1
|
Naider F, Becker JM. A Paradigm for Peptide Hormone-GPCR Analyses. Molecules 2020; 25:E4272. [PMID: 32961885 PMCID: PMC7570734 DOI: 10.3390/molecules25184272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 01/14/2023] Open
Abstract
Work from our laboratories over the last 35 years that has focused on Ste2p, a G protein-coupled receptor (GPCR), and its tridecapeptide ligand α-factor is reviewed. Our work utilized the yeast Saccharomyces cerevisiae as a model system for understanding peptide-GPCR interactions. It explored the structure and function of synthetic α-factor analogs and biosynthetic receptor domains, as well as designed mutations of Ste2p. The results and conclusions are described using the nuclear magnetic resonance interrogation of synthetic Ste2p transmembrane domains (TMs), the fluorescence interrogation of agonist and antagonist binding, the biochemical crosslinking of peptide analogs to Ste2p, and the phenotypes of receptor mutants. We identified the ligand-binding domain in Ste2p, the functional assemblies of TMs, unexpected and interesting ligand analogs; gained insights into the bound α-factor structure; and unraveled the function and structures of various Ste2p domains, including the N-terminus, TMs, loops connecting the TMs, and the C-terminus. Our studies showed interactions between specific residues of Ste2p in an active state, but not resting state, and the effect of ligand activation on the dimerization of Ste2p. We show that, using a battery of different biochemical and genetic approaches, deep insight can be gained into the structure and conformational dynamics of GPCR-peptide interactions in the absence of a crystal structure.
Collapse
Affiliation(s)
- Fred Naider
- Department of Chemistry, College of Staten Island, CUNY, 2800 Victory Blvd, Staten Island, NY 10314, USA
| | - Jeffrey M. Becker
- Department of Microbiology, University of Tennessee, 610 Ken and Blaire Mossman Building, 1311 Cumberland Avenue, Knoxville, TN 37996, USA
| |
Collapse
|
2
|
Kotarba G, Zielinska-Gorska M, Biernacka K, Gajewska A. Gonadotropin-releasing hormone-Cu complex (Cu-GnRH) transcriptional activity in vivo in the female rat anterior pituitary gland. Brain Res Bull 2020; 156:67-75. [PMID: 31931118 DOI: 10.1016/j.brainresbull.2020.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 12/01/2022]
Abstract
Unlike gonadotropin-releasing hormone (GnRH) analogues characterized by amino acid replacement in decapeptide primary structure, Cu-GnRH molecule preserves the native sequence but contains a Cu2+ ion stably bound to the nitrogen atoms including that of the imidazole ring of His2. Cu-GnRH can operate via cAMP/PKA signalling in anterior pituitary cells, suggesting that it may affect selected gonadotropic network gene transcription in vivo. We analysed pituitary mRNA expression of Egr-1, Nr5a1, and Lhb based on their role in luteinizing hormone (LH) synthesis; and Nos1, Adcyap1, and Prkaca due to their dependence on cAMP/PKA activity. In two independent experiments, ovariectomized rats received intracerebroventricular pulsatile (one pulse/h or two pulses/h over 5 h) microinjections of 2 nM Cu-GnRH; 2 nM antide (GnRH antagonist) + 2 nM Cu-GnRH; 100 nM PACAP6-38 (PACAP receptor antagonist) + 2 nM Cu-GnRH. Relative expression of selected mRNAs was determined by qRT-PCR. LH serum concentration was examined according to RIA. All examined genes responded to Cu-GnRH stimulation with increased transcriptional activity in a manner dependent on pulse frequency pattern. Increased expression of Nr5a1, Lhb, Nos1, Adcyap1, and Prkaca mRNA was observed solely in rats receiving the complex with frequency of two pulses/h over 5 h. Egr-1 transcription was up-regulated for both applied Cu-GnRH pulsatile patterns. The stimulatory effect of Cu-GnRH on gene transcription was dependent on both GnRH receptor and PAC-1 activation. In conclusion, obtained results indicate that Cu-GnRH complex is a GnRH analogue able to induce both IP3/PKC and cAMP/PKA-dependent gonadotrope network gene transcription in vivo.
