the E. coli RNA (K alpha = 1.1 x 10(6) M-1). This suggests that the eukaryotic G 1878 participates in the resistance for thiostrepton. On the other hand, the RNA fragments of the two species had a similar binding capacity for E. coli ribosomal protein L11 and its mammalian homologue L12. Gel electrophoresis under a high ionic condition, however, revealed a difference between the two proteins. E. coli L11 formed stable complexes with both the E. coli RNA and the rat A 1878 mutant RNA in the presence of thiostrepton, while rat L12 failed to exhibit such complex formation. This suggests that the eukaryotic L12 protein may also be an element giving the resistance for thiostrepton. These results are discussed in terms of preserved three-dimensional conformation of the RNA backbone between prokaryotes and higher eukaryotes.
Collapse
Affiliation(s)
- T Uchiumi
- Department of Biochemistry, Niigata University School of Medicine, Japan
| | | | | |
Collapse
|
19
|
Raimo G, Masullo M, Bocchini V. Studies on the polypeptide elongation factor 2 from Sulfolobus solfataricus. Interaction with guanosine nucleotides and GTPase activity stimulated by ribosomes. J Biol Chem 1995; 270:21082-5. [PMID: 7673137 DOI: 10.1074/jbc.270.36.21082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The elongation factor 2 from the thermoacidophilic archaeon Sulfolobus solfataricus (SsEF-2) binds [3H]GDP at 1:1 molar ratio. The bound [3H]GDP is displaced by GTP or its nonhydrolyzable analogue guanyl-5'-yl imidodiphosphate (Gpp(NH)p) but not by ATP, thus indicating that only the two guanosine nucleotides compete for the same binding site. The affinity of SsEF-2 for [3H]GDP is higher than that for GTP and Gpp(NH)p. On the contrary, in the presence of ribosomes the affinity of SsEF-2 for GDP is lower than that for Gpp(NH)p. SsEF-2 is endowed with an intrinsic hardly detectable GTPase activity that is stimulated by ribosomes up to 2000-fold. The ribosome-stimulated SsEF-2 GTPase (GTPaser) reaches a maximum at pH 7.8 and is not affected by ATP but is competitively inhibited by either GDP or Gpp(NH)p. Both Km for [gamma-32P]GTP and kcat of GTPaser increase with increasing temperature, and the highest catalytic efficiency is reached at 80 degrees C. The ADP-ribosylation of SsEF-2 does not significantly affect either the binding of GDP and GTP or the kinetics of the GTPaser. A hypothesis on the stimulation by ribosome of SsEF-2 GTPase is proposed.
Collapse
Affiliation(s)
- G Raimo
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Italia
| | | | | |
Collapse
|
20
|
Rosendahl G, Douthwaite S. Cooperative assembly of proteins in the ribosomal GTPase centre demonstrated by their interactions with mutant 23S rRNAs. Nucleic Acids Res 1995; 23:2396-403. [PMID: 7630717 PMCID: PMC307043 DOI: 10.1093/nar/23.13.2396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The ribosomal protein L11 binds to the region of 23S rRNA associated with the GTPase-dependent steps of protein synthesis. Nucleotides 1054-1107 within this region of the Escherichia coli 23S rRNA gene were mutagenized with bisulphite. Twenty point mutations (G-->A and C-->T transitions) and numerous multiple mutations were generated. Expression of mutant 23S rRNAs in vivo shows that all the mutations detectably alter the phenotype, with effects ranging from a slight growth rate reduction to lack of viability. Temperature sensitivity is conferred by 1071G-->A and 1092C-->U substitutions. These effects are relieved by point mutations at other sites, indicating functional interconnections within the higher order structure of this 23S rRNA region. Several mutations prevent direct binding of r-protein L11 to 23S rRNA in vitro. These mutations are mainly in a short irregular stem (1087-1102) and within a hairpin loop (1068-1072), where the protein probably makes nucleotide contacts. Some of these mutations also interfere with binding of the r-protein complex L10.(L12)4 to an adjacent site on the rRNA. When added together to rRNA, proteins L10.(L12)4 and L11 bind cooperatively to overcome the effects of mutations at 1091 and 1099. The proteins also stimulate each others binding to rRNA mutated at 1087 or 1092, although in these cases binding remains clearly substoichiometric. Surprisingly, none of the mutations prevents incorporation of L11 into ribosomes in vivo, indicating that other, as yet unidentified, factors are involved in the cooperative assembly process.
