1
|
Hengeveld AF, de Kok A. Identification of the E2-binding residues in the N-terminal domain of E1 of a prokaryotic pyruvate dehydrogenase complex. FEBS Lett 2002; 522:173-6. [PMID: 12095640 DOI: 10.1016/s0014-5793(02)02931-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pyruvate dehydrogenase (E1p) is one of the components of the pyruvate dehydrogenase multienzyme complex (PDHC). Previously, it was shown that the N-terminal domain of E1p is involved in its binding to the core component (E2p) of PDHC. We constructed point mutations in this domain (D17Q, D17R, E20Q, E20R, D24Q and D24R) to identify the specific residues involved in these interactions. Kinetic and binding studies show that D17 is essential for the binding of E1p to E2p. D24 is involved in the binding, but not essential, whereas E20 is not involved. None of the mutations affects the folding or dimerisation of E1p.
Collapse
|
2
|
Hengeveld AF, van Mierlo CPM, van den Hooven HW, Visser AJWG, de Kok A. Functional and structural characterization of a synthetic peptide representing the N-terminal domain of prokaryotic pyruvate dehydrogenase. Biochemistry 2002; 41:7490-500. [PMID: 12044183 DOI: 10.1021/bi012172u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthetic peptide (Nterm-E1p) is used to characterize the structure and function of the N-terminal region (amino acid residues 4-45) of the pyruvate dehydrogenase component (E1p) from the pyruvate dehydrogenase multienzyme complex (PDHC) from Azotobacter vinelandii. Activity and binding studies established that Nterm-E1p specifically competes with E1p for binding to the dihydrolipoyl transacetylase component (E2p) of PDHC. Moreover, the experiments show that the N-terminal region of E1p forms an independent folding domain that functions as a binding domain. CD measurements, two-dimensional (2D) (1)H NMR analysis, and secondary structure prediction all indicate that Nterm-E1p has a high alpha-helical content. Here a structural model of the N-terminal domain is proposed. The peptide is present in two conformations, the population of which depends on the sample conditions. The conformations are designated "unfolded" at pH > or =6 and "folded" at pH <5. The 2D (1)H TOCSY spectrum of a mixture of folded and unfolded Nterm-E1p shows exchange cross-peaks that "link" the folded and unfolded state of Nterm-E1p. The rate of exchange between the two species is in the range of 0.5-5 s(-1). Sharp resonances in the NMR spectra of wild-type E1p demonstrate that this 200 kDa enzyme contains highly flexible regions. The observed dynamic character of E1p and of Nterm-E1p is likely required for the binding of the E1p dimer to the two different binding sites on E2p. Moreover, the flexibility might be essential in sustaining the allosteric properties of the enzyme bound in the complex.
Collapse
Affiliation(s)
- Annechien F Hengeveld
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
3
|
Hengeveld AF, Schoustra SE, Westphal AH, de Kok A. Pyruvate dehydrogenase from Azotobacter vinelandii. Properties of the N-terminally truncated enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:1098-107. [PMID: 10518807 DOI: 10.1046/j.1432-1327.1999.00852.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pyruvate dehydrogenase multienzyme complex (PDHC) catalyses the oxidative decarboxylation of pyruvate and the subsequent acetylation of coenzyme A to acetyl-CoA. Previously, limited proteolysis experiments indicated that the N-terminal region of the homodimeric pyruvate dehydrogenase (E1p) from Azotobacter vinelandii could be involved in the binding of E1p to the core protein (E2p) [Hengeveld, A. F., Westphal, A. H. & de Kok, A. (1997) Eur J. Biochem. 250, 260-268]. To further investigate this hypothesis N-terminal deletion mutants of the E1p component of Azotobacter vinelandii pyruvate dehydrogenase complex were constructed and characterized. Up to nine N-terminal amino acids could be removed from E1p without effecting the properties of the enzyme. Truncation of up to 48 amino acids did not effect the expression or folding abilities of the enzyme, but the truncated enzymes could no longer interact with E2p. The 48 amino acid deletion mutant (E1pdelta48) is catalytically fully functional: it has a Vmax value identical to that of wild-type E1p, it can reductively acetylate the lipoamide group attached to the lipoyl domain of the core enzyme (E2p) and it forms a dimeric molecule. In contrast, the S0.5 for pyruvate is decreased. A heterodimer was constructed containing one subunit of wild-type E1p and one subunit of E1pdelta48. From the observation that the heterodimer was not able to bind to E2p, it is concluded that both N-terminal domains are needed for the binding of E1p to E2p. The interactions are thought to be mainly of an electrostatic nature involving negatively charged residues on the N-terminal domains of E1p and previously identified positively charged residues on the binding and catalytic domain of E2p.
