1
|
Zhang L, Liu M, Bao L, Boström KI, Yao Y, Li J, Gu S, Ji C. Novel Structures of Type 1 Glyceraldehyde-3-phosphate Dehydrogenase from Escherichia coli Provide New Insights into the Mechanism of Generation of 1,3-Bisphosphoglyceric Acid. Biomolecules 2021; 11:1565. [PMID: 34827563 PMCID: PMC8615399 DOI: 10.3390/biom11111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a highly conserved enzyme involved in the ubiquitous process of glycolysis and presents a loop (residues 208-215 of Escherichia coli GAPDH) in two alternative conformations (I and II). It is uncertain what triggers this loop rearrangement, as well as which is the precise site from which phosphate attacks the thioacyl intermediate precursor of 1,3-bisphosphoglycerate (BPG). To clarify these uncertainties, we determined the crystal structures of complexes of wild-type GAPDH (WT) with NAD and phosphate or G3P, and of essentially inactive GAPDH mutants (C150S, H177A), trapping crystal structures for the thioacyl intermediate or for ternary complexes with NAD and either phosphate, BPG, or G3P. Analysis of these structures reported here lead us to propose that phosphate is located in the "new Pi site" attacks the thioester bond of the thioacyl intermediate to generate 1,3-bisphosphoglyceric acid (BPG). In the structure of the thioacyl intermediate, the mobile loop is in conformation II in subunits O, P, and R, while both conformations coexist in subunit Q. Moreover, only the Q subunit hosts bound NADH. In the R subunit, only the pyrophosphate part of NADH is well defined, and NADH is totally absent from the O and P subunits. Thus, the change in loop conformation appears to occur after NADH is produced, before NADH is released. In addition, two new D-glyceraldehyde-3-phosphate (G3P) binding forms are observed in WT.NAD.G3P and C150A+H177A.NAD.G3P. In summary, this paper improves our understanding of the GAPDH catalytic mechanism, particularly regarding BPG formation.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
| | - Meiruo Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
| | - Luyao Bao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA; (K.I.B.); (Y.Y.)
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA; (K.I.B.); (Y.Y.)
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
| | - Shaohua Gu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
| | - Chaoneng Ji
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (L.Z.); (M.L.); (L.B.); (J.L.); (S.G.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| |
Collapse
|
2
|
Haferkamp P, Tjaden B, Shen L, Bräsen C, Kouril T, Siebers B. The Carbon Switch at the Level of Pyruvate and Phosphoenolpyruvate in Sulfolobus solfataricus P2. Front Microbiol 2019; 10:757. [PMID: 31031731 PMCID: PMC6474364 DOI: 10.3389/fmicb.2019.00757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/26/2019] [Indexed: 01/26/2023] Open
Abstract
Sulfolobus solfataricus P2 grows on different carbohydrates as well as alcohols, peptides and amino acids. Carbohydrates such as D-glucose or D-galactose are degraded via the modified, branched Entner–Doudoroff (ED) pathway whereas growth on peptides requires the Embden–Meyerhof–Parnas (EMP) pathway for gluconeogenesis. As for most hyperthermophilic Archaea an important control point is established at the level of triosephophate conversion, however, the regulation at the level of pyruvate/phosphoenolpyruvate conversion was not tackled so far. Here we describe the cloning, expression, purification and characterization of the pyruvate kinase (PK, SSO0981) and the phosphoenolpyruvate synthetase (PEPS, SSO0883) of Sul. solfataricus. The PK showed only catabolic activity [catalytic efficiency (PEP): 627.95 mM-1s-1, 70°C] with phosphoenolpyruvate as substrate and ADP as phosphate acceptor and was allosterically inhibited by ATP and isocitrate (Ki 0.8 mM). The PEPS was reversible, however, exhibited preferred activity in the gluconeogenic direction [catalytic efficiency (pyruvate): 1.04 mM-1s-1, 70°C] and showed some inhibition by AMP and α-ketoglutarate. The gene SSO2829 annotated as PEPS/pyruvate:phosphate dikinase (PPDK) revealed neither PEPS nor PPDK activity. Our studies suggest that the energy charge of the cell as well as the availability of building blocks in the citric acid cycle and the carbon/nitrogen balance plays a major role in the Sul. solfataricus carbon switch. The comparison of regulatory features of well-studied hyperthermophilic Archaea reveals a close link and sophisticated coordination between the respective sugar kinases and the kinetic and regulatory properties of the enzymes at the level of PEP-pyruvate conversion.
Collapse
Affiliation(s)
- Patrick Haferkamp
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Britta Tjaden
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Lu Shen
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Theresa Kouril
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.,Department of Biochemistry, University of Stellenbosch, Stellenbosch, South Africa
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Centre for Water and Environmental Research, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Tästensen JB, Schönheit P. Two distinct glyceraldehyde-3-phosphate dehydrogenases in glycolysis and gluconeogenesis in the archaeon Haloferax volcanii. FEBS Lett 2018; 592:1524-1534. [PMID: 29572819 DOI: 10.1002/1873-3468.13037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 11/06/2022]
Abstract
The halophilic archaeon Haloferax volcanii degrades glucose via the semiphosphorylative Entner-Doudoroff pathway and can also grow on gluconeogenic substrates. Here, the enzymes catalysing the conversion of glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate were analysed. The genome contains the genes gapI and gapII encoding two putative GAP dehydrogenases, and pgk encoding phosphoglycerate kinase (PGK). We show that gapI is functionally involved in sugar catabolism, whereas gapII is involved in gluconeogenesis. For pgk, an amphibolic function is indicated. This is the first report of the functional involvement of a phosphorylating glyceraldehyde-3-phosphate dehydrogenase and PGK in sugar catabolism in archaea. Phylogenetic analyses indicate that the catabolic gapI from H. volcanii is acquired from bacteria via lateral genetransfer, whereas the anabolic gapII as well as pgk are of archaeal origin.
Collapse
Affiliation(s)
- Julia-Beate Tästensen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Germany
| | - Peter Schönheit
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Germany
| |
Collapse
|
4
|
Aziz I, Rashid N, Ashraf R, Siddiqui MA, Imanaka T, Akhtar M. Pcal_0632, a phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Pyrobaculum calidifontis. Extremophiles 2017; 22:121-129. [DOI: 10.1007/s00792-017-0982-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/20/2017] [Indexed: 11/25/2022]
|
5
|
Topilina NI, Novikova O, Stanger M, Banavali NK, Belfort M. Post-translational environmental switch of RadA activity by extein-intein interactions in protein splicing. Nucleic Acids Res 2015; 43:6631-48. [PMID: 26101259 PMCID: PMC4513877 DOI: 10.1093/nar/gkv612] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/29/2015] [Indexed: 11/14/2022] Open
Abstract
Post-translational control based on an environmentally sensitive intervening intein sequence is described. Inteins are invasive genetic elements that self-splice at the protein level from the flanking host protein, the exteins. Here we show in Escherichia coli and in vitro that splicing of the RadA intein located in the ATPase domain of the hyperthermophilic archaeon Pyrococcus horikoshii is strongly regulated by the native exteins, which lock the intein in an inactive state. High temperature or solution conditions can unlock the intein for full activity, as can remote extein point mutations. Notably, this splicing trap occurs through interactions between distant residues in the native exteins and the intein, in three-dimensional space. The exteins might thereby serve as an environmental sensor, releasing the intein for full activity only at optimal growth conditions for the native organism, while sparing ATP consumption under conditions of cold-shock. This partnership between the intein and its exteins, which implies coevolution of the parasitic intein and its host protein may provide a novel means of post-translational control.
