1
|
Mangiullo R, Gnoni A, Leone A, Gnoni GV, Papa S, Zanotti F. Structural and functional characterization of F(o)F(1)-ATP synthase on the extracellular surface of rat hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1326-35. [PMID: 18775409 DOI: 10.1016/j.bbabio.2008.08.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 07/22/2008] [Accepted: 08/05/2008] [Indexed: 11/25/2022]
Abstract
Extracellular ATP formation from ADP and inorganic phosphate, attributed to the activity of a cell surface ATP synthase, has so far only been reported in cultures of some proliferating and tumoral cell lines. We now provide evidence showing the presence of a functionally active ecto-F(o)F(1)-ATP synthase on the plasma membrane of normal tissue cells, i.e. isolated rat hepatocytes. Both confocal microscopy and flow cytometry analysis show the presence of subunits of F(1) (alpha/beta and gamma) and F(o) (F(o)I-PVP(b) and OSCP) moieties of ATP synthase at the surface of rat hepatocytes. This finding is confirmed by immunoblotting analysis of the hepatocyte plasma membrane fraction. The presence of the inhibitor protein IF(1) is also detected on the hepatocyte surface. Activity assays show that the ectopic-ATP synthase can work both in the direction of ATP synthesis and hydrolysis. A proton translocation assay shows that both these mechanisms are accompanied by a transient flux of H(+) and are inhibited by F(1) and F(o)-targeting inhibitors. We hypothesise that ecto-F(o)F(1)-ATP synthase may control the extracellular ADP/ATP ratio, thus contributing to intracellular pH homeostasis.
Collapse
Affiliation(s)
- Roberto Mangiullo
- Department of Medical Biochemistry, Biology and Physics, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
2
|
de Chiara C, Nicastro G, Spisni A, Zanotti F, Cocco T, Papa S. Activity and NMR structure of synthetic peptides of the bovine ATPase inhibitor protein, IF1. Peptides 2002; 23:2127-41. [PMID: 12535691 DOI: 10.1016/s0196-9781(02)00256-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The protein IF(1) is a natural inhibitor of the mitochondrial F(o)F(1)-ATPase. Many investigators have been prompted to identify the shortest segment of IF(1), retaining its native activity, for use in biomedical applications. Here, the activity of the synthetic peptides IF(1)-(42-58) and IF(1)-(22-46) is correlated to their structure and conformational plasticity determined by CD and [1H]-NMR spectroscopy. Among all the IF(1) segments tested, IF(1)-(42-58) exerts the most potent, pH and temperature dependent activity on the F(o)F(1) complex. The results suggest that, due to its flexible structure, it can fold in helical and/or beta-spiral arrangements that favor the binding to the F(o)F(1) complex, where the native IF(1) binds. IF(1)-(22-46), instead, as it adopts a rigid alpha-helical conformation, it inhibits ATP hydrolysis only in the soluble F(1) moiety.
Collapse
Affiliation(s)
- Cesira de Chiara
- Department of Experimental Medicine, Section of Chemistry and Structural Biochemistry, University of Parma, 43100 Parma, Italy
| | | | | | | | | | | |
Collapse
|
3
|
Papa S, Zanotti F, Gaballo A. The structural and functional connection between the catalytic and proton translocating sectors of the mitochondrial F1F0-ATP synthase. J Bioenerg Biomembr 2000; 32:401-11. [PMID: 11768302 DOI: 10.1023/a:1005584221456] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The structural and functional connection between the peripheral catalytic F1 sector and the proton-translocating membrane sector F0 of the mitochondrial ATP synthase is reviewed. The observations examined show that the N-terminus of subunit gamma, the carboxy-terminal and central region of F0I-PVP(b), OSCP, and part of subunit d constitute a continuous structure, the lateral stalk, which connects the peripheries of F1 to F0 and surrounds the central element of the stalk, constituted by subunits gamma and delta. The ATPase inhibitor protein (IF1) binds at one side of the F1F0 connection. The carboxy-terminal segment of IF1 apparently binds to OSCP. The 42L-58K segment of IF1, which is per se the most active domain of the protein, binds at the surface of one of the three alpha/beta pairs of F1, thus preventing the cyclic interconversion of the catalytic sites required for ATP hydrolysis.