Collapse
Affiliation(s)
- G Rosendahl
- Department of Molecular Biology, Odense University, Denmark
| | | |
Collapse
|
21
|
Abstract
Interactions between ribosomal protein L11 and a domain of large subunit rRNA have been highly conserved and are essential for efficient protein synthesis. To study the effects of L11 on rRNA folding, a homolog of the Escherichia coli L11 gene has been amplified from Bacillus stearothermophilus DNA and cloned into a phage T7 polymerase-based expression system. The expressed protein is 93% homologous to the L11 homolog from Bacillus subtilis, denatures at temperatures above 72 degrees C, and has nearly identical rRNA binding properties as the Escherichia coli L11 in terms of RNA affinity constants and their dependences on temperature, Mg2+ concentration, monovalent cation, and RNA mutations. Mg2+ and NH4+ are specifically bound by the RNA-protein complex, with apparent ion-RNA affinities of 1.6 mM-1 and 19 M-1, respectively, at 0 degree C. The effect of the thermostable L11 on the unfolding of a 60 nucleotide rRNA fragment containing its binding domain has been examined in melting experiments. The lowest temperature RNA transition, which is attributed to tertiary structure unfolding, is stabilized by approximately 25 degrees C, and the interaction has an intrinsic enthalpy of approximately 13 kcal/mol. The thermal stability of the protein-RNA complex is enhanced by increasing Mg2+ concentration and by NH4+ relative to Na+. Thus L11, NH4+, and Mg2+ all bind and stabilize the same rRNA tertiary interactions, which are conserved and presumably important for ribosome function.
Collapse
Affiliation(s)
- Y Xing
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
22
|
Scoarughi GL, Cimmino C, Donini P. Lack of production of (p)ppGpp in Halobacterium volcanii under conditions that are effective in the eubacteria. J Bacteriol 1995; 177:82-5. [PMID: 7798153 PMCID: PMC176559 DOI: 10.1128/jb.177.1.82-85.1995] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The stringent halobacterial strain Haloferax volcanii was subjected to a set of physiological conditions different from amino acid starvation that are known to cause production of guanosine polyphosphates [(p)pp Gpp] in eubacteria via the relA-independent (spoT) pathway. The conditions used were temperature upshift, treatment with cyanide, and total starvation. Under none of these conditions were detectable levels of (p)ppGpp observed. This result, in conjunction with our previous finding that (p)ppGpp synthesis does not occur under amino acid starvation, leads to the conclusion that in halobacteria both growth rate control and stringency are probably governed by mechanisms that operate in the absence of ppGpp. During exponential growth, a low level of phosphorylated compounds with electrophoretic mobilities similar, but not identical, to that of (p)ppGpp were observed. The intracellular concentration of these compounds increased considerably during the stationary phase of growth and with all of the treatments used. The compounds were identified as short-chain polyphosphates identical to those found under similar conditions in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- G L Scoarughi
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università La Sapienza, Rome, Italy
| | | | | |
Collapse
|
23
|
|
24
|
Sato T, Uchiumi T, Arakawa M, Kominami R. Serological association of lupus autoantibodies to a limited functional domain of 28S ribosomal RNA and to the ribosomal proteins bound to the domain. Clin Exp Immunol 1994; 98:35-9. [PMID: 7923881 PMCID: PMC1534158 DOI: 10.1111/j.1365-2249.1994.tb06603.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Site-specific anti-RNA antibodies were sought in 120 sera of patients with autoimmune diseases by ribonuclease-protection assay using six fragments covering 28S ribosomal RNA (rRNA) as antigens. Fifteen of 90 sera from patients with systemic lupus erythematosus (SLE), but none of 30 sera of the other autoimmune diseases, provided a 60 nucleotide fragment within a region termed the 'GTPase domain' of 28S rRNA. These sera had potency to precipitate 0.42-69.3 nmol of the RNA domain per ml serum, which was higher than 15 control sera of healthy donors. No other specific antigenic site was detected in 28S rRNA under conditions used. All of the 15 sera having this anti-RNA antibody showed reactivity to ribosomal P proteins (anti-P), and two of them contained an additional antibody to ribosomal protein L12. These results suggested a strong association of the production of these three antibodies. Since P and L12 proteins form a stable complex with the GTPase domain, this serological association may result from an immune response to epitopes clustered on a single RNA-protein complex domain in ribosomes.