Collapse
Affiliation(s)
- Natalya I Topilina
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Olga Novikova
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Matthew Stanger
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Nilesh K Banavali
- Laboratory of Computational and Structural Biology, Division of Genetics, Wadsworth Center, NYS Department of Health and Department of Biomedical Sciences, University at Albany, CMS 2008, Biggs Lab, Empire State Plaza, PO Box 509, Albany, NY 12201-2002, USA
| | - Marlene Belfort
- Department of Biological Sciences and RNA Institute, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
6
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
7
|
Lozada-Ramírez JD, Sánchez-Ferrer A, García-Carmona F. Recombinant S-adenosylhomocysteine hydrolase from Thermotoga maritima: cloning, overexpression, characterization, and thermal purification studies. Appl Biochem Biotechnol 2013; 170:639-53. [PMID: 23588970 DOI: 10.1007/s12010-013-0218-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 04/01/2013] [Indexed: 01/24/2023]
Abstract
S-Adenosylhomocysteine hydrolase (SAHase) encoded by sahase gene is a determinant when catalyzing the reversible conversion of adenosine and homocysteine to S-adenosylhomocysteine in most living organisms. The sahase gene was isolated from the genome of the highly thermostable anaerobic bacteria Thermotoga maritima, and then it was cloned, characterized, overexpressed using Escherichia coli, and partially purified by thermal precipitation. The thermal purification of the recombinant SAHase resulted in changes in the circular dichroism spectra. As a result of this analysis, it was possible to determine the structural changes in the composition of the α-helix and β-sheet content of the recombinant enzyme after purification. Moreover, a predicted secondary structure and 3D structural model was rendered by comparative molecular modeling to further understand the molecular function of this protein including its attractive biotechnological use.
Collapse
Affiliation(s)
- J D Lozada-Ramírez
- Department of Chemical and Biological Sciences, School of Sciences, Universidad de las Américas Puebla, Santa Catarina Mártir Cholula 72820, Puebla, México.
| | | | | |
Collapse
|
8
|
Comparative analysis of two glyceraldehyde-3-phosphate dehydrogenases from a thermoacidophilic archaeon, Sulfolobus tokodaii. FEBS Lett 2012; 586:3097-103. [PMID: 22841742 DOI: 10.1016/j.febslet.2012.07.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/13/2012] [Accepted: 07/15/2012] [Indexed: 11/20/2022]
Abstract
Sulfolobus tokodaii, a thermoacidophilic archaeon, possesses two structurally and functionally different enzymes that catalyze the oxidation of glyceraldehyde-3-phosphate (GAP): non-phosphorylating GAP dehydrogenase (St-GAPN) and phosphorylating GAP dehydrogenase (St-GAPDH). In contrast to previously characterized GAPN from Sulfolobus solfataricus, which exhibits V-type allosterism, St-GAPN showed K-type allosterism in which the positive cooperativity was abolished with concomitant activation by glucose 1-phosphate (G1P). St-GAPDH catalyzed the reversible oxidation of GAP to 1,3-bisphosphoglycerate (1,3-BPG) with high gluconeogenic activity, which was specific for NADPH, while both NAD(+) and NADP(+) were utilized in the glycolytic direction.
Collapse
|
9
|
A thermostable recombinant transaldolase with high activity over a broad pH range. Appl Microbiol Biotechnol 2011; 93:2403-10. [DOI: 10.1007/s00253-011-3578-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 08/19/2011] [Accepted: 09/13/2011] [Indexed: 01/18/2023]
|
10
|
Zhou L, Wu J, Vijayalakshmi J, Shumilin IA, Bauerle R, Kretsinger RH, Woodard RW. Structure and characterization of the 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Aeropyrum pernix. Bioorg Chem 2011; 40:79-86. [PMID: 22035970 DOI: 10.1016/j.bioorg.2011.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/18/2022]
Abstract
The first enzyme in the shikimic acid biosynthetic pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS), varies significantly in size and complexity in the bacteria and plants that express it. The DAH7PS from the archaebacterium Aeropyrum pernix (DAH7PS(Ap)) is among the smallest and least complex of the DAH7PS enzymes, leading to the hypothesis that DAH7PS(Ap) would not be subject to feedback regulation by shikimic acid pathway products. We overexpressed DAH7PS(Ap) in Escherichia coli, purified it, and characterized its enzymatic activity. We then solved its X-ray crystal structure with a divalent manganese ion and phosphoenolpyruvate bound (PDB ID: 1VS1). DAH7PS(Ap) is a homodimeric metalloenzyme in solution. Its enzymatic activity increases dramatically above 60 °C, with optimum activity at 95 °C. Its pH optimum at 60 °C is 5.7. DAH7PS(Ap) follows Michaelis-Menten kinetics at 60 °C, with a K(M) for erythrose 4-phosphate of 280 μM, a K(M) for phosphoenolpyruvate of 891 μM, and a k(cat) of 1.0 s(-1). None of the downstream products of the shikimate biosynthetic pathway we tested inhibited the activity of DAH7PS(Ap). The structure of DAH7PS(Ap) is similar to the structures of DAH7PS from Thermatoga maritima (PDB ID: 3PG8) and Pyrococcus furiosus (PDB ID: 1ZCO), and is consistent with its designation as an unregulated DAH7PS.
Collapse
Affiliation(s)
- Lily Zhou
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48105-1065, United States.
| | - Jing Wu
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48105-1065, United States.
| | - J Vijayalakshmi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48105-1065, United States
| | - Igor A Shumilin
- Department of Biology, University of Virginia, Charlottesville, VA 22903, United States.
| | - Ronald Bauerle
- Department of Biology, University of Virginia, Charlottesville, VA 22903, United States.
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22903, United States.
| | - Ronald W Woodard
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48105-1065, United States.
| |
Collapse
|
11
|
Biochemical characterization of glyceraldehyde-3-phosphate dehydrogenase from Thermococcus kodakarensis KOD1. Extremophiles 2011; 15:337-46. [PMID: 21409597 DOI: 10.1007/s00792-011-0365-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an essential role in glycolysis by catalyzing the conversion of D-glyceraldehyde 3-phosphate (D-G3P) to 1,3-diphosphoglycerate using NAD(+) as a cofactor. In this report, the GAPDH gene from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (GAPDH-tk) was cloned and the protein was purified to homogeneity. GAPDH-tk exists as a homotetramer with a native molecular mass of 145 kDa; the subunit molecular mass was 37 kDa. GAPDH-tk is a thermostable protein with a half-life of 5 h at 80-90°C. The apparent K (m) values for NAD(+) and D-G3P were 77.8 ± 7.5 μM and 49.3 ± 3.0 μM, respectively, with V (max) values of 45.1 ± 0.8 U/mg and 59.6 ± 1.3 U/mg, respectively. Transmission electron microscopy (TEM) and image processing confirmed that GAPDH-tk has a tetrameric structure. Interestingly, GAPDH-tk migrates as high molecular mass forms (~232 kDa and ~669 kDa) in response to oxidative stress.
Collapse
|
12
|
Anderson I, Djao ODN, Misra M, Chertkov O, Nolan M, Lucas S, Lapidus A, Del Rio TG, Tice H, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Brambilla E, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Sikorski J, Spring S, Rohde M, Eichinger K, Huber H, Wirth R, Göker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC. Complete genome sequence of Methanothermus fervidus type strain (V24S). Stand Genomic Sci 2010; 3:315-24. [PMID: 21304736 PMCID: PMC3035299 DOI: 10.4056/sigs.1283367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Methanothermus fervidus Stetter 1982 is the type strain of the genus Methanothermus. This hyperthermophilic genus is of a thought to be endemic in Icelandic hot springs. M. fervidus was not only the first characterized organism with a maximal growth temperature (97°C) close to the boiling point of water, but also the first archaeon in which a detailed functional analysis of its histone protein was reported and the first one in which the function of 2,3-cyclodiphosphoglycerate in thermoadaptation was characterized. Strain V24S(T) is of interest because of its very low substrate ranges, it grows only on H(2) + CO(2). This is the first completed genome sequence of the family Methanothermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,243,342 bp long genome with its 1,311 protein-coding and 50 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
|
13
|
Clark AT, Smith K, Muhandiram R, Edmondson SP, Shriver JW. Carboxyl pK(a) values, ion pairs, hydrogen bonding, and the pH-dependence of folding the hyperthermophile proteins Sac7d and Sso7d. J Mol Biol 2007; 372:992-1008. [PMID: 17692336 PMCID: PMC2083566 DOI: 10.1016/j.jmb.2007.06.089] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 06/19/2007] [Accepted: 06/29/2007] [Indexed: 10/23/2022]
Abstract
Sac7d and Sso7d are homologous, hyperthermophile proteins with a high density of charged surface residues and potential ion pairs. To determine the relative importance of specific amino acid side-chains in defining the stability and function of these Archaeal chromatin proteins, pK(a) values were measured for the acidic residues in both proteins using (13)C NMR chemical shifts. The stability of Sso7d enabled titrations to pH 1 under low-salt conditions. Two aspartate residues in Sso7d (D16 and D35) and a single glutamate residue (G54) showed significantly perturbed pK(a) values in low salt, indicating that the observed pH-dependence of stability was primarily due to these three residues. The pH-dependence of backbone amide NMR resonances demonstrated that perturbation of all three pK(a) values was primarily the result of side-chain to backbone amide hydrogen bonds. Few of the significantly perturbed acidic pK(a) values in Sac7d and Sso7d could be attributed to primarily ion pair or electrostatic interactions. A smaller perturbation of E48 (E47 in Sac7d) was ascribed to an ion pair interaction that may be important in defining the DNA binding surface. The small number (three) of significantly altered pK(a) values was in good agreement with a linkage analysis of the temperature, pH, and salt-dependence of folding. The linkage of the ionization of two or more side-chains to protein folding led to apparent cooperativity in the pH-dependence of folding, although each group titrated independently with a Hill coefficient near unity. These results demonstrate that the acid pH-dependence of protein stability in these hyperthermophile proteins is due to independent titration of acidic residues with pK(a) values perturbed primarily by hydrogen bonding of the side-chain to the backbone. This work demonstrates the need for caution in using structural data alone to argue the importance of ion pairs in stabilizing hyperthermophile proteins.