Collapse
Affiliation(s)
- S Papa
- Department of Medical Biochemistry and Biology, University of Bari, Italy.
| | | | | |
Collapse
|
4
|
Velours J, Paumard P, Soubannier V, Spannagel C, Vaillier J, Arselin G, Graves PV. Organisation of the yeast ATP synthase F(0):a study based on cysteine mutants, thiol modification and cross-linking reagents. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:443-56. [PMID: 10838057 DOI: 10.1016/s0005-2728(00)00093-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A topological study of the yeast ATP synthase membranous domain was undertaken by means of chemical modifications and cross-linking experiments on the wild-type complex and on mutated enzymes obtained by site-directed mutagenesis of genes encoding ATP synthase subunits. The modification by non-permeant maleimide reagents of the Cys-54 of mutated subunit 4 (subunit b), of the Cys-23 in the N-terminus of subunit 6 (subunit a) and of the Cys-91 in the C-terminus of mutated subunit f demonstrated their location in the mitochondrial intermembrane space. Near-neighbour relationships between subunits of the complex were demonstrated by means of homobifunctional and heterobifunctional reagents. Our data suggest interactions between the first transmembranous alpha-helix of subunit 6, the two hydrophobic segments of subunit 4 and the unique membrane-spanning segments of subunits i and f. The amino acid residue 174 of subunit 4 is close to both oscp and the beta-subunit, and the residue 209 is close to oscp. The dimerisation of subunit 4 in the membrane revealed that this component is located in the periphery of the enzyme and interacts with other ATP synthase complexes.
Collapse
Affiliation(s)
- J Velours
- Institut de Biochimie et Génétique Cellulaires du CNRS, 1 rue Camille Saint Saëns, 33077, cedex, Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
5
|
Soubannier V, Rusconi F, Vaillier J, Arselin G, Chaignepain S, Graves PV, Schmitter JM, Zhang JL, Mueller D, Velours J. The second stalk of the yeast ATP synthase complex: identification of subunits showing cross-links with known positions of subunit 4 (subunit b). Biochemistry 1999; 38:15017-24. [PMID: 10555984 DOI: 10.1021/bi9916067] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A component of the stator of the yeast ATP synthase (subunit 4 or b) showed many cross-linked products with the homobifunctional reagent dithiobis[succinimidyl propionate], which reacts with the amino group of lysine residues. The positions in subunit 4 that were involved in the cross-linkings were determined by using cysteine-generated mutants constructed by site-directed mutagenesis of ATP4. Cross-linking experiments with the heterobifunctional reagent p-azidophenacyl bromide, which has a spacer arm of 9 A, were performed with mitochondria and crude Triton X-100 extracts containing the solubilized enzyme. Substitution of lysine residues by cysteine residues in the hydrophilic C-terminal part of subunit 4 allowed cross-links with subunit h from C98 and with subunit d from C141, C143, and C151. OSCP was cross-linked from C174 and C209. A cross-linked product, 4+beta, was also obtained from C174. It is concluded that the C-terminus of subunit 4 is distant from the membrane surface and close to F(1) and OSCP. The N-terminal part of subunit 4 is close to subunit g, as demonstrated by the identification of a cross-linked product involving subunit g and the cysteine residues 7 or 14 of subunit 4.
Collapse
Affiliation(s)
- V Soubannier
- Institut de Biochimie et Génétique Cellulaires du CNRS, Université Victor Segalen, Bordeaux 2, 1 rue Camille Saint-Saëns 33077 Bordeaux Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gaballo A, Zanotti F, Solimeo A, Papa S. Topological and functional relationship of subunits F1-gamma and F0I-PVP(b) in the mitochondrial H+-ATP synthase. Biochemistry 1998; 37:17519-26. [PMID: 9860867 DOI: 10.1021/bi981422c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diamide treatment of the F0F1-ATP synthase in "inside out" submitochondrial particles (ESMP) in the absence of a respiratory Delta mu H+ as well as of isolated Fo reconstituted with F1 or F1-gamma subunit results in direct disulfide cross-linking between cysteine 197 in the carboxy-terminal region of the F0I-PVP(b) subunit and cysteine 91 at the carboxyl end of a small alpha-helix of subunit F1-gamma, both located in the stalk. The F0I-PVP(b) and F1-gamma cross-linking cause dramatic enhancement of oligomycin-sensitive decay of Delta mu H+. In ESMP and MgATP particles the cross-linking is accompanied by decoupling of respiratory ATP synthesis. These effects are consistent with the view that F0I-PVP(b) and F1-gamma are components of the stator and rotor of the proposed rotary motor, respectively. The fact that the carboxy-terminal region of F0I-PVP(b) and the short alpha-helix of F1-gamma can form a direct disulfide bridge shows that these two protein domains are, at least in the resting state of the enzyme, in direct contact. In isolated F0, diamide also induces cross-linking of OSCP with another subunit of F0, but this has no significant effect on proton conduction. When ESMP are treated with diamide in the presence of Delta mu H+ generated by respiration, neither cross-linking between F0I-PVP(b) and F1-gamma subunits nor the associated effects on proton conduction and ATP synthesis is observed. Cross-linking is restored in respiring ESMP by Delta mu H+ collapsing agents as well as by DCCD or oligomycin. These observations indicate that the torque generated by Delta mu H+ decay through Fo induces a relative motion and/or a separation of the F0I-PVP(b) subunit and F1-gamma which places the single cysteine residues, present in each of the two subunits, at a distance at which they cannot be engaged in disulfide bridging.