Collapse
Affiliation(s)
- Grzegorz Kotarba
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 3 Instytucka St., 05-110 Jablonna, Poland.
| | - Marlena Zielinska-Gorska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 3 Instytucka St., 05-110 Jablonna, Poland.
| | - Katarzyna Biernacka
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 3 Instytucka St., 05-110 Jablonna, Poland
| | - Alina Gajewska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 3 Instytucka St., 05-110 Jablonna, Poland.
| |
Collapse
|
3
|
Gajewska A, Zielinska-Gorska M, Wolinska-Witort E, Siawrys G, Baran M, Kotarba G, Biernacka K. Intracellular mechanisms involved in copper-gonadotropin-releasing hormone (Cu-GnRH) complex-induced cAMP/PKA signaling in female rat anterior pituitary cells in vitro. Brain Res Bull 2015; 120:75-82. [PMID: 26551063 DOI: 10.1016/j.brainresbull.2015.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/31/2015] [Accepted: 11/03/2015] [Indexed: 01/24/2023]
Abstract
The copper-gonadotropin-releasing hormone molecule (Cu-GnRH) is a GnRH analog, which preserves its amino acid sequence, but which contains a Cu(2+) ion stably bound to the nitrogen atoms including that of the imidazole ring of Histidine(2). A previous report indicated that Cu-GnRH was able to activate cAMP/PKA signaling in anterior pituitary cells in vitro, but raised the question of which intracellular mechanism(s) mediated the Cu-GnRH-induced cAMP synthesis in gonadotropes. To investigate this mechanism, in the present study, female rat anterior pituitary cells in vitro were pretreated with 0.1 μM antide, a GnRH antagonist; 0.1 μM cetrorelix, a GnRH receptor antagonist; 0.1 μM PACAP6-38, a PAC-1 receptor antagonist; 2 μM GF109203X, a protein kinase C inhibitor; 50 mM PMA, a protein kinase C activator; the protein kinase A inhibitors H89 (30 μM) and KT5720 (60 nM); factors affecting intracellular calcium activity: 2.5 mM EGTA; 2 μM thapsigargin; 5 μM A23187, a Ca(2+) ionophore; or 10 μg/ml cycloheximide, a protein synthesis inhibitor. After one of the above pretreatments, cells were incubated in the presence of 0.1 μM Cu-GnRH for 0.5, 1, and 3 h. Radioimmunoassay analysis of cAMP confirmed the functional link between Cu-GnRH stimulation and cAMP/PKA signal transduction in rat anterior pituitary cells, demonstrating increased intracellular cAMP, which was reduced in the presence of specific PKA inhibitors. The stimulatory effect of Cu-GnRH on cAMP production was partly dependent on GnRH receptor activation. In addition, an indirect and Ca(2+)-dependent mechanism might be involved in intracellular adenylate cyclase stimulation. Neither activation of protein kinase C nor new protein synthesis was involved in the Cu-GnRH-induced increase of cAMP in the rat anterior pituitary primary cultures. Presented data indicate that conformational changes of GnRH molecule resulting from cooper ion coordination affect specific pharmacological properties of Cu-GnRH molecule including specific pattern of intracellular activity induced by complex in anterior pituitary cells in vitro.
Collapse
Affiliation(s)
- Alina Gajewska
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna n. Warsaw, Poland.
| | - Marlena Zielinska-Gorska
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna n. Warsaw, Poland
| | - Ewa Wolinska-Witort
- Neuroendocrinology Department, Medical Centre for Postgraduate Education, Marymoncka 99/103 st., 01-813 Warsaw, Poland
| | - Gabriela Siawrys
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A st. 10-719 Olsztyn, Poland
| | - Marta Baran
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna n. Warsaw, Poland
| | - Grzegorz Kotarba
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna n. Warsaw, Poland
| | - Katarzyna Biernacka
- Department of Neuroendocrinology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna n. Warsaw, Poland
| |
Collapse
|
4
|
Ahn HJ, Hong EY, Jin DH, Hong NJ. Highly Active Analogs of α-Factor and Their Activities Against Saccharomyces cerevisiae. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.5.1365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
|
6
|
Rodríguez Plaza JG, Villalón Rojas A, Herrera S, Garza-Ramos G, Torres Larios A, Amero C, Zarraga Granados G, Gutiérrez Aguilar M, Lara Ortiz MT, Polanco Gonzalez C, Uribe Carvajal S, Coria R, Peña Díaz A, Bredesen DE, Castro-Obregon S, del Rio G. Moonlighting peptides with emerging function. PLoS One 2012; 7:e40125. [PMID: 22808104 PMCID: PMC3396687 DOI: 10.1371/journal.pone.0040125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 06/01/2012] [Indexed: 12/20/2022] Open
Abstract
Hunter-killer peptides combine two activities in a single polypeptide that work in an independent fashion like many other multi-functional, multi-domain proteins. We hypothesize that emergent functions may result from the combination of two or more activities in a single protein domain and that could be a mechanism selected in nature to form moonlighting proteins. We designed moonlighting peptides using the two mechanisms proposed to be involved in the evolution of such molecules (i.e., to mutate non-functional residues and the use of natively unfolded peptides). We observed that our moonlighting peptides exhibited two activities that together rendered a new function that induces cell death in yeast. Thus, we propose that moonlighting in proteins promotes emergent properties providing a further level of complexity in living organisms so far unappreciated.