Collapse
Affiliation(s)
- Andrew T Clark
- Alabama High Field NMR Laboratory, Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Kelley Smith
- Alabama High Field NMR Laboratory, Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Ranjith Muhandiram
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Stephen P Edmondson
- Alabama High Field NMR Laboratory, Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - John W Shriver
- Alabama High Field NMR Laboratory, Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| |
Collapse
|
14
|
Watanabe M, Yuzawa H, Handa N, Kobayashi I. Hyperthermophilic DNA methyltransferase M.PabI from the archaeon Pyrococcus abyssi. Appl Environ Microbiol 2006; 72:5367-75. [PMID: 16885288 PMCID: PMC1538712 DOI: 10.1128/aem.00433-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 05/08/2006] [Indexed: 12/31/2022] Open
Abstract
Genome sequence comparisons among multiple species of Pyrococcus, a hyperthermophilic archaeon, revealed a linkage between a putative restriction-modification gene complex and several large genome polymorphisms/rearrangements. From a region apparently inserted into the Pyrococcus abyssi genome, a hyperthermoresistant restriction enzyme [PabI; 5'-(GTA/C)] with a novel structure was discovered. In the present work, the neighboring methyltransferase homologue, M.PabI, was characterized. Its N-terminal half showed high similarities to the M subunit of type I systems and a modification enzyme of an atypical type II system, M.AhdI, while its C-terminal half showed high similarity to the S subunit of type I systems. M.PabI expressed within Escherichia coli protected PabI sites from RsaI, a PabI isoschizomer. M.PabI, purified following overexpression, was shown to generate 5'-GTm6AC, which provides protection against PabI digestion. M.PabI was found to be highly thermophilic; it showed methylation at 95 degrees C and retained at least half the activity after 9 min at 95 degrees C. This hyperthermophilicity allowed us to obtain activation energy and other thermodynamic parameters for the first time for any DNA methyltransferases. We also determined the kinetic parameters of kcat, Km, DNA, and Km, AdoMet. The activity of M.PabI was optimal at a slightly acidic pH and at an NaCl concentration of 200 to 500 mM and was inhibited by Zn2+ but not by Mg2+, Ca2+, or Mn2+. These and previous results suggest that this unique methyltransferase and PabI constitute a type II restriction-modification gene complex that inserted into the P. abyssi genome relatively recently. As the most thermophilic of all the characterized DNA methyltransferases, M.PabI may help in the analysis of DNA methylation and its application to DNA engineering.
Collapse
Affiliation(s)
- Miki Watanabe
- Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
15
|
Huang DT, Kaplan J, Menz RI, Katis VL, Wake RG, Zhao F, Wolfenden R, Christopherson RI. Thermodynamic Analysis of Catalysis by the Dihydroorotases from Hamster and Bacillus caldolyticus, As Compared with the Uncatalyzed Reaction. Biochemistry 2006; 45:8275-83. [PMID: 16819826 DOI: 10.1021/bi060595w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dihydroorotase (DHOase, EC 3.5.2.3) from the extreme thermophile Bacillus caldolyticus has been subcloned, sequenced, expressed, and purified as a monomer. The catalytic properties of this thermophilic DHOase have been compared with another type I enzyme, the DHOase domain from hamster, to investigate how the thermophilic enzyme is adapted to higher temperatures. B. caldolyticus DHOase has higher Vmax and Ks values than hamster DHOase at the same temperature. The thermodynamic parameters for the binding of L-dihydroorotate were determined at 25 degrees C for hamster DHOase (deltaG = -6.9 kcal/mol, deltaH = -11.5 kcal/mol, TdeltaS = -4.6 kcal/mol) and B. caldolyticus DHOase (deltaG = -5.6 kcal/mol, deltaH = -4.2 kcal/mol, TdeltaS = +1.4 kcal/mol). The smaller enthalpy release and positive entropy for thermophilic DHOase are indicative of a weakly interacting Michaelis complex. Hamster DHOase has an enthalpy of activation of 12.3 kcal/mol, similar to the release of enthalpy upon substrate binding, rendering the kcat/Ks value almost temperature independent. B. caldolyticus DHOase shows a decrease in the enthalpy of activation from 12.2 kcal/mol at temperatures from 30 to 50 degrees C to 5.3 kcal/mol for temperatures of 50-70 degrees C. Vibrational energy at higher temperatures may facilitate the transition ES --> ES(double dagger), making kcat/Ks almost temperature independent. The pseudo-first-order rate constant for water attack on L-dihydroorotate, based on experiments at elevated temperature, is 3.2 x 10(-11) s(-1) at 25 degrees C, with deltaH(double dagger) = 24.7 kcal/mol and TdeltaS(double dagger) = -6.9 kcal/mol. Thus, hamster DHOase enhances the rate of substrate hydrolysis by a factor of 1.6 x 10(14), achieving this rate enhancement almost entirely by lowering the enthalpy of activation (delta deltaH(double dagger) = -19.5 kcal/mol). Both the rate enhancement and transition state affinity of hamster DHOase increase steeply with decreasing temperature, consistent with the development of H-bonds and electrostatic interactions in the transition state that were not present in the enzyme-substrate complex in the ground state.
Collapse
Affiliation(s)
- Danny T Huang
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tjaden B, Plagens A, Dörr C, Siebers B, Hensel R. Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase of Thermoproteus tenax: key pieces in the puzzle of archaeal carbohydrate metabolism. Mol Microbiol 2006; 60:287-98. [PMID: 16573681 DOI: 10.1111/j.1365-2958.2006.05098.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interconversion of phosphoenolpyruvate and pyruvate represents an important control point of the Embden-Meyerhof-Parnas (EMP) pathway in Bacteria and Eucarya, but little is known about this site of regulation in Archaea. Here we report on the coexistence of phosphoenolpyruvate synthetase (PEPS) and the first described archaeal pyruvate, phosphate dikinase (PPDK), which, besides pyruvate kinase (PK), are involved in the catalysis of this reaction in the hyperthermophilic crenarchaeote Thermoproteus tenax. The genes encoding T. tenax PEPS and PPDK were cloned and expressed in Escherichia coli, and the enzymic and regulatory properties of the recombinant gene products were analysed. Whereas PEPS catalyses the unidirectional conversion of pyruvate to phosphoenolpyruvate, PPDK shows a bidirectional activity with a preference for the catabolic reaction. In contrast to PK of T. tenax, which is regulated on transcript level but exhibits only limited regulatory potential on protein level, PEPS and PPDK activities are modulated by adenosine phosphates and intermediates of the carbohydrate metabolism. Additionally, expression of PEPS is regulated on transcript level in response to the offered carbon source as revealed by Northern blot analyses. The combined action of the differently regulated enzymes PEPS, PPDK and PK represents a novel way of controlling the interconversion of phosphoenolpyruvate and pyruvate in the reversible EMP pathway, allowing short-term and long-term adaptation to different trophic conditions. Comparative genomic analyses indicate the coexistence of PEPS, PPDK and PK in other Archaea as well, suggesting a similar regulation of the carbohydrate metabolism in these organisms.