Collapse
Affiliation(s)
- A Gaballo
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | |
Collapse
|
7
|
Spannagel C, Vaillier J, Arselin G, Graves PV, Grandier-Vazeille X, Velours J. Evidence of a subunit 4 (subunit b) dimer in favor of the proximity of ATP synthase complexes in yeast inner mitochondrial membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1414:260-4. [PMID: 9804970 DOI: 10.1016/s0005-2736(98)00174-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Yeast mitochondria having either the D54C or E55C mutations in subunit 4 (subunit b), which is a component of the ATP synthase stator, displayed a spontaneous disulfide bridge between two subunits 4. This dimer was not soluble upon Triton X-100 extraction either at concentrations which extract the yeast ATP synthase or at higher concentrations. Increasing detergent concentrations led to a lack of the oligomycin-sensitive ATPase activity, thus showing an uncoupling between the two sectors of the mutated enzymes due to the dissociation of the subunit 4 dimer from the mutant enzyme. There is only one subunit 4 (subunit b) per eukaryotic ATP synthase. As a consequence, the results are interpreted as the proximity of ATP synthase complexes within the inner mitochondrial membrane.
Collapse
Affiliation(s)
- C Spannagel
- Institut de Biochimie et Génétique Cellulaires du CNRS, Université Victor Ségalen, Bordeaux II, 1 rue Camille Saint Saëns, 33077 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
8
|
Velours J, Spannagel C, Chaignepain S, Vaillier J, Arselin G, Graves PV, Velours G, Camougrand N. Topography of the yeast ATP synthase F0 sector. Biochimie 1998; 80:793-801. [PMID: 9893937 DOI: 10.1016/s0300-9084(00)88873-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The interaction between the hydrophilic C-terminal part of subunit 4 (subunit b) and OSCP, which are two components of the connecting stalk of the yeast ATP synthase, was shown after reconstitution of the two over-expressed proteins and by the two-hybrid method. The organization of a part of the F0 sector was studied by the use of mutants containing cysteine residues in a loop connecting the two N-terminal postulated membrane-spanning segments. Labelling of the mutated subunits 4 by a maleimide fluorescent probe revealed that the sulfhydryl groups were modified upon incubation of intact mitochondria. In addition, non-permeant maleimide reagents labeled subunit 4D54C, thus showing a location of this residue in the intermembrane space. Cross-linking experiments revealed the proximity of subunits 4 and f. In addition, a disulfide bridge between subunit 4D54C and subunit 6 was evidenced, thus demonstrating near-neighbor relationships of the two subunits and a location of the N-terminal part of the mitochondrially-encoded subunit 6 in the intermembrane space.
Collapse
Affiliation(s)
- J Velours
- Institut de Biochimie et Génétique Cellulaires du CNRS, Université de Bordeaux II, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Spannagel C, Vaillier J, Chaignepain S, Velours J. Topography of the yeast ATP synthase F0 sector by using cysteine substitution mutants. Cross-linkings between subunits 4, 6, and f. Biochemistry 1998; 37:615-21. [PMID: 9425084 DOI: 10.1021/bi9714971] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The arrangement of the N-terminal part of subunit 4 (subunit b) has been studied by the use of mutants containing cysteine residues in a loop connecting the two N-terminal postulated membrane-spanning segments. Labelling of the mutated subunit 4 by the fluorescent probe N-(7-(dimethylamino)-4-methyl-3-coumarinyl)maleimide revealed that the sulfhydryl groups were modified upon incubation of intact mitochondria. In addition, the nonpermeant sulfhydryl reagent 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid prevented the 3-(N-maleimidylpropionyl)biocytin labeling of subunit 4D54C, thus showing a location of this residue in the intermembrane space. Cross-linking experiments revealed the proximity of subunits 4 and f. In addition a disulfide bridge between subunit 4D54C and subunit 6 was evidenced, thus demonstrating near-neighbor relationships of the two subunits and a location of the N-terminal part of the mitochondrially-encoded subunit 6 in the intermembrane space.