Collapse
Affiliation(s)
- Jonathan G. Rodríguez Plaza
- Biochemistry and Structural Biology Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | - Amanda Villalón Rojas
- Biochemistry and Structural Biology Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | - Sur Herrera
- Biochemistry and Structural Biology Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | - Georgina Garza-Ramos
- Biochemistry Department, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México
| | - Alfredo Torres Larios
- Biochemistry and Structural Biology Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | - Carlos Amero
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos, México
| | - Gabriela Zarraga Granados
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Manuel Gutiérrez Aguilar
- Molecular Genetics Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | - María Teresa Lara Ortiz
- Biochemistry and Structural Biology Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | - Carlos Polanco Gonzalez
- Biochemistry and Structural Biology Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | - Salvador Uribe Carvajal
- Molecular Genetics Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | - Roberto Coria
- Molecular Genetics Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | - Antonio Peña Díaz
- Molecular Genetics Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | - Dale E. Bredesen
- Buck Institute for Age Research, Novato, California, United States of America
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Susana Castro-Obregon
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | - Gabriel del Rio
- Biochemistry and Structural Biology Department, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
- * E-mail:
| |
Collapse
|
7
|
Comparative study of the interaction of synthetic methionine-enkephalin and its amidated derivate with monolayers of zwitterionic and negatively charged phospholipids. Amino Acids 2010; 42:253-60. [DOI: 10.1007/s00726-010-0803-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/29/2010] [Indexed: 11/26/2022]
|
8
|
Tsanova A, Jordanova A, Pajpanova T, Golovinski E, Lalchev Z. Effects of Cholesterol—Sphingomyelin Interactions on Penetration of Neuropeptides to their Monolayers. BIOTECHNOL BIOTEC EQ 2009. [DOI: 10.1080/13102818.2009.10818465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
9
|
Haon S, Augé S, Tropis M, Milon A, Lindley ND. Low cost production of perdeuterated biomass using methylotrophic yeasts. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580331108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Liu S, Shibata A, Ueno S, Xu F, Baba Y, Jiang D, Li Y. Investigation of interaction of Leu-enkephalin with lipid membranes. Colloids Surf B Biointerfaces 2006; 48:148-58. [PMID: 16542826 DOI: 10.1016/j.colsurfb.2006.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 01/26/2006] [Accepted: 02/07/2006] [Indexed: 10/24/2022]
Abstract
Enkephalins are peptides with morphine-like activity. To achieve their biological function, they must be transported from an aqueous phase to the lipid-rich environment of their membrane bound receptor proteins. In our study, zeta potential (ZP) method was used to detect the association of Leu-enkephalin and Leu-enkephalinamide with phospholipid liposomes constituted from egg-phosphatidylcholine (EPC), dioleoyl-phosphatidylethanolamine (DOPE), cholesterol (Chol), sphingomyelin (SM) as well as soybean phospholipid (SBPL). Transfer of the peptides over lipid membranes was examined by electrophysiology technique (ET) and fluorescence spectroscopy (FS), and further confirmed using 4-fluoro-7-nitrobenzofurazan (NBD-F) labeled Leu-enkephalin (NBD-F-enkephalin) with confocal laser scanning microscopy method (CLSM). Results of zeta potential showed that enkephalinamide associated with lipid membranes and gradually saturated on the membranes either hydrophobically or electrostatically or both. Data from electrophysiology technique indicated that Leu-enkephalin could cause transmembrane currents, suggesting the transfer of peptides across lipid membranes. Transfer examined by fluorescence spectroscopy implied that it could be separated into three steps, adsorption, transportation and desorption, which was afterward reaffirmed by confocal laser scanning microscopy. Transfer efficiencies of enkephalin across SBPL, EPC/DOPE, EPC/DOPE/SM, EPC/SM and EPC/Chol lipid bilayer membranes were evaluated with ET and CLSM experiments. Results showed that the addition of either sphingomyelin or cholesterol, or negatively charged lipid in lipid membrane composition could lower the transfer efficiency.
Collapse
Affiliation(s)
- Shaoqian Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Naider F, Becker JM. The alpha-factor mating pheromone of Saccharomyces cerevisiae: a model for studying the interaction of peptide hormones and G protein-coupled receptors. Peptides 2004; 25:1441-63. [PMID: 15374647 DOI: 10.1016/j.peptides.2003.11.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Accepted: 11/25/2003] [Indexed: 10/26/2022]
Abstract
Mating in Saccharomyces cerevisiae is initiated by the secretion of diffusible peptide pheromones that are recognized by G protein-coupled receptors (GPCR). This review summarizes the use of the alpha-factor (WHWLQLKPGQPMY)--GPCR (Ste2p) interaction as a paradigm to understand the recognition between medium-sized peptide hormones and their cognate receptors. Studies over the past 15 years have indicated that the alpha-factor is bent around the center of the pheromone and that residues near the amine terminus play a central role in triggering signal transduction. The bend in the center appears not to be rigid and this flexibility is likely necessary for conformational changes that occur as the receptor switches from the inactive to active state. The results of synthetic, biological, biochemical, molecular biological, and biophysical analyses have led to a preliminary model for the structure of the peptide bound to its receptor. Antagonists for Ste2p have changes near the N-terminus of alpha-factor, and mutated forms of Ste2p were discovered that appear to favor binding of these antagonists relative to agonists. Many features of this yeast recognition system are relevant to and have counterparts in mammalian cells.