Collapse
Affiliation(s)
- T Sato
- Department of Medicine (II) Niigata University School of Medicine, Japan
| | | | | | | |
Collapse
|
25
|
Masullo M, De Vendittis E, Bocchini V. Archaebacterial elongation factor 1 alpha carries the catalytic site for GTP hydrolysis. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32002-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Gast DA, Jenal U, Wasserfallen A, Leisinger T. Regulation of tryptophan biosynthesis in Methanobacterium thermoautotrophicum Marburg. J Bacteriol 1994; 176:4590-6. [PMID: 8045889 PMCID: PMC196279 DOI: 10.1128/jb.176.15.4590-4596.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A tryptophan-auxotrophic mutant of the archaeon Methanobacterium thermoautotrophicum Marburg was grown with growth-promoting and growth-limiting concentrations of tryptophan. The specific activities of anthranilate synthase (TrpEG) and tryptophan synthase (TrpB) increased 30- to 40-fold in tryptophan-starved cells. Levels of trpE-specific and trpD-specific mRNAs (transcripts of the first and the last genes, respectively, of the M. thermoautotrophicum Marburg trp gene cluster) increased about 10-fold upon starvation for tryptophan. Thus, the expression of the trp genes appears to be regulated primarily at the level of transcription. These data support transcription of trp genes as an operon and support a regulatory model involving a repressor. Anthranilate synthase was feedback inhibited by L-tryptophan, with a Ki of 3.0 microM. In a leucine-auxotrophic mutant starved for L-leucine, the level of alpha-isopropylmalate synthase (LeuA) was 10-fold higher than in cells grown with L-leucine. In addition to the finding of specific regulation of gene expression by the end products of their respective pathways, it was found that the levels of anthranilate synthase and alpha-isopropylmalate synthase were reduced upon growth in the presence of amino acids of other families, such as L-alanine, L-proline, or L-arginine. Conversely, starvation for tryptophan caused a slight elevation of alpha-isopropylmalate synthase and starvation for leucine caused a significant increase of anthranilate synthase and tryptophan synthase specific activities. The latter effect was also observed at the level of trp-specific mRNA and is reminiscent of general amino acid control.
Collapse
Affiliation(s)
- D A Gast
- Mikrobiologisches Institut, Swiss Federal Institute of Technology, ETH-Zentrum, Zürich
| | | | | | | |
Collapse
|
27
|
Liao D, Dennis PP. Molecular phylogenies based on ribosomal protein L11, L1, L10, and L12 sequences. J Mol Evol 1994; 38:405-19. [PMID: 8007008 DOI: 10.1007/bf00163157] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Available sequences that correspond to the E. coli ribosomal proteins L11, L1, L10, and L12 from eubacteria, archaebacteria, and eukaryotes have been aligned. The alignments were analyzed qualitatively for shared structural features and for conservation of deletions or insertions. The alignments were further subjected to quantitative phylogenetic analysis, and the amino acid identity between selected pairs of sequences was calculated. In general, eubacteria, archaebacteria, and eukaryotes each form coherent and well-resolved nonoverlapping phylogenetic domains. The degree of diversity of the four proteins between the three groups is not uniform. For L11, the eubacterial and archaebacterial proteins are very similar whereas the eukaryotic L11 is clearly less similar. In contrast, in the case of the L12 proteins and to a lesser extent the L10 proteins, the archaebacterial and eukaryotic proteins are similar whereas the eubacterial proteins are different. The eukaryotic L1 equivalent protein has yet to be identified. If the root of the universal tree is near or within the eubacterial domain, our ribosomal protein-based phylogenies indicate that archaebacteria are monophyletic. The eukaryotic lineage appears to originate either near or within the archaebacterial domain.