Collapse
Affiliation(s)
- C Spannagel
- Institut de Biochimie et Génétique Cellulaires du CNRS, Université de Bordeaux II, 1 Rue Camille Saint Saëns, 33077 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
10
|
Zanotti F, Casadio R, Perrucci C, Guerrieri F. DCCD-sensitive proton permeability of bacterial photosynthetic membranes. Cross-reconstitution studies with purified bovine heart Fo subunits. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1276:80-6. [PMID: 8764893 DOI: 10.1016/0005-2728(96)00065-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The DCCD-sensitive proton permeability of chromatophores, from a green strain of Rhodobacter Capsulatus is potentiometrically detected following the proton release induced by a transmembrane diffusion potential imposed by a valinomycin-mediated potassium influx with a procedure already used for bovine heart submitochondrial particles (ESMP) and vesicles from Escherichia coli (Zanotti et al. (1994) Eur. J. Biochem. 222, 733-741). In the photosynthetic system, addition of increasing amounts of DCCD inhibits, with a similar titre, both proton permeability and MgATP-dependent ATPase activity as detected in the dark. The titre for 50% inhibition coincides with that obtained measuring proton permeability and ATP hydrolysis in ESMP. Upon removal of F1, the passive proton permeability is much less sensitive to DCCD in chromatophores than in USMP, suggesting that in chromatophores the F1-Fo interaction shapes the DCCD-sensitive proton conducting pathway. Addition of the purified mitochondrial FoI-PVP and oligomycin sensitivity-conferring (OSCP) proteins to the F1 stripped chromatophores restored the sensitivity of proton permeability to DCCD detected in untreated chromatophores. Analysis of the binding of 14C[DCCD] on F1 stripped chromatophores shows that the increase of DCCD sensitivity of proton permeability, caused by addition of mitochondrial Fo proteins, is related to an increase of the binding of the inhibitor to subunit c of Fo sector of ATP synthase complex.
Collapse
Affiliation(s)
- F Zanotti
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | |
Collapse
|
11
|
Houstĕk J, Andersson U, Tvrdík P, Nedergaard J, Cannon B. The expression of subunit c correlates with and thus may limit the biosynthesis of the mitochondrial F0F1-ATPase in brown adipose tissue. J Biol Chem 1995; 270:7689-94. [PMID: 7706317 DOI: 10.1074/jbc.270.13.7689] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A low content of mitochondrial ATPase in brown adipose tissue (BAT) has previously been found to contrast with high levels of the transcripts of the beta-subunit of the F1 part of the ATPase and of the transcripts of the mitochondrial encoded subunits (Houstĕk, J., Tvrdík, P., Pavelka, S., and Baudysová, M. (1991) FEBS Lett. 294, 191-194). To delineate which subunit limits the synthesis of the ATPase complex, we have studied the expression of the nuclear genes encoding subunits alpha, beta, and gamma of the catalytic F1 part and the b, c, d, and OSCP subunits of the F0 part of the ATPase. In comparison with other tissues of mice, high levels of transcripts of alpha-F1, beta-F1, gamma-F1, b-F0, d-Fo, and OSCP were found in BAT. The only genes expressed at a low level in BAT were those of the c-F0 subunit. The levels of c-F0 transcripts were 4-70-fold lower in BAT than in other tissues. An analogous expression pattern of the ATPase genes was found in BAT of adult rat and hamster. In BAT of newborn lamb, which, in contrast to other mammals, has a high content of mitochondrial ATPase, correspondingly high levels of c-F0 mRNA were found Expression of the c-F0 genes also correlated well with the ontogenic development of BAT in the hamster, being high during the first postnatal week when mitochondria are nonthermogenic and contain a relatively high amount of ATPase, but low on subsequent days when ATPase content decreases, as the thermogenic function develops. It is suggested that expression of the c-F0 genes and subsequent synthesis of the hydrophobic subunit c of the membrane-intrinsic F0 part of the enzyme may control the biosynthesis of the ATPase complex in BAT. An analogous regulatory role of the c-F0 subunit could be postulated in other tissues.