Collapse
Affiliation(s)
- Fred Naider
- Department of Chemistry, College of Staten Island and Institute for Macromolecular Assemblies of The City University of New York, Staten Island, NY 10314, USA.
| | | |
Collapse
|
12
|
Lin JC, Parrish W, Eilers M, Smith SO, Konopka JB. Aromatic residues at the extracellular ends of transmembrane domains 5 and 6 promote ligand activation of the G protein-coupled alpha-factor receptor. Biochemistry 2003; 42:293-301. [PMID: 12525156 DOI: 10.1021/bi026766o] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alpha-factor receptor (STE2) stimulates a G protein signaling pathway that promotes mating of the yeast Saccharomyces cerevisiae. Previous random mutagenesis studies implicated residues in the regions near the extracellular ends of the transmembrane domains in ligand activation. In this study, systematic Cys scanning mutagenesis across the ends of transmembrane domains 5 and 6 identified two residues, Phe(204) and Tyr(266), that were important for receptor signaling. These residues play a specific role in responding to alpha-factor since the F204C and Y266C substituted receptors responded to an alternative agonist (novobiocin). To better define the structure of this region, the Cys-substituted mutant receptors were assayed for reactivity with a thiol-specific probe that does not react with membrane-imbedded residues. A drop in reactivity coincided with residues likely to be buried in the membrane. Interestingly, both Phe(204) and Tyr(266) are located very near the interface region. However, these assays predict that Phe(204) is accessible at the surface of the receptor, consistent with the strong defect in binding alpha-factor caused by mutating this residue. In contrast, Tyr(266) was not accessible. This correlates with the ability of Y266C mutant receptors to bind alpha-factor and suggests that this residue is involved in the subsequent triggering of receptor activation. These results highlight the role of aromatic residues near the ends of the transmembrane segments in the alpha-factor receptor, and suggest that similar aromatic residues may play an important role in other G protein-coupled receptors.
Collapse
Affiliation(s)
- Jennifer C Lin
- Graduate Program in Molecular and Cellular Biology, State University of New York, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|
13
|
Augé S, Bersch B, Tropis M, Milon A. Characterization of substance P-membrane interaction by transferred nuclear Overhauser effect. Biopolymers 2000; 54:297-306. [PMID: 10935970 DOI: 10.1002/1097-0282(20001015)54:5<297::aid-bip10>3.0.co;2-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Substance P, one of the mammalian tachykinins, is known to interact strongly with lipid bilayers and this interaction may play a role in the receptor-peptide recognition process. The conformation of substance P bound to vesicles consisting of perdeuterated phosphatidylcholine has been investigated by means of two-dimensional transferred nuclear Overhauser (trNOE) spectroscopy. Nuclear magnetic resonance data analysis resulted in a unique conformational family characterized by a well-defined conformation of the last seven C-terminal amino acids, which consists of a sequence of nonstandard turns following each other in a helix-like manner. The absence of short- or medium-range trNOE in the N-terminal part indicates its structural flexibility.
Collapse
Affiliation(s)
- S Augé
- Institut de Pharmacologie et de Biologie Structurale, CNRS, 205 rte de Narbonne, 31077 Toulouse, France
| | | | | | | |
Collapse
|
14
|
Antohi O, Marepalli HR, Yang W, Becker JM, Naider F. Conformational analysis of cyclic analogues of the Saccharomyces cerevisiae alpha-factor pheromone. Biopolymers 2000; 45:21-34. [PMID: 9433184 DOI: 10.1002/(sici)1097-0282(199801)45:1<21::aid-bip3>3.0.co;2-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Analogues of the alpha-factor mating pheromone (WHWLQLKPGQPMY) from Saccharomyces cerevisiae in which the side chains of residues 7 and 10 were joined by lactam bonds were studied by nmr and molecular modeling. These investigations were carried out to discern the effect of lactam ring size on conformation and to ascertain whether the side chain i to i + 3 cyclized tetramers [H. R. Marepalli et al. (1996) Journal of the American Chemical Society, Vol. 118, pp. 6531-6539] can be considered as conformation-constraining building blocks when introduced into a long peptide chain. Nuclear Overhauser effect constraints, temperature coefficients, and backbone torsional angles were derived from 1H-nmr spectra measured in DMSO-d6. Modeling studies using the above constraints indicate that the lactam regions of the tridecapeptides assume various combinations of type II beta-turns, gamma-turns, and gamma 1-turns, but never type I beta-turns. These investigations provide evidence that the tetrapeptide building blocks retain their preferred conformations in larger molecules and can be used to control the architecture of regions of such peptides.