Collapse
Affiliation(s)
- Britta Tjaden
- Department of Microbiology, Universität Duisburg-Essen, 45117 Essen, Germany.
| | | | | | | | | |
Collapse
|
17
|
Coolbear T, Daniel RM, Morgan HW. The enzymes from extreme thermophiles: bacterial sources, thermostabilities and industrial relevance. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 45:57-98. [PMID: 1605092 DOI: 10.1007/bfb0008756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review on enzymes from extreme thermophiles (optimum growth temperature greater than 65 degrees C) concentrates on their characteristics, especially thermostabilities, and their commercial applicability. The enzymes are considered in general terms first, with comments on denaturation, stabilization and industrial processes. Discussion of the enzymes subsequently proceeds in order of their E.C. classification: oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases. The ramifications of cloned enzymes from extreme thermophiles are also discussed.
Collapse
Affiliation(s)
- T Coolbear
- University of Waikato, Hamilton, New Zealand
| | | | | |
Collapse
|
18
|
Ronimus RS, Morgan HW. Distribution and phylogenies of enzymes of the Embden-Meyerhof-Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2005; 1:199-221. [PMID: 15803666 PMCID: PMC2685568 DOI: 10.1155/2003/162593] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Enzymes of the gluconeogenic/glycolytic pathway (the Embden-Meyerhof-Parnas (EMP) pathway), the reductive tricarboxylic acid cycle, the reductive pentose phosphate cycle and the Entner-Doudoroff pathway are widely distributed and are often considered to be central to the origins of metabolism. In particular, several enzymes of the lower portion of the EMP pathway (the so-called trunk pathway), including triosephosphate isomerase (TPI; EC 5.3.1.1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12/13), phosphoglycerate kinase (PGK; EC 2.7.2.3) and enolase (EC 4.2.1.11), are extremely well conserved and universally distributed among the three domains of life. In this paper, the distribution of enzymes of gluconeogenesis/glycolysis in hyperthermophiles--microorganisms that many believe represent the least evolved organisms on the planet--is reviewed. In addition, the phylogenies of the trunk pathway enzymes (TPIs, GAPDHs, PGKs and enolases) are examined. The enzymes catalyzing each of the six-carbon transformations in the upper portion of the EMP pathway, with the possible exception of aldolase, are all derived from multiple gene sequence families. In contrast, single sequence families can account for the archaeal and hyperthermophilic bacterial enzyme activities of the lower portion of the EMP pathway. The universal distribution of the trunk pathway enzymes, in combination with their phylogenies, supports the notion that the EMP pathway evolved in the direction of gluconeogenesis, i.e., from the bottom up.
Collapse
Affiliation(s)
- Ron S Ronimus
- Thermophile Research Unit, Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, New Zealand.
| | | |
Collapse
|
19
|
Charron C, Vitoux B, Aubry A. Comparative analysis of thermoadaptation within the archaeal glyceraldehyde-3-phosphate dehydrogenases from mesophilic Methanobacterium bryantii and thermophilic Methanothermus fervidus. Biopolymers 2002; 65:263-73. [PMID: 12382287 DOI: 10.1002/bip.10235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To gain insight into the molecular determinants of thermoadaptation within the family of archaeal glyceraldehyde-3-phosphate dehydrogenases (GAPDH), a homology-based 3-D model of the mesophilic GAPDH from Methanobacterium bryantii was built and compared with the crystal structure of the thermophilic GAPDH from Methanothermus fervidus. The homotetrameric model of the holoenzyme was initially assembled from identical subunits completed with NADP molecules. The structure was then refined by energy minimization and simulated-annealing procedures. PROCHECK and the 3-D profile method were used to appraise the model reliability. Striking molecular features underlying the difference in stability between the enzymes were deduced from their structural comparison. First, both the increase in hydrophobic contacts and the decrease in accessibility to the protein core were shown to discriminate in favor of the thermophilic enzyme. Besides, but to a lesser degree, the number of ion pairs involved in cooperative clusters appeared to correlate with thermostability. Finally, the decreased stability of the mesophilic enzyme was also predicted to proceed from both the lack of charge-dipole interactions within alpha-helices and the enhanced entropy of unfolding due to an increase in chain flexibility. Thus, archaeal GAPDHs appear to be governed by thermoadaptation rules that differ in some aspects from those previously observed within their eubacterial counterparts.
Collapse
Affiliation(s)
- Christophe Charron
- Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques, Groupe Biocristallographie, UMR CNRS 7036, Université Henri Poincaré, Nancy 1, BP 239, 54506 Vandoeuvre-lès-Nancy, Cedex, France
| | | | | |
Collapse
|
20
|
Littlechild JA, Isupov M. Glyceraldehyde-3-phosphate dehydrogenase from Sulfolobus solfataricus. Methods Enzymol 2001; 331:105-17. [PMID: 11265453 DOI: 10.1016/s0076-6879(01)31050-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- J A Littlechild
- Schools of Chemistry and Biological Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | | |
Collapse
|
21
|
Affiliation(s)
- C Purcarea
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| |
Collapse
|
22
|
Maitra PK, Bhosale SB, Kshirsagar DC, Yeole TY, Shanbhag AN. Metabolite and enzyme profiles of glycogen metabolism in Methanococcoides methylutens. FEMS Microbiol Lett 2001; 198:23-9. [PMID: 11325549 DOI: 10.1111/j.1574-6968.2001.tb10614.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
When a buffered anaerobic cell suspension of Methanococcoides methylutens was maintained under methanol-limited conditions, intracellular glycogen and hexose phosphates were consumed rapidly and a very small amount of methane formed at 4 h of a starvation period. When methanol was supplemented after a total of 20 h of starvation, a reverse pattern was observed: the glycogen level and the hexose phosphate pool increased, and formation of methane took place after a lag period of 90 min. A considerable amount of methane was formed in 120 min after its detection with a rate of 0.18 micromol mg(-1) protein min(-1). When methane formation decreased after 270 min of incubation and finally came to a halt, probably due to complete assimilation of supplemented methanol, the levels of glycogen and hexose monophosphates decreased once again. However fructose 1,6-diphosphate levels showed a continuous increase even after exhaustion of methane formation. In contrast to the hexose phosphate pool, levels of other metabolites showed a small increase after addition of methanol. The enzyme profile of glycogen metabolism showed relatively high levels of triose phosphate isomerase. Glyceraldehyde 3-phosphate dehydrogenase reacted with NADPH with a three-fold higher activity as compared to that with NADH.
Collapse
Affiliation(s)
- P K Maitra
- Agharkar Research Institute, Agarkar Road, 411 004, Pune, India.
| | | | | | | | | |
Collapse
|
23
|
Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 2001; 65:1-43. [PMID: 11238984 PMCID: PMC99017 DOI: 10.1128/mmbr.65.1.1-43.2001] [Citation(s) in RCA: 1409] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of > 80 degrees C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described.
Collapse
Affiliation(s)
- C Vieille
- Biochemistry Department, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
24
|
Charron C, Talfournier F, Isupov MN, Littlechild JA, Branlant G, Vitoux B, Aubry A. The crystal structure of d-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus in the presence of NADP(+) at 2.1 A resolution. J Mol Biol 2000; 297:481-500. [PMID: 10715215 DOI: 10.1006/jmbi.2000.3565] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the archaeon Methanothermus fervidus has been solved in the holo form at 2.1 A resolution by molecular replacement. Unlike bacterial and eukaryotic homologous enzymes which are strictly NAD(+)-dependent, GAPDH from this organism exhibits a dual-cofactor specificity, with a marked preference for NADP(+) over NAD(+). The present structure is the first archaeal GAPDH crystallized with NADP(+). GAPDH from M. fervidus adopts a homotetrameric quaternary structure which is topologically similar to that observed for its bacterial and eukaryotic counterparts. Within the cofactor-binding site, the positively charged side-chain of Lys33 decisively contributes to NADP(+) recognition through a tight electrostatic interaction with the adenosine 2'-phosphate group. Like other GAPDHs, GAPDH from archaeal sources binds the nicotinamide moiety of NADP(+) in a syn conformation with respect to the adjacent ribose and so belongs to the B-stereospecific class of oxidoreductases. Stabilization of the syn conformation is principally achieved through hydrogen bonding of the carboxamide group with the side-chain of Asp171, a structural feature clearly different from what is observed in all presently known GAPDHs from bacteria and eukaryotes. Within the catalytic site, the reported crystal structure definitively confirms the essential role previously assigned to Cys140 by site-directed mutagenesis studies. In conjunction with new mutation results reported in this paper, inspection of the crystal structure gives reliable evidence for the direct implication of the side-chain of His219 in the catalytic mechanism. M. fervidus grows optimally at 84 degrees C with a maximal growth temperature of 97 degrees C. The paper includes a detailed comparison of the present structure with four other homologous enzymes extracted from mesophilic as well as thermophilic organisms. Among the various phenomena related to protein thermostabilization, reinforcement of electrostatic and hydrophobic interactions as well as a more efficient molecular packing appear to be essentially promoted by the occurrence of two additional alpha-helices in the archaeal GAPDHs. The first one, named alpha4, is located in the catalytic domain and participates in the enzyme architecture at the quaternary structural level. The second one, named alphaJ, occurs at the C terminus and contributes to the molecular packing within each monomer by filling a peripherical pocket in the tetrameric assembly.