Collapse
Affiliation(s)
- D Liao
- Canadian Institute for Advanced Research, University of British Columbia, Vancouver
| | | |
Collapse
|
28
|
Rosendahl G, Douthwaite S. The antibiotics micrococcin and thiostrepton interact directly with 23S rRNA nucleotides 1067A and 1095A. Nucleic Acids Res 1994; 22:357-63. [PMID: 8127673 PMCID: PMC523589 DOI: 10.1093/nar/22.3.357] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The antibiotics thiostrepton and micrococcin bind to the GTPase region in domain II of 23S rRNA, and inhibit ribosomal A-site associated reactions. When bound to the ribosome, these antibiotics alter the accessibility of nucleotides 1067A and 1095A towards chemical reagents. Plasmid-coded Escherichia coli 23S rRNAs with single mutations at positions 1067 or 1095 were expressed in vivo. Mutant ribosomes are functional in protein synthesis, although those with transversion mutations function less effectively. Antibiotics were bound under conditions where wild-type and mutant ribosomes compete in the same reaction for drug molecules; binding was analysed by allele-specific footprinting. Transversion mutations at 1067 reduce thiostrepton binding more than 1000-fold. The 1067G substitution gives a more modest decrease in thiostrepton binding. The changes at 1095 slightly, but significantly, lower the affinity of ribosomes for thiostrepton, again with the G mutation having the smallest effect. Micrococcin binding to ribosomes is reduced to a far greater extent than thiostrepton by all the 1067 and 1095 mutations. Extrapolating these results to growing cells, mutation of nucleotide 1067A confers resistance towards micrococcin and thiostrepton, while substitutions at 1095A confer micrococcin resistance, and increase tolerance towards thiostrepton. These data support an rRNA tertiary structure model in which 1067A and 1095A lie in close proximity, and are key components in the drug binding site. None of the mutations alters either the higher order rRNA structure or the binding of r-proteins. We therefore conclude that thiostrepton and micrococcin interact directly with 1067A and 1095A.
Collapse
Affiliation(s)
- G Rosendahl
- Department of Molecular Biology, Odense University, Denmark
| | | |
Collapse
|
29
|
Abstract
Accumulation of stable RNA and production of guanosine polyphosphates (ppGpp and pppGpp) were studied during amino acid starvation in four species of halobacteria. In two of the four species, stable RNA was under stringent control, whereas one of the remaining two species was relaxed and the other gave an intermediate phenotype. The stringent reaction was reversed by anisomycin, an effect analogous to the chloroamphenicol-induced reversal of stringency in the eubacteria. During the stringent response, neither ppGpp nor pppGpp accumulation took place during starvation. In both growing and starved cells a very low basal level of the two polyphosphates appeared to be present. In the stringent species the intracellular concentration of GTP did not diminish but actually increased during the course of the stringent response. These data demonstrate that (i) wild-type halobacteria can have either the stringent or the relaxed phenotype (all wild-type eubacteria tested have been shown to be stringent); (ii) stringency in the halobacteria is dependent on the deaminoacylation of tRNA, as in the eubacteria; and (iii) in the halobacteria, ppGpp is not an effector of stringent control over stable-RNA synthesis.
Collapse
Affiliation(s)
- C Cimmino
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università, La Sapienza, Rome, Italy
| | | | | |
Collapse
|
30
|
Chapter 13 Translation in archaea. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Chapter 14 The structure, function and evolution of archaeal ribosomes. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
Casiano C, Traut R. Protein topography of Sulfolobus solfataricus ribosomes by cross-linking with 2-iminothiolane. Sso L12e, Sso L10e, and Sso L11e are neighbors. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54677-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Ryan PC, Lu M, Draper DE. Recognition of the highly conserved GTPase center of 23 S ribosomal RNA by ribosomal protein L11 and the antibiotic thiostrepton. J Mol Biol 1991; 221:1257-68. [PMID: 1942050 DOI: 10.1016/0022-2836(91)90932-v] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The antibiotic thiostrepton, a thiazole-containing peptide, inhibits translation and ribosomal GTPase activity by binding directly to a limited and highly conserved region of the large subunit ribosomal RNA termed the GTPase center. We have previously used a filter binding assay to examine the binding of ribosomal protein L11 to a set of ribosomal RNA fragments encompassing the Escherichia coli GTPase center sequence. We show here that thiostrepton binding to the same RNA fragments can also be detected in a filter binding assay. Binding is relatively independent of monovalent salt concentration and temperature but requires a minimum Mg2+ concentration of about 0.5 mM. To help determine the RNA features recognized by L11 and thiostrepton, a set of over 40 RNA sequence variants was prepared which, taken together, change every nucleotide within the 1051 to 1108 recognition domain while preserving the known secondary structure of the RNA. Binding constants for L11 and thiostrepton interaction with these RNAs were measured. Only a small number of sequence variants had more than fivefold effects on L11 binding affinities, and most of these were clustered around a junction of helical segments. These same mutants had similar effects on thiostrepton binding, but more than half of the other sequence changes substantially reduced thiostrepton binding. On the basis of these data and chemical modification studies of this RNA domain in the literature, we propose that L11 makes few, if any, contacts with RNA bases, but recognizes the three-dimensional conformation of the RNA backbone. We also argue from the data that thiostrepton is probably sensitive to small changes in RNA conformation. The results are discussed in terms of a model in which conformational flexibility of the GTPase center RNA is functionally important during the ribosome elongation cycle.