Collapse
Affiliation(s)
- O Antohi
- Department of Chemistry, College of Staten Island, New York 10314, USA
| | | | | | | | | |
Collapse
|
15
|
Fiori S, Renner C, Cramer J, Pegoraro S, Moroder L. Preferred conformation of endomorphin-1 in aqueous and membrane-mimetic environments. J Mol Biol 1999; 291:163-75. [PMID: 10438613 DOI: 10.1006/jmbi.1999.2951] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The newly discovered endomorphin-1 (Tyr-Pro-Trp-Phe-NH2) and endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) are potent opioid peptides with the highest affinity and selectivity for the mu receptor among all known endogenous ligands. To investigate a possible correlation between these biological properties and the conformational preferences of the small peptides, a comparative structural analysis was performed of endomorphin-1 in aqueous buffer and in membrane-mimicking SDS and AOT normal and reverse micelles by the use of CD, FT-IR, fluorescence and(1)H-NMR spectroscopy. It is well established for opioid peptides that, independently of the receptor selectivity, the Tyr1 residue plays the role of the primary pharmacophore and that the orientation of the second aromatic pharmacophore relative to the tyrosine side-chain dictates the mu or delta-receptor selectivity. By varying the environment of endomorphin-1 from water to the amphipathic SDS micelles and even more efficiently to the AOT reverse micelles, the display of the aromatic side-chains changes from an interaction of the Tyr1 and Phe4 residues to a switch of the Trp3 indole group into close contact with the phenolic moiety to prevent this type of interaction and to force an orientation of the Phe4 side-chain into the opposite direction. This conformational switch is accompanied by a stabilization of the cis -Pro2 isomer and the resulting spatial array of the pharmacophoric groups correlate well with the structural model of mu receptor-bound opioid peptides. The results indicate that AOT reverse micelles with a woof 10, where almost exclusively ordered water is secluded in the cavity, constitute with their electrostatic and hydrophobic potential an excellent mimetic of amphipathic surfaces as present on lipid bilayers and on ligand-recognition and ligand-binding sites of proteins.
Collapse
Affiliation(s)
- S Fiori
- Max-Planck-Institut für Biochemie, Martinsried, 82152, Germany
| | | | | | | | | |
Collapse
|
16
|
Abel MG, Zhang YL, Lu HF, Naider F, Becker JM. Structure-function analysis of the Saccharomyces cerevisiae tridecapeptide pheromone using alanine-scanned analogs. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1998; 52:95-106. [PMID: 9727865 DOI: 10.1111/j.1399-3011.1998.tb01363.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Twenty-six peptide analogs of the Saccharomyces cerevisiae alpha-factor, a tridecapeptide mating pheromone (W1H2W3L4Q5L6K7p8G9Ql0P11M12Y13) with either L- or D-alanine replacement of each amino acid residue (Ala-scanned) and with the isosteric replacement of methionine at position 12 by norleucine, were synthesized, purified to homogeneity and assayed for biological activity and receptor binding. Two new and effective antagonists, [D-Ala3,Nle12]alpha-factor and [D-Ala4,Nle12]alpha-factor, were found among the series, and the [D-Ala10,Nle12]alpha-factor demonstrated a marked ability to increase the biological activity of [Nle12]alpha-factor without having any effect by itself. One analog, the [L-Ala1 alpha-factor, showed a 3-fold increase in bioactivity over the [Nle12]alpha-factor, although its binding to the alpha-factor receptor was about 70-fold less than [Nle12]alpha-factor. Residues near the carboxyl terminus contributed more strongly to receptor binding than other residues, whereas those near the amine terminus of the alpha-factor played an important role in signal transduction. The effect of insertion of D-Ala residues at positions 7, 8, 9 and 10 on bioactivity and receptor binding of the peptide suggested a specific positioning role of the central loop in establishing optimal contacts between the receptor and the ends of the pheromone. We conclude that the alpha-factor may be divided into segments with dominant roles in forming the biologically active pheromone conformation, in receptor binding and in initiating signal transduction. The discovery of such relationships was made possible by the systematic variation of each residue in the peptide and by the testing of each analog in highly defined biological and binding assays.