Collapse
Affiliation(s)
- C Charron
- Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques - Groupe Biocristallographie - UPRESA CNRS 7036, Université Henri Poincaré, Nancy I, BP 239, Vandoeuvre-lès-Nancy, 54506, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Isupov MN, Fleming TM, Dalby AR, Crowhurst GS, Bourne PC, Littlechild JA. Crystal structure of the glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus. J Mol Biol 1999; 291:651-60. [PMID: 10448043 DOI: 10.1006/jmbi.1999.3003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the archaea shows low sequence identity (16-20%) with its eubacterial and eukaryotic counterparts. The crystal structure of the apo GAPDH from Sulfolobus solfataricus has been determined by multiple isomorphous replacement at 2.05 A resolution. The enzyme has several differences in secondary structure when compared with eubacterial GAPDHs, with an overall increase in the number of alpha-helices. There is a relocation of the active-site residues within the catalytic domain of the enzyme. The thermostability of the S. solfataricus enzyme can be attributed to a combination of an ion pair cluster and an intrasubunit disulphide bond.
Collapse
Affiliation(s)
- M N Isupov
- Schools of Chemistry and Biological Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Enzymes synthesized by thermophiles (organisms with optimal growth temperatures > 60 degrees C) and hyperthermophiles (optimal growth temperatures > 80 degrees C) are typically thermostable (resistant to irreversible inactivation at high temperatures) and thermophilic (optimally active at high temperatures, i.e., > 60 degrees C). These enzymes, called thermozymes, share catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, thermozymes usually retain their thermal properties, suggesting that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, and crystal structure comparisons indicate that thermozymes are, indeed, very similar to mesophilic enzymes. No obvious sequence or structural features account for enzyme thermostability and thermophilicity. Thermostability and thermophilicity molecular mechanisms are varied, differing from enzyme to enzyme. Thermostability and thermophilicity are usually caused by the accumulation of numerous subtle sequence differences. This review concentrates on the mechanisms involved in enzyme thermostability and thermophilicity. Their relationships with protein rigidity and flexibility and with protein folding and unfolding are discussed. Intrinsic stabilizing forces (e.g., salt bridges, hydrogen bonds, hydrophobic interactions) and extrinsic stabilizing factors are examined. Finally, thermozymes' potential as catalysts for industrial processes and specialty uses are discussed, and lines of development (through new applications, and protein engineering) are also proposed.
Collapse
Affiliation(s)
- C Vieille
- Department of Biochemistry, Michigan State University, East Lansing 48909, USA
| | | | | |
Collapse
|
27
|
Brunner NA, Brinkmann H, Siebers B, Hensel R. NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. The first identified archaeal member of the aldehyde dehydrogenase superfamily is a glycolytic enzyme with unusual regulatory properties. J Biol Chem 1998; 273:6149-56. [PMID: 9497334 DOI: 10.1074/jbc.273.11.6149] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hyperthermophilic archaeum Thermoproteus tenax possesses two glyceraldehyde-3-phosphate dehydrogenases differing in cosubstrate specificity and phosphate dependence of the catalyzed reaction. NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase catalyzes the phosphate-independent irreversible oxidation of D-glyceraldehyde 3-phosphate to 3-phosphoglycerate. The coding gene was cloned, sequenced, and expressed in Escherichia coli. Sequence comparisons showed no similarity to phosphorylating glyceraldehyde-3-phosphate dehydrogenases but revealed a relationship to aldehyde dehydrogenases, with the highest similarity to the subgroup of nonphosphorylating glyceraldehyde-3-phosphate dehydrogenases. The activity of the enzyme is affected by a series of metabolites. All effectors tested influence the affinity of the enzyme for its cosubstrate NAD+. Whereas NADP(H), NADH, and ATP reduce the affinity for the cosubstrate, AMP, ADP, glucose 1-phosphate, and fructose 6-phosphate increase the affinity for NAD+. Additionally, most of the effectors investigated induce cooperativity of NAD+ binding. The irreversible catabolic oxidation of glyceraldehyde 3-phosphate, the control of the enzyme by energy charge of the cell, and the regulation by intermediates of glycolysis and glucan degradation identify the NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase as an integral constituent of glycolysis in T. tenax. Its regulatory properties substitute for those lacking in the reversible nonregulated pyrophosphate-dependent phosphofructokinase in this variant of the Embden-Meyerhof-Parnas pathway.
Collapse
Affiliation(s)
- N A Brunner
- Department of Microbiology, FB 9, Universit¿t-GH Essen, Universit¿tsstrasse 5, 45117 Essen, Germany
| | | | | | | |
Collapse
|
28
|
Abstract
Current studies of hyperthermophilic archaea and bacteria, the phylogenetically deepest-rooted and slowest-evolving extant organisms known, are allowing new insights into the nature of presumably ancient metabolic pathways. The apparent common occurrence of modified non-phosphorylated Entner-Doudoroff (ED) pathways among saccharolytic archaea and the absence of the conventional Embden-Meyerhof-Parnas (EMP) mode of glycolysis indicate that the ED pathway is the older route of carbohydrate dissimilation. However, gluconeogenesis via the "reversed" EMP route has been found in archaea. Thus, the EMP pathway was probably an anabolic pathway to begin with; its catabolic role came later, with the evolution of fructose phosphate kinases, using ATP, ADP or pyrophosphate as phosphate donors. Similarly, the presence of reductive reactions of the citric acid cycle in anaerobic archaea and the most deeply rooted bacteria, including autotrophs, indicates that the citric acid cycle was originally a reductive biosynthetic pathway.
Collapse
Affiliation(s)
- A H Romano
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269, USA
| | | |
Collapse
|
29
|
Jaenicke R, Schurig H, Beaucamp N, Ostendorp R. Structure and stability of hyperstable proteins: glycolytic enzymes from hyperthermophilic bacterium Thermotoga maritima. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:181-269. [PMID: 8791626 DOI: 10.1016/s0065-3233(08)60363-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | | | | | |
Collapse
|
30
|
Jones CE, Fleming TM, Cowan DA, Littlechild JA, Piper PW. The phosphoglycerate kinase and glyceraldehyde-3-phosphate dehydrogenase genes from the thermophilic archaeon Sulfolobus solfataricus overlap by 8-bp. Isolation, sequencing of the genes and expression in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:800-8. [PMID: 8521845 DOI: 10.1111/j.1432-1033.1995.800_3.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The overlapping genes encoding phosphoglycerate kinase (PGK) and glyceraldehyde-3-phosphate dehydrogenase (GraP-DH) from the hyperthermophilic archaeon Sulfolobus solfataricus have been cloned and sequenced. PCR primers based on highly conserved regions of different PGK sequences were used to isolate an internal region of the pgk gene. This was then used to screen a genomic library to isolate the full length pgk gene. A 2.5-kb BglII fragment of S. solfataricus DNA contained both the pgk gene and the gap gene immediately downstream. Unexpectedly, the pgk and gap genes were found to overlap by 8 bp, with the initiation codon of the gap gene preceding the termination codon of the pgk gene. Evidence that the two genes are co-transcribed was obtained by Northern-blot analysis. The S. solfataricus PGK amino acid sequence shows 43% and 45% identity to the PGK sequences of the Archaea Methanobacterium bryantii and Methanothermus fervidus, respectively. High level expression of the S. solfataricus PGK and GraP-DH in Escherichia coli was achieved, with heat treatment at 80 degrees C proving an effective first step in the purification of these recombinant enzymes from extracts of the E. coli host. Purified recombinant S. solfataricus PGK and GraP-DH showed half lives of 39 min and 17 h, respectively, at 80 degrees C. Unlike bacterial GraP-DH enzymes, S. solfataricus GraP-DH was able to use both NAD+ and NADP+ as cofactors, but exhibited a marked preference for NADP+.