Collapse
Affiliation(s)
- P C Ryan
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | | | | |
Collapse
|
34
|
Karaoglu D, Thurlow DL. A chemical interference study on the interaction of ribosomal protein L11 from Escherichia coli with RNA molecules containing its binding site from 23S rRNA. Nucleic Acids Res 1991; 19:5293-300. [PMID: 1923813 PMCID: PMC328890 DOI: 10.1093/nar/19.19.5293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The interaction between ribosomal protein L11 from Escherichia coli and in vitro synthesized RNA containing its binding site from 23S rRNA was characterized by identifying nucleotides that interfered with complex formation when chemically modified by diethylpyrocarbonate or hydrazine. Chemically modified RNA was incubated with L11 under conditions appropriate for specific binding of L11 and the resulting protein-RNA complex was separated from unbound RNA on Mg(2+)-containing polyacrylamide gels. The ability to isolate L11 complexes on such gels was affected by the extent of modification by either reagent. Protein-bound and free RNAs were recovered and treated with aniline to identify their content of modified bases. Exclusion of RNA containing chemically altered bases from L11-associated material occurred for 29 modified nucleotides, located throughout the region corresponding to residues 1055-1105 in 23S rRNA. Ten bases within this region did not reproducibly inhibit binding when modified. Multiple bands of RNA were consistently observed on the nondenaturing gels, suggesting that significant intermolecular RNA-RNA interactions had occurred.
Collapse
Affiliation(s)
- D Karaoglu
- Department of Chemistry, Clark University, Worcester, MA 01610
| | | |
Collapse
|
35
|
Ryan PC, Draper DE. Detection of a key tertiary interaction in the highly conserved GTPase center of large subunit ribosomal RNA. Proc Natl Acad Sci U S A 1991; 88:6308-12. [PMID: 2068110 PMCID: PMC52072 DOI: 10.1073/pnas.88.14.6308] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Searches of ribosomal RNA sequences for compensatory base changes preserving Watson-Crick base pairing have led to detailed models of the conserved secondary structures of these RNAs. In principle, tertiary interactions can also be detected by searches for phylogenetically covariant bases. Within a highly conserved region of the large subunit ribosomal RNA termed the "GTPase center," the bases G-1056-U-1082.A-1086 are found in all eubacteria (Escherichia coli numbering), while A-1056.C-1082.G-1086 are found at the homologous positions in eukaryotes; archaebacteria fall into either category with some exceptions. Either sequence can potentially form a similar set of hydrogen bonds connecting the 3 bases. To determine the contribution of these 3 bases to RNA tertiary structure, sequence variants were made in RNA fragments covering the GTPase center. Correct folding of the RNA fragments was assayed by measuring the binding affinities of two different ligands that recognize the RNA tertiary structure: the highly conserved ribosomal protein L11, which is normally associated with the GTPase center RNA, and the peptide antibiotic thiostrepton, which inhibits the GTPase activity of eubacterial and some archaebacterial ribosomes. The results strongly support the existence of a base pair between positions 1082 and 1086: single mutations at either position weaken both L11 and thiostrepton binding by approximately 10-fold or more, while compensatory double mutations bind the ligands nearly as well as the wild-type E. coli sequence. Variants at position 1056 have little effect on either L11 or thiostrepton binding; a 3-base interaction is therefore not supported by these experiments. A base pair between positions 1082 and 1086 strongly constrains the geometry with which three helical segments join in the middle of the GTPase center.