Collapse
Affiliation(s)
- M G Abel
- Department of Microbiology and Biochemistry, The University of Tennessee, Knoxville 37996-0845, USA
| | | | | | | | | |
Collapse
|
17
|
D'Alagni M, Delfini M, Di Nola A, Eisenberg M, Paci M, Roda LG, Veglia G. Conformational study of [Met5]enkephalin-Arg-Phe in the presence of phosphatidylserine vesicles. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:540-9. [PMID: 8856052 DOI: 10.1111/j.1432-1033.1996.0540h.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The interaction of [Met5]enkephalin-Arg.Phe with phosphatidylserine (PtdSer) was studied by circular dichroism (CD), two-dimensional nuclear magnetic resonance spectroscopy, hybrid distance geometry simulated annealing (DG-SA) and molecular dynamics (MD) calculations. The very low solubility of [Met5]enkephalin-Arg-Phe and the instability of the solution containing PtdSer vesicles at low pH values did not allow us to observe the amide proton resonances in the usual two-dimensional NMR work. NOESY cross-peaks of protons of side chains from two-dimensional NMR were converted into distances which were used as restraints for modelling with DG-SA and MD. Our results indicate that, in aqueous solutions at pH 7.68 [Met5]enkephalin-Arg-Phe exists in the absence of PtdSer as a random distribution of conformers, whereas in the presence of PtdSer it adopts conformations containing a common orientation of the bonds of C alpha 2, C alpha 3, C alpha 4, and C alpha 5, although different orientations of the peptide planes are consistent with the results. Two of the reported conformers from MD simulations are characterized by the presence of a 2<--4 gamma and inverse gamma turns centered on Gly3. A gradual decline of order was observed when moving from the central moiety of the peptide to both the N-terminus and C-terminus. Finally, the DG-SA and MD calculations resulted in a structure such that the orientation of the Phe4 and Met5 side chains favours hydrophobic interactions with the apolar portion of the PtdSer vesicle to form a hydrophobic cluster. These data support the hypothesis of a role of lipids to modify the conformation of [Met5]enkephalin-Arg-Phe to permit the interactions with the receptor site.
Collapse
Affiliation(s)
- M D'Alagni
- Centro di Studio per la Chimica dei Recettori e delle Molecole Biologicamente Attive, C. N. R., Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Xue CB, McKinney A, Lu HF, Jiang Y, Becker JM, Naider F. Probing the functional conformation of the tridecapeptide mating pheromone of Saccharomyces cerevisiae through study of disulfide-constrained analogs. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1996; 47:131-41. [PMID: 8740961 DOI: 10.1111/j.1399-3011.1996.tb01336.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Analogs of the Saccharomyces cerevisiae alpha-mating factor, Trp-His-Trp-Leu-Gln-Leu-Lys-Pro-Gly-Gln-Pro-Met-Tyr, where Lys7 and Gln10 were replaced with Cys, Cys(CH3), or Ser, were synthesized using solid-phase procedures on a phenylacetamidomethyl resin. Cyclo7,10[Cys7,X9,Cys10,Nle12]alpha-factor , where X=D-Val, D-Ala, L-Ala and Gly, were prepared by on-resin cyclization using thallic trifluoroacetate in yields of 20-30%. Linear sulfhydryl-containing peptides were generated from their corresponding cyclic peptide by treatment with dithioerythritol in basic solution. In the linear analogs, replacement of both Lys7 and Gln10 with a cysteine residue resulted in an over 100-fold loss of the biological activity when compared with the native pheromone. The corresponding cyclic disulfides were 5-10-fold more active than their sulfhydryl-containing homologs, and cyclo7,10[Cys7,L-Ala9,Cys10,Nle12] alpha-factor was 50-fold more potent than linear analogs containing Ser or Cys(CH3) in positions 7 and 10. Binding competition studies indicated that all analogs had low affinity for the alpha-factor receptor and there was a poor correlation between binding and activity in a growth arrest assay. A cyclic analog in which residues 8 and 9 were replaced by 5-aminopentanoic acid was not biologically active. Based on NMR studies, all cyclic peptides have a higher tendency to form beta-turns spanning residues 7-10 than their less active linear counterparts. The results provide strong evidence that this beta-turn is important for optimal signal transduction by alpha-factor.