Collapse
Affiliation(s)
- C E Jones
- Department of Biochemistry and Molecular Biology, University College, London, England
| | | | | | | | | |
Collapse
|
31
|
Hess D, Krüger K, Knappik A, Palm P, Hensel R. Dimeric 3-phosphoglycerate kinases from hyperthermophilic Archaea. Cloning, sequencing and expression of the 3-phosphoglycerate kinase gene of Pyrococcus woesei in Escherichia coli and characterization of the protein. Structural and functional comparison with the 3-phosphoglycerate kinase of Methanothermus fervidus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:227-37. [PMID: 7588750 DOI: 10.1111/j.1432-1033.1995.227_1.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The gene coding for the 3-phosphoglycerate kinase (EC 2.7.2.3) of Pyrococcus woesei was cloned and sequenced. The gene sequence comprises 1230 bp coding for a polypeptide with the theoretical M(r) of 46,195. The deduced protein sequence exhibits a high similarity (46.1% and 46.6% identity) to the other known archaeal 3-phosphoglycerate kinases of Methanobacterium bryantii and Methanothermus fervidus [Fabry, S., Heppner, P., Dietmaier, W. & Hensel, R. (1990) Gene 91, 19-25]. By comparing the 3-phosphoglycerate kinase sequences of the mesophilic and the two thermophilic Archaea, trends in thermoadaptation were confirmed that could be deduced from comparisons of glyceraldehyde-3-phosphate dehydrogenase sequences from the same organisms [Zwickl, P., Fabry, S., Bogedain, C., Haas, A. & Hensel, R. (1990) J. Bacteriol. 172, 4329-4338]. With increasing temperature the average hydrophobicity and the portion of aromatic residues increases, whereas the chain flexibility as well as the content in chemically labile residues (Asn, Cys) decreases. To study the phenotypic properties of the 3-phosphoglycerate kinases from thermophilic Archaea in more detail, the 3-phosphoglycerate kinase genes from P. woesei and M. fervidus were expressed in Escherichia coli. Comparisons of kinetic and molecular properties of the enzymes from the original organisms and from E. coli indicate that the proteins expressed in the mesophilic host are folded correctly. Besides their higher thermostability according to their origin from hyperthermophilic organisms, both enzymes differ from their bacterial and eucaryotic homologues mainly in two respects. (a) The 3-phosphoglycerate kinases from P. woesei and M. fervidus are homomeric dimers in their native state contrary to all other known 3-phosphoglycerate kinases, which are monomers including the enzyme from the mesophilic Archaeum M. bryantii. (b) Monovalent cations are essential for the activity of both archaeal enzymes with K+ being significantly more efficient than Na+. For the P. woesei enzyme, non-cooperative K+ binding with an apparent Kd (K+) of 88 mM could be determined by kinetic analysis, whereas for the M. fervidus 3-phosphoglycerate kinase the K+ binding is rather complex: from the fitting of the saturation data, non-cooperative binding sites with low selectivity for K+ and Na+ (apparent Kd = 270 mM) and at least three cooperative and highly specific K+ binding sites/subunit are deduced. At the optimum growth temperature of P. woesei (100 degrees C) and M. fervidus (83 degrees C), the 3-phosphoglycerate kinases show half-lives of inactivation of only 28 min and 44 min, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Hess
- FB 9 Mikrobiologie, Universität Essen, Germany
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Schurig H, Rutkat K, Rachel R, Jaenicke R. Octameric enolase from the hyperthermophilic bacterium Thermotoga maritima: purification, characterization, and image processing. Protein Sci 1995; 4:228-36. [PMID: 7757011 PMCID: PMC2143061 DOI: 10.1002/pro.5560040209] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Enolase (2-phospho-D-glycerate hydrolase; EC 4.2.1.11) from the hyperthermophilic bacterium Thermotoga maritima was purified to homogeneity. The N-terminal 25 amino acids of the enzyme reveal a high degree of similarity to enolases from other sources. As shown by sedimentation analysis and gel-permeation chromatography, the enzyme is a 345-kDa homoctamer with a subunit molecular mass of 48 +/- 5 kDa. Electron microscopy and image processing yield ring-shaped particles with a diameter of 17 nm and fourfold symmetry. Averaging of the aligned particles proves the enzyme to be a tetramer of dimers. The enzyme requires divalent cations in the activity assay, Mg2+ being most effective. The optimum temperature for catalysis is 90 degrees C, the temperature dependence yields a nonlinear Arrhenius profile with limiting activation energies of 75 kJ mol-1 and 43 kJ mol-1 at temperatures below and above 45 degrees C. The pH optimum of the enzyme lies between 7 and 8. The apparent Km values for 2-phospho-D-glycerate and Mg2+ at 75 degrees C are 0.07 mM and 0.03 mM; with increasing temperature, they are decreased by factors 2 and 30, respectively. Fluoride and phosphate cause competitive inhibition with a Ki of 0.14 mM. The enzyme shows high intrinsic thermal stability, with a thermal transition at 90 and 94 degrees C in the absence and in the presence of Mg2+.
Collapse
Affiliation(s)
- H Schurig
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | | | | | |
Collapse
|
34
|
Muriana FJ, Alvarez-Ossorio MC, Relimpio AM. Further thermal characterization of an aspartate aminotransferase from a halophilic organism. Biochem J 1994; 298 ( Pt 2):465-70. [PMID: 8135756 PMCID: PMC1137963 DOI: 10.1042/bj2980465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aspartate aminotransferase (AspAT, EC 2.6.1.1) from the halophilic archaebacterium Haloferax mediterranei was purified [Muriana, Alvarez-Ossorio and Relimpio (1991) Biochem. J. 278, 149-154] and further characterization of the effects of temperature on the activity and stability of the halophilic AspAT were carried out. The halophilic transaminase is most active at 65 degrees C and stable at high temperatures, under physiological or nearly physiological conditions (3.5 M KCl, pH 7.8). Thermal inactivation (60-85 degrees C) of the halophilic AspAT followed first-order kinetics, 2-oxoglutarate causing a shift of the thermal inactivation curves to higher temperatures. The salt concentration affected the thermal stability of the halophilic transaminase at 60 degrees C, suggesting that disruption of hydrophobic interactions may play an important role in the decreased thermal stability of the enzyme.
Collapse
Affiliation(s)
- F J Muriana
- Department of Biochemistry, Faculty of Pharmacy, University of Seville, Spain
| | | | | |
Collapse
|
35
|
Sand O, Petersen IM, Jørgen J, Iversen L. Purification and some properties of glyceraldehyde 3-phosphate dehydrogenase from Synechococcus sp. Antonie Van Leeuwenhoek 1994; 65:133-42. [PMID: 7979318 DOI: 10.1007/bf00871754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.13) was purified 386 fold to apparent homogeneity from the thermophilic cyanobacterium Synechococcus sp. grown at optimum light intensities in batch cultures. The molecular mass of the tetrameric form of the enzyme was 160 kDa as determined by gel filtration and sucrose gradient centrifugation in a phosphate buffer containing DTT. The pH optimum for the oxidation of NADPH was broad (6-8) and the enzyme had a pI of 4.5. The turnover number was 36,000 min-1 at 40 degrees C. The activation energy was 12.4 Kcal for t > 29 degrees C and 20.6 Kcal for t < 29 degrees C. The specific absorption coefficient, A 1% 1cm 280 mm of the pure enzyme in phosphate buffer at pH 6.8 was 15.2. By SDS gel electrophoresis molecular masses of 78 kDa and 39 kDa were found, indicating that the purified enzyme is a tetramer, probably a homotetramer. When Tris was used as buffer in the homogenization and phosphate and DTT were omitted, a high molecular form with a molecular mass above 500 kDa was found. This form was less active than the purified tetrameric form. Acetone and other organic solvents stimulated the native enzyme several fold.
Collapse
Affiliation(s)
- O Sand
- Institute of Biochemistry, Odense University, Denmark
| | | | | | | |
Collapse
|
36
|
Prüss B, Meyer HE, Holldorf AW. Characterization of the glyceraldehyde 3-phosphate dehydrogenase from the extremely halophilic archaebacterium Haloarcula vallismortis. Arch Microbiol 1993; 160:5-11. [PMID: 8352651 DOI: 10.1007/bf00258139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) from the extremely halophilic archaebacterium Haloarcula vallismortis has been purified in a four step procedure to electrophoretic homogeneity. The enzyme is a tetramer with a relative molecular mass of 160,000. It is strictly NAD(+)-dependent and exhibits its highest activity in 2 mol/l KCl at 45 degrees C. Amino acid analysis and isoelectric focusing indicate an excess of acidic amino acids. Two parts of the primary sequence are reported. These peptides have been compared with glyceraldehyde 3-phosphate dehydrogenases from other archaebacteria, eubacteria and eucaryotes. The peptides show a high grade of similarity to glyceraldehyde 3-phosphate dehydrogenase from eucaryotes.