Collapse
Affiliation(s)
- P C Ryan
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
36
|
Egebjerg J, Douthwaite SR, Liljas A, Garrett RA. Characterization of the binding sites of protein L11 and the L10.(L12)4 pentameric complex in the GTPase domain of 23 S ribosomal RNA from Escherichia coli. J Mol Biol 1990; 213:275-88. [PMID: 1692883 DOI: 10.1016/s0022-2836(05)80190-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ribonuclease and chemical probes were used to investigate the binding sites of ribosomal protein L11 and the pentameric complex L10.(L12)4 on Escherichia coli 23 S RNA. Protein complexes were formed with an RNA fragment constituting most of domains I and II or with 23 S RNA and they were investigated by an end-labelling method and a reverse transcriptase procedure, respectively. The results demonstrate that the two protein moieties bind at adjacent sites within a small RNA region. The L11 binding region overlaps with those of the modified peptide antibiotics thiostrepton and micrococcin and is constrained structurally by a three-helix junction while the L10.(L12)4 site is centred on an adjacent internal loop. The secondary structure of the whole region was determined in detail by the phylogenetic sequence comparison method, and the results for the L11 binding region, together with the experimental data, were used in a computer graphics approach to build a partial RNA tertiary structural model. The model provides insight into the topography of the L11 binding site. It also provides a structural rationale for the mutually co-operative binding of protein L11 with the antibiotics thiostrepton and micrococcin, and with the L10.(L12)4 protein complex.
Collapse
Affiliation(s)
- J Egebjerg
- Biostructural Chemistry, Chemistry Institute, Aarhus University, Denmark
| | | | | | | |
Collapse
|
37
|
Baier G, Piendl W, Redl B, Stöffler G. Structure, organization and evolution of the L1 equivalent ribosomal protein gene of the archaebacterium Methanococcus vannielii. Nucleic Acids Res 1990; 18:719-24. [PMID: 2107529 PMCID: PMC330318 DOI: 10.1093/nar/18.4.719] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The gene for ribosomal protein MvaL1 from the arachaebacterium Methanococcus vannielii was cloned and characterized. It is clustered together with the genes for MvaL10 and MvaL12, thus is organized in the same order as in E.coli and other archaebacteria. Unexpectedly, analysis of the sequence in front of the MvaL1 gene revealed an ORF of unknown identity, whereas in E.coli, Halobacterium and Sulfolobus solfataricus the gene for the L11 equivalent protein is located in this position. Northern blot analysis revealed a single tricistronic transcript encoding proteins MvaL1, MvaL10 and MvaL12. The 5'-end of the MvaL1-L10-L12 transcript contains a region that has a sequence and structure almost identical to a region on the 23S rRNA which is the putative binding domain for MvaL1, and is highly similar to the E.coli L11-L1 mRNA leader sequence that has been implicated in autogenous translational regulation. Amino acid sequence comparison revealed that MvaL1 shares 30.5% identity with ribosomal protein L1 from E.coli and 41.5% and 33.3% identity with the L1-equivalent proteins from the archaebacteria H.cutirubrum and S.solfataricus respectively.
Collapse
Affiliation(s)
- G Baier
- Institut für Mikrobiologie, Medizinischen Fakultät, Universität Innsbruck, Austria
| | | | | | | |
Collapse
|
38
|
Ryan PC, Draper DE. Thermodynamics of protein-RNA recognition in a highly conserved region of the large-subunit ribosomal RNA. Biochemistry 1989; 28:9949-56. [PMID: 2620068 DOI: 10.1021/bi00452a012] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ribosomal protein L11 from Escherichia coli specifically binds to a highly conserved region of 23S ribosomal RNA. The thermodynamics of forming a complex between this protein and several different rRNA fragments have been investigated, by use of a nitrocellulose filter binding assay. A 57-nucleotide region of the RNA (C1052-U1108) contains all the protein recognition features, and an RNA fragment containing this region binds L11 10(3)-10(4)-fold more tightly than tRNA. Binding constants are on the order of 10 microM-1 and are only weakly dependent on K+ concentration (delta log K/delta log [K+] = -1.4) or temperature. Binding requires multivalent cations; Mg2+ is taken up into the complex with an affinity of approximately 3 mM-1. Other multivalent cations tested, Ca2+ and Co(NH3)63+, promote binding nearly as well. The pH dependence of binding is a bell-shaped curve with a maximum near neutral pH, but the entire curve is shifted to higher pH for the smaller of two RNA fragments tested. This result suggests that the smaller fragment favors a conformation stabilizing protonated forms of the RNA recognition site and is potentially relevant to a hypothesis that this rRNA region undergoes an ordered series of conformational changes during the ribosome cycle.