Collapse
MESH Headings
- Adipose Tissue/enzymology
- Adipose Tissue, Brown/enzymology
- Adipose Tissue, Brown/growth & development
- Aging/metabolism
- Animals
- Animals, Newborn
- Blotting, Northern
- Brain/enzymology
- Cricetinae
- DNA Probes
- Gene Expression Regulation, Enzymologic
- Macromolecular Substances
- Mesocricetus
- Mice
- Mice, Inbred Strains
- Mitochondria/enzymology
- Mitochondria, Heart/enzymology
- Mitochondria, Liver/enzymology
- Muscle, Skeletal/enzymology
- Organ Specificity
- Proton-Translocating ATPases/biosynthesis
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Sheep
Collapse
Affiliation(s)
- J Houstĕk
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague
| | | | | | | | | |
Collapse
|
12
|
Zanotti F, Guerrieri F, Deckers-Hebestreit G, Fiermonte M, Altendorf K, Papa S. Cross-reconstitution studies with polypeptides of Escherichia coli and bovine heart mitochondrial F0F1 ATP synthase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:733-41. [PMID: 8026487 DOI: 10.1111/j.1432-1033.1994.tb18919.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To characterize the role of supernumerary subunits of the mammalian F0F1 ATP synthase, cross-reconstitution of mitochondrial and bacterial F0F1 complexes has been carried out. Escherichia coli F1 (EcF1) can be reconstituted with F1-stripped everted membranes of E. coli (UPEc) and of bovine heart mitochondria (USMP). Bovine heart mitochondrial F1 (BHF1) can also be reconstituted with both membranes. Both EcF1 and BHF1, when reconstituted with UPEc, exhibited oligomycin-insensitive ATP-hydrolase activity. Subunits of the mammalian F0, in particular F0I-PVP protein, F6 and oligomycin-sensitivity-conferring protein (OSCP) conferred oligomycin sensitivity to the catalytic activity of EcF1 or BHF1 reconstituted with UPEc. Reaction of N,N'-dicyclohexylcarbodiimide and development of inhibition of passive H+ conduction was, in UPEc, considerably slower and exhibited a lower apparent affinity than in USMP. The ATP hydrolase activity of UPEc+EcF1 or UPEc+BHF1 was, also, less sensitive to inhibition by N,N'-dicyclohexylcarbodiimide than USMP+EcF1 or USMP+BHF1. Addition of mitochondrial F0I-PVP to UPEc enhanced the sensitivity of H+ conduction to oligomycin. F0I-PVP and OSCP added to UPEc, promoted inhibition by N,N'-dicyclohexylcarbodiimide of passive H+ conduction and increased its binding affinity to subunit c of E. coli F0. The presence of F0I-PVP and OSCP also promoted inhibition by N,N'-dicyclohexylcarbodiimide of the ATP-hydrolase activity of EcF1 or BHF1 reconstituted with UPEc.
Collapse
Affiliation(s)
- F Zanotti
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Deisinger B, Nawroth T, Zwicker K, Matuschka S, John G, Zimmer G, Freisleben HJ. Purification of ATP synthase from beef heart mitochondria (F0F1) and co-reconstitution with monomeric bacteriorhodopsin into liposomes capable of light-driven ATP synthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:377-83. [PMID: 8269926 DOI: 10.1111/j.1432-1033.1993.tb18387.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
ATP synthase was isolated from beef heart mitochondria by extraction with N,N-bis-(3-D-gluconamidopropyl)deoxycholamide or by traditional cholate extraction. The enzyme was purified subsequently by ion-exchange and gel-permeation chromatographies in the presence of glycerol and the protease inhibitor diisopropylfluorophosphate. The ATP synthase consisted of 12-14 subunits and contained three tightly bound nucleotides. The co-reconstitution of crude or purified ATP synthase with monomeric bacteriorhodopsin by the method of detergent incubation of liposomes yielded proteoliposomes capable of light-driven ATP synthesis, as detected with a luciferase system for at least 30 min. The reaction was suppressed by the inhibitors oligomycin (> 90%) and dicyclohexylcarbodiimide (85%) and by the uncoupler carbonylcyanide-p-trifluormethoxyphenylhydrazone (> 95%). The purified ATP synthase was apparently free of cytochrome impurities and of adenylate kinase activity, i.e. the enzyme exhibited light-driven ATP synthesis without the dark reaction. For the first time, this is demonstrated with purified ATP synthase from beef heart mitochondria.