Collapse
Affiliation(s)
- B Prüss
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
37
|
Pepper CB, Monbouquette HG. Issues in the culture of the extremely thermophilic methanogen,methanothermus fervidus. Biotechnol Bioeng 1993; 41:970-8. [DOI: 10.1002/bit.260411008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Gluconeogenesis from pyruvate in the hyperthermophilic archaeon Pyrococcus furiosus: involvement of reactions of the Embden-Meyerhof pathway. Arch Microbiol 1993. [DOI: 10.1007/bf00290918] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Palmer JR, Reeve JN. Methanogen Genes and the Molecular Biology of Methane Biosynthesis. BROCK/SPRINGER SERIES IN CONTEMPORARY BIOSCIENCE 1993. [DOI: 10.1007/978-1-4615-7087-5_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Schläpfer BS, Zuber H. Cloning and sequencing of the genes encoding glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase (gap operon) from mesophilic Bacillus megaterium: comparison with corresponding sequences from thermophilic Bacillus stearothermophilus. Gene 1992; 122:53-62. [PMID: 1452037 DOI: 10.1016/0378-1119(92)90031-j] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structural genes encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 3-phosphoglycerate kinase (PGK) and the N-terminal part of triosephosphate isomerase (TIM) from mesophilic Bacillus megaterium DSM319 have been cloned as a gene cluster (gap operon) by complementation of an Escherichia coli gap amber mutant. Subsequently, the entire tpi gene, encoding TIM, was isolated by colony hybridization using a homologous probe. Nucleotide (nt) sequence analysis revealed an unidentified open reading frame (urf1) of 1029 bp located 50 nt upstream from the start codon of the gap gene. Gene expression from subclones containing different coding regions was studied by enzyme assay and SDS-PAGE. Both GAPDH and TIM are synthesized in transformed E. coli cells, whereas PGK is not. There is no unequivocal evidence for urf1 expression. Two putative promoter sites are present: one 100 nt upstream from urf1 and one 200 nt upstream from the pgk gene. An inverted repeat following the second promoter site is postulated to be involved in the transcriptional regulation of the operon. Each coding region shows a G+C content of 40% attained by the adaptation of the G+C content of the third base in the codon to compensate the G+C content of the first and second bases. The deduced amino acid (aa) sequences of B. megaterium GAPDH, PGK and TIM were compared with those from the thermophilic Bacillus stearothermophilus by antisymmetrical matrices. The detected characteristic thermophilic-mesophilic exchange pattern concerning aa substitutions between hydrophobic-polar and charged-charged residues corresponds to data obtained for thermophilic and mesophilic lactate dehydrogenases (LDH). The determination of the thermostability of these enzymes revealed two regions of stability for B. megaterium TIM at high enzyme concentrations. Heat treatment seems to be responsible for the conversion of two differently active conformations or the induction of a new quaternary structure.
Collapse
Affiliation(s)
- B S Schläpfer
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | |
Collapse
|
41
|
Biro J, Fabry S, Dietmaier W, Bogedain C, Hensel R. Engineering thermostability in archaebacterial glyceraldehyde-3-phosphate dehydrogenase. Hints for the important role of interdomain contacts in stabilizing protein conformation. FEBS Lett 1990; 275:130-4. [PMID: 2124542 DOI: 10.1016/0014-5793(90)81456-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Construction of hybrid enzymes between the glyceraldehyde-3-phosphate dehydrogenases from the mesophilic Methanobacterium bryantii and the thermophilic Methanothermus fervidus by recombinant DNA techniques revealed that a short C-terminal fragment of the Mt. fervidus enzyme contributes largely to its thermostability. This C-terminal region appears to be homologous to the alpha 3-helix of eubacterial and eukaryotic glyceraldehyde-3-phosphate dehydrogenases which is involved in the contacts between the two domains of the enzyme subunit. Site-directed mutagenesis experiments indicate that hydrophobic interactions play an important role in these contacts.
Collapse
Affiliation(s)
- J Biro
- Max-Planck-Institut für Biochemie, Martinsried, FRG
| | | | | | | | | |
Collapse
|
42
|
Sakai K, Hasumi K, Endo A. Two glyceraldehyde-3-phosphate dehydrogenase isozymes from the koningic acid (heptelidic acid) producer Trichoderma koningii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:195-202. [PMID: 2226438 DOI: 10.1111/j.1432-1033.1990.tb19323.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The sesquiterpene lactone koningic acid (heptelidic acid) irreversibly inactivated glyceraldehyde-3-phosphate dehydrogenase [D-glyceraldehyde 3-phosphate: NAD+ oxidoreductase (phosphorylating)] (EC 1.2.1.12) (GAPDH) and thus inhibits glycolysis. The koningic-acid-producing strain of Trichoderma koningii M3947 was shown to contain the koningic-acid-resistant GAPDH isozyme (GAPDH I) under conditions of koningic acid production. In peptone-rich medium, however, no koningic acid production was observed, and the koningic-acid-sensitive GAPDH isozyme (GAPDH II), in addition to the resistant enzyme, was produced. Both enzymes were tetramer with a molecular mass of 152 kDa (4 x 38 kDa) and lost enzyme activity when two of the four cysteine residues reacted with koningic acid. The apparent Km values of GAPDH I and II for glyceraldehyde 3-phosphate were 0.54 mM and 0.33 mM, respectively. The former isozyme was inhibited 50% by 1 mM koningic acid but not affected at 0.1 mM, while the latter isozyme was inhibited 50% at 0.01 mM. The immunochemical properties and partial amino acid sequences suggested that the two isozymes have different molecular structures. These results suggest that GAPDH I is responsible for the glycolysis in T. koningii when koningic acid is produced.
Collapse
Affiliation(s)
- K Sakai
- Department of Applied Biological Science, Tokyo Noko University, Japan
| | | | | |
Collapse
|
43
|
Schultes V, Deutzmann R, Jaenicke R. Complete amino-acid sequence of glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:25-31. [PMID: 2401296 DOI: 10.1111/j.1432-1033.1990.tb19190.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1. The complete amino-acid sequence of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the extreme thermophilic eubacterium Thermotoga maritima has been determined by classical automated sequence analysis of peptides derived by chemical fragmentation with cyanogen bromide and enzymatic cleavages with specific proteases. 2. The protein contains 332 amino acids per subunit. Its sequence is as follows: (sequence; see text) 3. Comparing the given sequence with those of the enzymes from the moderate and extreme thermophilic bacteria Bacillus stearothermophilus and Thermus aquaticus, 63% and 59% identity are observed. Alignment of the sequences of GAPDHs from a variety of sources yields one deletion (one amino acid) and one insertion (two amino acids). 4. Thermal stability is caused by minute adjustments of the local three-dimensional structure. Previous 'strategies of thermal adaptation' in terms of preferred amino-acid exchanges are not in accordance with the present sequence data.