Collapse
Affiliation(s)
- P C Ryan
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
39
|
Lechner K, Heller G, Böck A. Organization and nucleotide sequence of a transcriptional unit of Methanococcus vannielii comprising genes for protein synthesis elongation factors and ribosomal proteins. J Mol Evol 1989; 29:20-7. [PMID: 2475640 DOI: 10.1007/bf02106178] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
By a chromosome walking strategy the DNA region from Methanococcus vannielii flanking the genes for protein synthesis elongation factor (EF) 1 alpha and EF-2 was cloned and sequenced. A gene organization of 5' - beta' - open reading frame (ORF) 1 - ORF2 - S12 - S7 - EF-2 - EF-1 alpha - S10 - ORF3 - ORF4 - 3' was found where beta', S12, S7, S10, EF-2, and EF-1 alpha represent gene products with sequences similar to the beta' subunit of RNA polymerase, ribosomal proteins S12, S7, and S10, and EF-G and EF-Tu from Escherichia coli, respectively. ORF1-4 represent gene products with no known eubacterial counterparts. Northern blot analysis of transcripts and nuclease S1 mapping showed that transcription initiates between beta' and ORF1 and terminates at the 3' side of the S10 gene and that the genes from ORF1 to S10 are cotranscribed. Apart from the presence of two additional ORFs, ORF1 and ORF2, and of the gene for S10, this organization is identical to that of the eubacterial "streptomycin operon." ORF1 displays sequence similarity to rat liver ribosomal protein L30 and may represent one of the "additional" ribosomal proteins of Methanococcus. The sequenced part of the beta' gene and the EF-2 and EF-1 alpha gene products from Methanococcus are more similar to their eukaryotic than to their eubacterial counterparts. It appears, therefore, that the genetic organization of the translational components resembles the situation in eubacteria, whereas their primary structures are more eukaryotic in nature.
Collapse
Affiliation(s)
- K Lechner
- Lehrstuhl für Mikrobiologie der Universität München, FRG
| | | | | |
Collapse
|
40
|
Abstract
Mutants of Halobacterium (H.) halobium and H. cutirubrum were isolated which are resistant to the 70S ribosome inhibitor thiostrepton. Using primer extension analysis, resistance was shown to correlate with base changes at position 1159, which corresponds to position 1067 of the E. coli 23S rRNA. In four mutants, A1159 was replaced by U, in one mutant by G. The results show that not only methylation (Cundliffe & Thompson (1979) Nature 278, 859-861) of A1067 (E. coli nomenclature), but also base changes at this position cause high-level resistance to thiostrepton.
Collapse
Affiliation(s)
- H Hummel
- Lehrstuhl für Mikrobiologie der Universität München, F.R.G
| | | |
Collapse
|
41
|
Cloning and nucleotide sequence of the gene for an archaebacterial protein synthesis elongation factor Tu. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00328150] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Sanz JL, Altamura S, Mazziotti I, Amils R, Cammarano P, Londei P. Unique antibiotic sensitivity of an in vitro polypeptide synthesis system from the archaebacterium Thermoplasma acidophilum. Phylogenetic implications. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00331605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Hummel H, Böck A. 23S ribosomal RNA mutations in halobacteria conferring resistance to the anti-80S ribosome targeted antibiotic anisomycin. Nucleic Acids Res 1987; 15:2431-43. [PMID: 3562233 PMCID: PMC340661 DOI: 10.1093/nar/15.6.2431] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Halobacterium (H.) halobium and H. cutirubrum mutants resistant to the anti-80S ribosome targeted inhibitor anisomycin were isolated. Three classes of mutants were obtained: Class I displayed a minimal inhibitory concentration (MIC) to anisomycin of 10 micrograms/ml, class II of 25 micrograms/ml and class III of at least 400 micrograms/ml. In vitro polyphenylalanine synthesis assays demonstrated that in those cases tested resistance was a property of the large ribosomal subunit. By primer extension analysis, each mutation class could be correlated with a distinct base change within the peptidyltransferase loop of 235 rRNA. In class I A2472 was changed to C, in class II G2466 was changed to C and in the high-level resistant class III C2471 was replaced by U. A. double mutant - obtained by selection of a class I mutant for high-level anisomycin resistance - acquired the C2471 to U replacement of class III in addition to the class I mutation. The results provide information on the action of a eukaryotic protein synthesis inhibitor on archaebacterial ribosomes and demonstrate the suitability of organisms with a single rRNA transcriptional unit on the chromosome for direct selection of mutations in ribosomal RNA.