Collapse
Affiliation(s)
- B Deisinger
- Gustav-Embden-Zentrum der Biologischen Chemie, Klinikum der J. W. Goethe-Universität, Frankfurt/M., Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Papa S, Guerrieri F, Zanotti F, Capozza G, Fiermonte M, Cocco T, Altendorf K, Deckers-Hebersteit G. F0 and F1 subunits involved in the gate and coupling function of mitochondrial H+ ATP synthase. Ann N Y Acad Sci 1992; 671:345-58. [PMID: 1288331 DOI: 10.1111/j.1749-6632.1992.tb43808.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Zanotti F, Guerrieri F, Capozza G, Fiermonte M, Berden J, Papa S. Role of F0 and F1 subunits in the gating and coupling function of mitochondrial H(+)-ATP synthase. The effect of dithiol reagents. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 208:9-16. [PMID: 1387361 DOI: 10.1111/j.1432-1033.1992.tb17153.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A study is presented on the role of F0 and F1 subunits in oligomycin-sensitive H+ conduction and energy transfer reactions of bovine heart mitochondrial F0F1 H(+)-ATP synthase. Mild treatment with azodicarboxylic acid bis(dimethylamide) (diamide) enhanced oligomycin-sensitive H+ conduction in submitochondrial particles containing F1 attached to F0. This effect was associated with stimulation of the ATPase activity, with no effect on its inhibition by oligomycin, and depression of the 32Pi-ATP exchange. The stimulatory effect of diamide on H+ conduction decreased in particles from which F1 subunits were partially removed by urea. The stimulatory effect exerted by diamide in the submitochondrial particles with F1 attached to F0 was directly correlated with a decrease of the original electrophoretic bands of a subunit of F0 (F0I-PVP protein) and the gamma subunit of F1, with corresponding formation of their cross-linking product. In F0 liposomes, devoid of gamma subunit, diamide failed to stimulate H+ conduction and to cause disappearance of F0I-PVP protein, unless purified gamma subunit was added back. The addition to F0 liposomes of gamma subunit, but not that of alpha and beta subunits, caused per se inhibition of H+ conduction. It is concluded that F0I-PVP and gamma subunits are directly involved in the gate of the F0F1 H(+)-ATP synthase. Data are also presented indicating contribution to the gate of oligomycin-sensitivity conferral protein and of another protein subunit of F0, F6.
Collapse
Affiliation(s)
- F Zanotti
- Institute of Medical Biochemistry and Chemistry, Consiglio Nazionale delle Ricerche, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Hamasur B, Glaser E. Plant mitochondrial F0F1 ATP synthase. Identification of the individual subunits and properties of the purified spinach leaf mitochondrial ATP synthase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:409-16. [PMID: 1313368 DOI: 10.1111/j.1432-1033.1992.tb16794.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Spinach leaf mitochondrial F0F1 ATPase has been purified and is shown to consist of twelve polypeptides. Five of the polypeptides constitute the F1 part of the enzyme. The remaining polypeptides, with molecular masses of 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa, belong to the F0 part of the enzyme. This is the first report concerning identification of the subunits of the plant mitochondrial F0. The identification of the components is achieved on the basis of the N-terminal amino acid sequence analysis and Western blot technique using monospecific antibodies against proteins characterized in other sources. The 28-kDa protein crossreacts with antibodies against the subunit of bovine heart ATPase with N-terminal Pro-Val-Pro- which corresponds to subunit F0b of Escherichia coli F0F1. Sequence analysis of the N-terminal 32 amino acids of the 23-kDa protein reveals that this protein is similar to mammalian oligomycin-sensitivity-conferring protein and corresponds to the F1 delta subunit of the chloroplast and E. coli ATPases. The 18.5-kDa protein crossreacts with antibodies against subunit 6 of the beef heart F0 and its N-terminal sequence of 14 amino acids shows a high degree of sequence similarity to the conserved regions at N-terminus of the ATPase subunits 6 from different sources. ATPase subunit 6 corresponds to subunit F0a of the E. coli enzyme. The 15-kDa protein and the 10.5-kDa protein crossreact with antibodies against F6 and the endogenous ATPase inhibitor protein of beef heart F0F1-ATPase, respectively. The 9.5-kDa protein is an N,N'-dicyclohexylcarbodiimide-binding protein corresponding to subunit F0c of the E. coli enzyme. The 8.5-kDa protein is of unknown identity. The isolated spinach mitochondrial F0F1 ATPase catalyzes oligomycin-sensitive ATPase activity of 3.5 mumol.mg-1.min-1. The enzyme catalyzes also hydrolysis of GTP (7.5 mumol.mg-1.min-1) and ITP (4.4 mumol.mg-1.min-1). Hydrolysis of ATP was stimulated fivefold in the presence of amphiphilic detergents, however the hydrolysis of other nucleotides could not be stimulated by these agents. These results show that the plant mitochondrial F0F1 ATPase complex differs in composition from the other mitochondrial, chloroplast and bacterial ATPases. The enzyme is, however, more closely related to the yeast mitochondrial ATPase and to the animal mitochondrial ATPase than to the chloroplast enzyme. The plant mitochondrial enzyme, however, exhibits catalytic properties which are characteristic for the chloroplast enzyme.