Collapse
Affiliation(s)
- V Schultes
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Federal Republic of Germany
| | | | | |
Collapse
|
44
|
Wrba A, Schweiger A, Schultes V, Jaenicke R, Závodszky P. Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. Biochemistry 1990; 29:7584-92. [PMID: 2271518 DOI: 10.1021/bi00485a007] [Citation(s) in RCA: 173] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
D-Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Thermotoga maritima, a hyperthermophilic eubacterium, has been isolated in pure crystalline form. The enzyme is a homotetramer with a subunit molecular mass of 37 kDa. The sedimentation coefficient of the native enzyme is 7.3 X 10(-13)s, the isoelectric point is 4.6, and the specific absorption coefficient A1%, 1cm 280nm = 8.4. The enzyme shows extreme thermal stability: differential scanning calorimetry yields a transition temperature (Tm) of 109 degrees C for the NAD-saturated enzyme. Thermal deactivation occurs at T greater than 90 degrees C. The physicochemical characteristics of the enzyme suggest that its gross structure must be very similar to the structure of GAPDHs from mesophilic sources. The amino acid composition does not confirm the known "traffic rules" of thermal adaptation, apart from the Lys----Arg exchange. One reactive and at least two buried SH groups can be titrated with 5,5'-dithiobis(2-nitrobenzoate). The highly reactive SH group is probably the active-site cysteine residue common to all known GAPDHs. The activation energy of the glyceraldehyde 3-phosphate oxidation reaction decreases with increasing temperature. This functional behavior can be correlated with the temperature-dependent changes of both the intrinsic fluorescence and the near-UV circular dichroism; both indicate a temperature-dependent structural reorganization of the enzyme. Hydrogen-deuterium exchange reveals significantly increased rigidity of the thermophilic enzyme if compared to mesophilic GAPDHs at 25 degrees C, thus indicating that the conformational flexibility is similar at the corresponding physiological temperatures.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Wrba
- Institut für Biophysik und Physikalische Biochemie, Universität-Regensburg, FRG
| | | | | | | | | |
Collapse
|
45
|
Zwickl P, Fabry S, Bogedain C, Haas A, Hensel R. Glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus woesei: characterization of the enzyme, cloning and sequencing of the gene, and expression in Escherichia coli. J Bacteriol 1990; 172:4329-38. [PMID: 2165475 PMCID: PMC213258 DOI: 10.1128/jb.172.8.4329-4338.1990] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus woesei (optimal growth temperature, 100 to 103 degrees C) was purified to homogeneity. This enzyme was strictly phosphate dependent, utilized either NAD+ or NADP+, and was insensitive to pentalenolactone like the enzyme from the methanogenic archaebacterium Methanothermus fervidus. The enzyme exhibited a considerable thermostability, with a 44-min half-life at 100 degrees C. The amino acid sequence of the glyceraldehyde-3-phosphate dehydrogenase from P. woesei was deduced from the nucleotide sequence of the coding gene. Compared with the enzyme homologs from mesophilic archaebacteria (Methanobacterium bryantii, Methanobacterium formicicum) and an extremely thermophilic archaebacterium (Methanothermus fervidus), the primary structure of the P. woesei enzyme exhibited a strikingly high proportion of aromatic amino acid residues and a low proportion of sulfur-containing residues. The coding gene of P. woesei was expressed at a high level in Escherichia coli, thus providing an ideal basis for detailed structural and functional studies of that enzyme.
Collapse
Affiliation(s)
- P Zwickl
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
46
|
Cloning and sequencing the gene encoding 3-phosphoglycerate kinase from mesophilic Methanobacterium bryantii and thermophilic Methanothermus fervidus. Gene 1990; 91:19-25. [PMID: 2401408 DOI: 10.1016/0378-1119(90)90157-m] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The nucleotide sequences of the gene (pgk) encoding 3-phosphoglycerate kinase (PGK) from the mesophilic archaebacterium, Methanobacterium bryantii, and from the closely related thermophile, Methanothermus fervidus, were determined. The deduced amino acid (aa) sequences show 61% identity with each other and 32-36% identity with the enzyme homologues from eubacteria and eukaryotes. As found for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and L-malate dehydrogenase, the relatedness between the archaebacterial aa sequences on the one hand and the eubacterial or eukaryotic sequences on the other is lower than that between the latter ones. Comparison of the aa sequence of PGK from mesophilic and thermophilic archaebacteria indicates an increase of the overall hydrophobicity and a decrease of the chain flexibility in the thermophilic enzyme, as already deduced from respective comparisons between GAPDH aa sequences of the same organisms. In addition, glycine residues are strikingly discriminated in the thermophilic PGK, which was also observed for GAPDH. Contrary to GAPDH, however, Lys and Arg residues are preferred in the thermophilic PGK. Lys to Arg substitutions are the most frequent cold-to-hot changes in PGK, whereas in GAPDH from the same organisms these changes do not occur.
Collapse
|
47
|
Honka E, Fabry S, Niermann T, Palm P, Hensel R. Properties and primary structure of the L-malate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 188:623-32. [PMID: 2110059 DOI: 10.1111/j.1432-1033.1990.tb15443.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
L-Malate dehydrogenase from the extremely thermophilic mathanogen Methanothermus fervidus was isolated and its phenotypic properties were characterized. The primary structure of the protein was deducted from the coding gene. The enzyme is a homomeric dimer with a molecular mass of 70 kDa, possesses low specificity for NAD+ or NADP+ and catalyzes preferentially the reduction of oxalacetate. The temperature dependence of the activity as depicted in the Arrhenius and van't Hoff plots shows discontinuities near 52 degrees C, as was found for glyceraldehyde-3-phosphate dehydrogenase from the same organism. With respect to the primary structure, the archaebacterial L-malate dehydrogenase deviates strikingly from the eubacterial and eukaryotic enzymes. The sequence similarity is even lower than that between the L-malate dehydrogenases and L-lactate dehydrogenases of eubacteria and eukaryotes. The phylogenetic meaning of this relationship is discussed.
Collapse
Affiliation(s)
- E Honka
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
48
|
Pisani FM, Rella R, Raia CA, Rozzo C, Nucci R, Gambacorta A, De Rosa M, Rossi M. Thermostable beta-galactosidase from the archaebacterium Sulfolobus solfataricus. Purification and properties. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 187:321-8. [PMID: 2105216 DOI: 10.1111/j.1432-1033.1990.tb15308.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A thermophilic and thermostable beta-galactosidase activity was purified to homogeneity from crude extracts of the archaebacterium Sulfolobus solfataricus, by a procedure including ion-exchange and affinity chromatography. The homogeneous enzyme had a specific activity of 116.4 units/mg at 75 degrees C with o-nitrophenyl beta-galactopyranoside as substrate. Molecular mass studies demonstrated that the S. solfataricus beta-galactosidase was a tetramer of 240 +/- 8 kDa composed of similar or identical subunits. Comparison of the amino acid composition of beta-galactosidase from S. solfataricus with that from Escherichia coli revealed a lower cysteine content and a lower Arg/Lys ratio in the thermophilic enzyme. A rabbit serum, raised against the homogeneous enzyme did not cross-react with beta-galactosidase from E. coli. The enzyme, characterized for its reaction requirements and kinetic properties, showed a thermostability and thermophilicity notably greater than those reported for beta-galactosidases from other mesophilic and thermophilic sources.
Collapse
Affiliation(s)
- F M Pisani
- Istituto di Biochimica delle Proteine ed Enzimologia, Consiglio Nazionale delle Ricerche, Napoli, Italia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hecht K, Wrba A, Jaenicke R. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 183:69-74. [PMID: 2753046 DOI: 10.1111/j.1432-1033.1989.tb14897.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.
Collapse
Affiliation(s)
- K Hecht
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Federal Republic of Germany
| | | | | |
Collapse
|
50
|
Fabry S, Lang J, Niermann T, Vingron M, Hensel R. Nucleotide sequence of the glyceraldehyde-3-phosphate dehydrogenase gene from the mesophilic methanogenic archaebacteria Methanobacterium bryantii and Methanobacterium formicicum. Comparison with the respective gene structure of the closely related extreme thermophile Methanothermus fervidus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 179:405-13. [PMID: 2492940 DOI: 10.1111/j.1432-1033.1989.tb14568.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The genes for glyceraldehyde-3-phosphate dehydrogenase (gap genes) from the mesophilic methanogenic archaebacteria Methanobacterium formicicum and Methanobacterium bryantii were cloned and sequenced. The deduced amino acid sequences show 95% identity to each other and about 70% identity to the glyceraldehyde-3-phosphate dehydrogenase from the thermophilic methanogenic archaebacterium Methanothermus fervidus. Although the sequence similarity between the archaebacterial glyceraldehyde-3-phosphate dehydrogenase and the homologous enzyme of eubacteria and eukaryotes is low, an equivalent secondary-structural arrangement can be deduced from the profiles of the physical parameters hydropathy, chain flexibility and amphipathy. In order to find possible thermophile-specific structural features of the enzyme from M. fervidus, a comparative primary-sequence analysis was performed. Amino acid exchanges leading, to a stabilization of the main-chain conformation, could be found throughout the sequence of the thermophile enzyme. Striking features of the thermophile sequence are the preference for isoleucine, especially in beta-sheets, and a low arginine/lysine ratio of 0.54.
Collapse
Affiliation(s)
- S Fabry
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | | | | | | | |
Collapse
|