Collapse
Affiliation(s)
- A F Hengeveld
- Department of Biomolecular Sciences, Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | | | | | |
Collapse
|
4
|
Neveling U, Klasen R, Bringer-Meyer S, Sahm H. Purification of the pyruvate dehydrogenase multienzyme complex of Zymomonas mobilis and identification and sequence analysis of the corresponding genes. J Bacteriol 1998; 180:1540-8. [PMID: 9515924 PMCID: PMC107055 DOI: 10.1128/jb.180.6.1540-1548.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pyruvate dehydrogenase (PDH) complex of the gram-negative bacterium Zymomonas mobilis was purified to homogeneity. From 250 g of cells, we isolated 1 mg of PDH complex with a specific activity of 12.6 U/mg of protein. Analysis of subunit composition revealed a PDH (E1) consisting of the two subunits E1alpha (38 kDa) and E1beta (56 kDa), a dihydrolipoamide acetyltransferase (E2) of 48 kDa, and a lipoamide dehydrogenase (E3) of 50 kDa. The E2 core of the complex is arranged to form a pentagonal dodecahedron, as shown by electron microscopic images, resembling the quaternary structures of PDH complexes from gram-positive bacteria and eukaryotes. The PDH complex-encoding genes were identified by hybridization experiments and sequence analysis in two separate gene regions in the genome of Z. mobilis. The genes pdhAalpha (1,065 bp) and pdhAbeta (1,389 bp), encoding the E1alpha and E1beta subunits of the E1 component, were located downstream of the gene encoding enolase. The pdhB (1,323 bp) and lpd (1,401 bp) genes, encoding the E2 and E3 components, were identified in an unrelated gene region together with a 450-bp open reading frame (ORF) of unknown function in the order pdhB-ORF2-lpd. Highest similarities of the gene products of the pdhAalpha, pdhAbeta, and pdhB genes were found with the corresponding enzymes of Saccharomyces cerevisiae and other eukaryotes. Like the dihydrolipoamide acetyltransferases of S. cerevisiae and numerous other organisms, the product of the pdhB gene contains a single lipoyl domain. The E1beta subunit PDH was found to contain an amino-terminal lipoyl domain, a property which is unique among PDHs.
Collapse
Affiliation(s)
- U Neveling
- Institut für Biotechnologie, Forschungszentrum Jülich, Germany
| | | | | | | |
Collapse
|
5
|
Yang D, Song J, Wagenknecht T, Roche TE. Assembly and full functionality of recombinantly expressed dihydrolipoyl acetyltransferase component of the human pyruvate dehydrogenase complex. J Biol Chem 1997; 272:6361-9. [PMID: 9045657 DOI: 10.1074/jbc.272.10.6361] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The dihydrolipoyl acetyltransferase (E2) component of mammalian pyruvate dehydrogenase complex (PDC) consists of 60 COOH-terminal domains as an inner assemblage and sequentially via linker regions an exterior pyruvate dehydrogenase (E1) binding domain and two lipoyl domains. Mature human E2, expressed in a protease-deficient Escherichia coli strain at 27 degrees , was prepared in a highly purified form. Purified E2 had a high acetyltransferase activity, was well lipoylated based on its acetylation, and bound a large complement of bovine E1. Electron micrographs demonstrated that the inner core was assembled in the expected pentagonal dodecahedron shape with E1 binding around the inner core periphery. With saturating E1 and excess dihydrolipoyl dehydrogenase (E3) but no E3-binding protein (E3BP), the recombinant E2 supported the overall PDC reaction at 4% of the rate of bovine E2.E3BP subcomplex. The lipoates of assembled human E2 or its free bilipoyl domain region were reduced by E3 at rates proportional to the lipoyl domain concentration, but those of the E2.E3BP were rapidly used in a concentration-independent manner consistent with bound E3 rapidly using a set of lipoyl domains localized nearby. Given this restriction and the need for E3BP for high PDC activity, directed channeling of reducing equivalents to bound E3 must be very efficient in the complex. The recombinant E2 oligomer increased E1 kinase activity by up to 4-fold and, in a Ca2+-dependent process, increased phospho-E1 phosphatase activity more than 15-fold. Thus the E2 assemblage fully provides the molecular intervention whereby a single E2-bound kinase or phosphatase molecule rapidly phosphorylate or dephosphorylate, respectively, many E2-bound E1. Thus, we prepared properly assembled, fully functional human E2 that mediated enhanced regulatory enzyme activities but, lacking E3BP, supported low PDC activity.