Collapse
Affiliation(s)
- B Hamasur
- Department of Biochemistry, Arrhenius Laboratories, Stockholm University, Sweden
| | | |
Collapse
|
17
|
Paul MF, Guerin B, Velours J. The C-terminal region of subunit 4 (subunit b) is essential for assembly of the F0 portion of yeast mitochondrial ATP synthase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:163-72. [PMID: 1532552 DOI: 10.1111/j.1432-1033.1992.tb16764.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The role of the C-terminal part of yeast ATP synthase subunit 4 (subunit b) in the assembly of the whole enzyme was studied by using nonsense mutants generated by site-directed mutagenesis. The removal of at least the last 10 amino-acid residues promoted mutants which were unable to grow with glycerol or lactate as carbon source. These mutants were devoid of subunit 4 and of another F0 subunit, the mitochondrially encoded subunit 6. The removal of the last eight amino-acid residues promoted a temperature-sensitive mutant (PVY161). At 37 degrees C this strain showed the same phenotype as above. When grown at permissive temperature (30 degrees C) with lactate as carbon source, PVY161 and the wild-type strain both displayed the same generation time and growth yield. Furthermore, the two strains showed identical cellular respiration rates at 30 degrees C and 37 degrees C. However, in vitro the ATP hydrolysis of PVY161 mitochondria exhibited a low sensitivity to F0 inhibitors, while ATP synthesis displayed the same oligomycin sensitivity as wild-type mitochondria. It is concluded that, in this mutant, the assembly of the truncated subunit 4 in PVY161 ATP synthase is thermosensitive and that, once a functional F0 is formed, it is stable. On the other hand, the removal of the last eight amino-acid residues promoted in vitro a proton leak between the site of action of oligomycin and F1.
Collapse
Affiliation(s)
- M F Paul
- Institut de Biochimie Cellulaire du Centre National de la Recherche Scientifique, Université de Bordeaux II, France
| | | | | |
Collapse
|
18
|
Cox G, Devenish R, Gibson F, Howitt S, Nagley P. Chapter 12 The structure and assembly of ATP synthase. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
19
|
Guerrieri F, Zanotti F, Capozza G, Colaianni G, Ronchi S, Papa S. Structural and functional characterization of subunits of the F0 sector of the mitochondrial F0F1-ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1059:348-54. [PMID: 1832961 DOI: 10.1016/s0005-2728(05)80220-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proteolytic digestion of F1-depleted submitochondrial particles (USMP), reconstitution with isolated subunits and titration with inhibitors show that the nuclear-encoded PVP protein, previously identified as an intrinsic component of bovine heart F0 (F01) (Zanotti, F. et al. (1988) FEBS Lett. 237, 9-14), is critically involved in maintaining the proper H+ translocating configuration of this sector and its correct binding to the F1 catalytic moiety. Trypsin digestion of USMP, under conditions leading to cleavage of the carboxyl region of the PVP protein and partial inhibition of transmembrane H+ translocation, results in general loss of sensitivity of this process to F0 inhibitors. This is restored by addition of the isolated PVP protein. Trypsin digestion of USMP causes also loss of oligomycin sensitivity of the catalytic activity of membrane reconstituted soluble F1, which can be restored by the combined addition of PVP and OSCP, or PVP and F6. Amino acid sequence analysis shows that, in USMP, modification by [14C] N,N'-dicyclohexylcarbodiimide of subunit c of F0 induces the formation of a dimer of this protein, which retains the 14C-labelled group. Chemical modification of cysteine-64 of subunit c results in inhibition of H+ conduction by F0. The results indicate that proton conduction in mitochondrial F0 depends on interaction of subunit c with the PVP protein.
Collapse
Affiliation(s)
- F Guerrieri
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Papa S, Guerrieri F, Zanotti F, Fiermonte M, Capozza G, Jirillo E. The gamma subunit of F1 and the PVP protein of F0 (F0I) are components of the gate of the mitochondrial F0F1 H(+)-ATP synthase. FEBS Lett 1990; 272:117-20. [PMID: 2172010 DOI: 10.1016/0014-5793(90)80462-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The gamma subunit of the F1 moiety of the bovine mitochondrial H(+)-ATP synthase is shown to function as a component of the gate. Addition of purified gamma subunit to F0-liposomes inhibits transmembrane proton conduction. This inhibition can be removed by the bifunctional thiol reagent diamide. Immunoblot analysis shows that the diamide effect is likely due to disulphide bridging of the gamma subunit with the PVP protein of the F0 sector.