Collapse
Affiliation(s)
- C B Xue
- Department of Chemistry, College of Staten Island, City University of New York, USA
| | | | | | | | | | | |
Collapse
|
19
|
Gounarides JS, Broido MS, Becker JM, Naider FR. Conformational analysis of [D-Ala9]alpha-factor and [L-Ala9]alpha-factor in solution and in the presence of lipid. Biochemistry 1993; 32:908-17. [PMID: 8422395 DOI: 10.1021/bi00054a023] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The conformations in solution and in the presence of lipid vesicles of [D-Ala9] and [L-Ala9] analogues of the alpha-factor (WHWLQLKPGQPMY) from the yeast Saccharomyces cerevisiae were examined by NMR spectroscopy. Although both peptides are flexible molecules, NOE and NH d delta/dT data indicate that the [D-Ala9]alpha-factor analogue in DMSO and aqueous solution adopts a type II beta-turn about residues 8 and 9. In contrast, various NMR parameters for the less active [L-Ala9] analogue do not provide evidence for a regular secondary structure in solution. Transfer NOE data indicate that for both peptides binding to the lipid is strongest for the N-terminal residues. The C-terminus of the [D-Ala9] analogue appears to be more constrained in the bound state than the C-terminus of the [L-Ala9] analogue. This result is consistent with transfer NOE evidence that the type II beta-turn conformation of the [D-Ala9]alpha-factor is maintained in the lipid bound state.
Collapse
Affiliation(s)
- J S Gounarides
- Department of Chemistry, Hunter College, City University of New York, New York 10021
| | | | | | | |
Collapse
|
20
|
Wakamatsu K, Okada A, Miyazawa T, Ohya M, Higashijima T. Membrane-bound conformation of mastoparan-X, a G-protein-activating peptide. Biochemistry 1992; 31:5654-60. [PMID: 1610813 DOI: 10.1021/bi00139a032] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mastoparan-X, a tetradecapeptide from wasp venom, has been proposed to cause secretion from various kinds of cells by the direct activation of GTP-binding regulatory proteins (G proteins) that couple to phospholipase C. The mechanism of the activation has been shown to be very similar to that of G-protein-coupled receptors in vitro, and the interaction with membranes seems to be very important for the activation of G proteins that are membrane-bound [Higashijima, T., Uzu, S., Nakajima, T., & Ross, E. M. (1988) J. Biol. Chem. 263, 6491-6494]. We report here the precise vesicle-bound conformation of mastoparan-X in the presence of perdeuterated phospholipid vesicles, determined by two-dimensional 1H-NMR analyses of transferred nuclear Overhauser effects, combined with distance geometry and molecular dynamics calculations. Of 14 amino acid residues, the C-terminal 12 residues take an alpha-helical conformation upon binding to the phospholipid bilayer. The overall structure of the alpha-helix is amphiphilic, with three lysine side chains located on one side and with hydrophobic side chains on the other side. This conformation of mastoparan-X was maintained both in the gel and in the liquid-crystalline phases of the membranes. The conformation described herein will provide a useful basis for understanding conformation-activity relationships of mastoparan analogs as activators of G proteins. These studies will help to design novel potent analogs for the regulation of G proteins and to analyze receptor-G-protein interactions.
Collapse
Affiliation(s)
- K Wakamatsu
- Faculty of Engineering, Gunma University, Japan
| | | | | | | | | |
Collapse
|
21
|
Cserháti T, Szögyi M. Interaction of phospholipids with proteins, peptides and amino acids. New advances 1987-1989. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1991; 23:131-45. [PMID: 1999259 DOI: 10.1016/0020-711x(91)90181-l] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. The review deals with the recent achievements in the study of the various interactions of phospholipids with proteins, peptides and amino acids. The interactions are classified according to the hydrophobic, hydrophilic or mixed character of the interactive forces. The effect of the interaction on the structure and biological activity of the interacting biomolecules is discussed.
Collapse
Affiliation(s)
- T Cserháti
- Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest
| | | |
Collapse
|
22
|
Wakamatsu K, Choung SY, Kobayashi T, Inoue K, Higashijima T, Miyazawa T. Complex formation of peptide antibiotic Ro09-0198 with lysophosphatidylethanolamine: 1H NMR analyses in dimethyl sulfoxide solution. Biochemistry 1990; 29:113-8. [PMID: 2157477 DOI: 10.1021/bi00453a013] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ro09-0198 is a peptide antibiotic and immunopotentiator produced by Streptoverticillium griseoverticillatum which exhibits antitumor and antimicrobial activities. The chemical structure has been determined [Kessler et al. (1988) Helv. Chim. Acta 71, 1924-1929; Wakamiya et al. (1988) Tetrahedron Lett. 37, 4771-4772]. This peptide specifically interacts with (lyso)phosphatidylethanolamine, causing hemolysis and enhancing permeability in phosphatidylethanolamine-containing vesicles [Choung et al. (1988) Biochim. Biophys. Acta 940, 171-179, 180-187]. The highly specific nature of the interaction was studied by two dimensional proton NMR analyses. Proton resonances of the peptide were observed in dimethyl sulfoxide solution in the presence of 1-dodecanoyl-sn-glycerophosphoethanolamine. By comparison to the chemical shifts in the absence of lysophosphatidylethanolamine and by analysis of intermolecular cross-peaks in NOESY spectra, amino acid residues involved in the binding with the phospholipid were identified. The ammonium group of the phospholipid interacts with the carboxylate group of beta-hydroxyaspartic acid-15 but not with that of the carboxylate terminus. The secondary ammonium group of lysinoalanine-19/6 is probably bound to the phosphate group of the lipid. The peptide does not interact strongly with the fatty acid chain of the lipid. A folded structure of the central part [from Phe7 to Ala(S)14] of the peptide opens on binding with the phospholipid and accommodates the glycerophosphoethanolamine head group.