Collapse
|
44
|
|
45
|
Wich G, Hummel H, Jarsch M, Bär U, Böck A. Transcription signals for stable RNA genes in Methanococcus. Nucleic Acids Res 1986; 14:2459-79. [PMID: 2421249 PMCID: PMC339676 DOI: 10.1093/nar/14.6.2459] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A previous survey of upstream sequences of tRNA genes from the archaebacterium Methanococcus vannielii has revealed that there are two boxes of sequence homology: A box "A" of about 20 conserved nucleotides at a distance of 30 to 49 basepairs upstream from the gene and a box "B" 18 to 19 nucleotides downstream from box "A" (Wich, G., Sibold, L., and Böck, A. (1985) System. Appl. Microbiol. (in press). Nuclease S1 mapping experiments were carried out with two of these tRNA transcriptional units and with a ribosomal RNA operon, to determine whether these consensus sequences have a function in the initiation of transcription. Use was made of the fact that cells from Methanococcus accumulate primary transcript and processing intermediates of ribosomal RNA under conditions of protein synthesis inhibition. The following results were obtained: (i) Transcription in all three systems starts at the G within the conserved trinucleotide TGC of box "B". Since the box "B" motif, 5'TGCaagT3', also occurs at the site of transcription initiation of protein encoding genes, both in methanogenic and halophilic organisms, it appears to constitute a frequently used transcription start signal within these archaebacterial groups. (ii) The box "A" motif occurs with constant spacing, relative to box "B", in all 10 tRNA and ribosomal RNA transcriptional units investigated from Methanococcus. Since it is not present in the leader region of genes coding for proteins, it seems to function as a specific element which is required for the expression of genes for stable RNA. (iii) Termination of transcription of the ribosomal RNA operon from Methanococcus occurs at a distinct T within an oligo-T stretch immediately downstream from the 3'-terminal 5S RNA gene. This signal occurs in all 3'-flanking regions of transcriptional units for stable RNA from the Methanococcus strains studied. Termination signals for stable RNA genes in Methanococcus appear to be similar with those of stable RNA genes in eukaryotes. (iv) By nuclease S1 mapping a recognition site was identified for a processing enzyme involved in the maturation of preribosomal RNA.
Collapse
|
46
|
Comparative studies on structure and function of archaebacterial elongation factors indicate the phylogenetic diversity of the urkingdom. Syst Appl Microbiol 1986. [DOI: 10.1016/s0723-2020(86)80133-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Binder F, Huber O, Böck A. Cyclodextrin-glycosyltransferase from Klebsiella pneumoniae M5a1: cloning, nucleotide sequence and expression. Gene 1986; 47:269-77. [PMID: 2951300 DOI: 10.1016/0378-1119(86)90070-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structural gene encoding cyclodextrin-glycosyltransferase of Klebsiella pneumoniae strain M5a1 was cloned; it is expressed both in Escherichia coli and in K. pneumoniae and the gene product is secreted into the extracellular space. Determination of the nucleotide sequence revealed an open reading frame coding for a single polypeptide of 655 amino acid (aa) residues. The enzyme is synthesized as a precursor with an N-terminal signal peptide of 30 aa residues, which is proteolytically processed between two alanine residues during export. The primary structure of CGT bears homology with the sequences of amylases from both prokaryotic and eukaryotic origins.
Collapse
|