Collapse
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Paul MF, Velours J, Arselin de Chateaubodeau G, Aigle M, Guerin B. The role of subunit 4, a nuclear-encoded protein of the F0 sector of yeast mitochondrial ATP synthase, in the assembly of the whole complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 185:163-71. [PMID: 2553400 DOI: 10.1111/j.1432-1033.1989.tb15098.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The yeast nuclear gene ATP4, encoding the ATP synthase subunit 4, was disrupted by insertion into the middle of it the selective marker URA3. Transformation of the Saccharomyces cerevisiae strain D273-10B/A/U produced a mutant unable to grow on glycerol medium. The ATP4 gene is unique since subunit 4 was not present in mutant mitochondria; the hypothetical truncated subunit 4 was never detected. ATPase was rendered oligomycin-insensitive and the F1 sector of this mutant appeared loosely bound to the membrane. Analysis of mitochondrially translated hydrophobic subunits of F0 revealed that subunits 8 and 9 were present, unlike subunit 6. This indicated a structural relationship between subunits 4 and 6 during biogenesis of F0. It therefore appears that subunit 4 (also called subunit b in beef heart and Escherichia coli ATP synthases) plays at least a structural role in the assembly of the whole complex. Disruption of the ATP4 gene also had a dramatic effect on the assembly of other mitochondrial complexes. Thus, the cytochrome oxidase activity of the mutant strain was about five times lower than that of the wild type. In addition, a high percentage of spontaneous rho- mutants was detected.
Collapse
Affiliation(s)
- M F Paul
- Institut de Biochimie Cellulaire et Neurochimie du Centre National de la Recherche Scientifique, Université de Bordeaux, France
| | | | | | | | | |
Collapse
|
22
|
Guerrieri F, Capozza G, Houstĕk J, Zanotti F, Colaianni G, Jirillo E, Papa S. Mitochondrial F0F1 H+-ATP synthase. Characterization of F0 components involved in H+ translocation. FEBS Lett 1989; 250:60-6. [PMID: 2544459 DOI: 10.1016/0014-5793(89)80685-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The membrane F0 sector of mitochondrial ATP synthase complex was rapidly isolated by direct extraction with CHAPS from F1-depleted submitochondrial particles. The preparation thus obtained is stable and can be reconstituted in artificial phospholipid membranes to result in oligomycin-sensitive proton conduction, or recombined with purified F1 to give the oligomycin-sensitive F0F1-ATPase complex. The F0 preparation and constituent polypeptides were characterized by SDS-polyacrylamide gel electrophoresis and immunoblot analysis. The functional role of F0 polypeptides was examined by means of trypsin digestion and reconstitution studies. It is shown that, in addition to the 8 kDa DCCD-binding protein, the nuclear encoded protein [(1987) J. Mol. Biol. 197, 89-100], characterized as an intrinsic component of F0 (F0I, PVP protein [(1988) FEBS Lett. 237,9-14]) [corrected] is involved in H+ translocation and the sensitivity of this process to the F0 inhibitors, DCCD and oligomycin.
Collapse
Affiliation(s)
- F Guerrieri
- Institute of Medical Biochemistry and Chemistry, Centre for the Study of Mitochondria and Energy Metabolism, CNR, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Papa S, Guerrieri F, Zanotti F, Houstĕk J, Capozza G, Ronchi S. Role of the carboxyl-terminal region of the PVP protein (F0I subunit) in the H+ conduction of F0F1 H+-ATP synthase of bovine heart mitochondria. FEBS Lett 1989; 249:62-6. [PMID: 2542095 DOI: 10.1016/0014-5793(89)80016-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
By means of protein sequencing, labelling with thiol reagents and reconstitution studies it is shown that the carboxyl-terminal region of the PVP protein (F0I subunit, nuclear-encoded protein of Mr 25,000) of mitochondrial F0 promotes transmembrane proton conduction by F0 and the sensitivity of this process to oligomycin.
Collapse
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Lippe G, Dabbeni Sala F, Sorgato MC. ATP synthase complex from beef heart mitochondria. Role of the thiol group of the 25-kDa subunit of Fo in the coupling mechanism between Fo and F1. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37331-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Papa S, Capuano F. The H+ -ATP synthase of mitochondria in tissue regeneration and neoplasia. Ann N Y Acad Sci 1988; 551:168-77; discussion 177-8. [PMID: 2907720 DOI: 10.1111/j.1749-6632.1988.tb22335.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | |
Collapse
|
26
|
Zanotti F, Guerrieri F, Capozza G, Houstĕk J, Ronchi S, Papa S. Identification of nucleus-encoded F0I protein of bovine heart mitochondrial H+-ATPase as a functional part of the F0 moiety. FEBS Lett 1988; 237:9-14. [PMID: 2901983 DOI: 10.1016/0014-5793(88)80161-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The F0I protein of apparent Mr 27,000, previously characterized [(1988) Eur. J. Biochem. 173, 1-8] as a genuine component of bovine heart F0, has been sequenced and shown to be identical with the nucleus encoded 24,668 Da protein characterized earlier [(1987) J. Mol. Biol. 197, 89-100]. It is directly shown by proteolytic cleavage and reconstitution experiments that this protein, denoted here as PVP from the single-letter codes of the last three residues of the N-terminus, is involved in proton conduction by F0 and in its sensitivity to oligomycin.
Collapse
Affiliation(s)
- F Zanotti
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|