Collapse
Affiliation(s)
- K Wakamatsu
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Milon A, Miyazawa T, Higashijima T. Transferred nuclear Overhauser effect analyses of membrane-bound enkephalin analogues by 1H nuclear magnetic resonance: correlation between activities and membrane-bound conformations. Biochemistry 1990; 29:65-75. [PMID: 2157483 DOI: 10.1021/bi00453a009] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Leu-enkephalin, [D-Ala2]Leu-enkephalin, and [D-Ala2]Leu-enkephalinamide (agonists) and [L-Ala2]Leu-enkephalin (inactive analogue) bind to lipid bilayer consisting of phosphatidylcholine and phosphatidylserine. The conformations that these compounds assume, once bound to perdeuterated phospholipid bilayer, have been shown to be unique, as shown by the transferred nuclear Overhauser effect (TRNOE) of 1H NMR spectroscopy. In addition, their location in the bilayer was analyzed by TRNOE in the presence of spin-labeled phospholipids. These analyses showed a clear relationship between the activity and the peptide-membrane interaction. The three active peptides, when bound to membranes, adopt the same conformation, characterized by a type II' beta-turn around Gly3-Phe4 and a gamma-turn around Gly2 (or D-Ala2). The inactive analogue, [L-Ala2]Leu-enkephalin, displayed a completely different TRNOE pattern corresponding to a different conformation in the membrane-bound state. The tyrosine residue of the active compounds is not inserted into the interior of membrane, but it is inserted into the bilayer for the L-Ala2 analogue. According to these results, [L-Ala2]Leu-enkephalin may be explained to be inactive because the mode of binding to the membranes is different from that of active compounds.
Collapse
Affiliation(s)
- A Milon
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan
| | | | | |
Collapse
|
24
|
Rosevear PR, Mildvan AS. Ligand conformations and ligand-enzyme interactions as studied by the nuclear Overhauser effect. Methods Enzymol 1989; 177:333-58. [PMID: 2607987 DOI: 10.1016/0076-6879(89)77019-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Jelicks LA, Naider FR, Shenbagamurthi P, Becker JM, Broido MS. A type II beta-turn in a flexible peptide: proton assignment and conformational analysis of the alpha-factor from Saccharomyces cerevisiae in solution. Biopolymers 1988; 27:431-49. [PMID: 3282563 DOI: 10.1002/bip.360270307] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Kohda D, Kawai G, Yokoyama S, Kawakami M, Mizushima S, Miyazawa T. NMR analyses of the conformations of L-isoleucine and L-valine bound to Escherichia coli isoleucyl-tRNA synthetase. Biochemistry 1987; 26:6531-8. [PMID: 3322383 DOI: 10.1021/bi00394a037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The 400-MHz 1H NMR spectra of L-isoleucine and L-valine were measured in the presence of Escherichia coli isoleucyl-tRNA synthetase (IleRS). Because of chemical exchange of L-isoleucine or L-valine between the free state and the IleRS-bound state, a transferred nuclear Overhauser effect (TRNOE) was observed among proton resonances of L-isoleucine or L-valine. However, in the presence of isoleucyl adenylate tightly bound to the amino acid activation site of IleRS, no TRNOE for L-isoleucine or L-valine was observed. This indicates that the observed TRNOE is due to the interaction of L-isoleucine or L-valine with the amino acid activation site of IleRS. The conformations of these amino acids in the amino acid activation site of IleRS were determined by the analyses of time dependences of TRNOEs and TRNOE action spectra. The IleRS-bound L-isoleucine takes the gauche+ form about the C alpha-C beta bond and the trans form about the C beta-C gamma 1 bond. The IleRS-bound L-valine takes the gauche- form about the C alpha-C beta bond. Thus, the conformation of IleRS-bound L-valine is the same as that of IleRS-bound L-isoleucine except for the delta-methyl group. The side chain of L-isoleucine or L-valine lies in an aliphatic hydrophobic pocket of the active site of IleRS. Such hydrophobic interaction with IleRS is more significant for L-isoleucine than for L-valine. The TRNOE analysis is useful for studying the amino acid discrimination mechanism of aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- D Kohda
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|