Collapse
Affiliation(s)
- D Yang
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|
6
|
Westphal AH, Fabisz-Kijowska A, Kester H, Obels PP, de Kok A. The interaction between lipoamide dehydrogenase and the peripheral-component-binding domain from the Azotobacter vinelandii pyruvate dehydrogenase complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:861-70. [PMID: 8575446 DOI: 10.1111/j.1432-1033.1995.861_a.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The sensitivity of lipoamide dehydrogenase (dihydrolipoamide:NAD+ oxidoreductase E3) from Azotobacter vinelandii to inhibition by NADH requires measurement of the activity in the initial phase of the reaction. Stopped-flow turnover experiments show that kcat is 830 s-1 compared with 420 s-1 found in standard steady-state experiments. Mutations at the si-side of the flavin prosthetic group that cause severe inhibition by NADH were studied. Tyr16 was replaced by phenylalanine and serine, which causes the loss of two intersubunit H-bonds. [F16]E3 shows only 5.7% of wild-type activity in the standard assay procedure, but analyzed by stopped-flow the activity is 70% of the wild-type enzyme. The NADH-->Cl2Ind (dichloroindophenol) activity was normal or slightly increased. The inhibition by NADH is competitive with respect to NAD+, Ki = 50 microM. Spectral analysis show that electrons readily pass over from the disulfide to the FAD, indicating an increase in the redox potential of the flavin. It is concluded that subunit interaction plays an important role in the protection of the enzyme against over-reduction by decreasing the redox potential of the flavin. The interaction of wild-type or mutant enzymes with the core component of the pyruvate (E2p) or oxoglutarate (E2o) dehydrogenase multienzyme complex relieves the inhibition to a large extent. In the mutant enzymes, the mechanism of inhibition changes from competitive to the mixed-type inhibition observed for the wild-type enzyme. The stabilizing effect of E2 on [F16]E3 was used as an assay to analyze the stoichiometry of interaction of E3 with E2p as well as E2o. 1 mol E2p monomer was sufficient to saturate 1 mol E3 dimer with a Kd of about 1 nM. Similarly, 1 mol E2o saturated the E3 dimer with a Kd of 30 nM. From these experiments it is concluded that the E3-binding domain of E2 interacts with the subunit interface of E3 near the dyad axis, thus preventing sterically the interaction with a second molecule of the binding domain. This mode of interaction, which causes asymmetry in the complex, explains the stabilization against over-reduction by tightening the subunit interaction. Subgene cloning of the E2p component of the pyruvate dehydrogenase complex is described in order to obtain a complex between the lipoamide dehydrogenase component (E3) and the binding domain of E2p. A unique restriction site in the DNA encoding the flexible linker between the third lipoyl domain and the binding domain combined with timed digestion with exonuclease Bal31 was used to create a set of deletion mutants in the N-terminal region of the binding-catalytic didomain, fused to six N-terminal amino acids from beta-galactosidase. The expressed proteins, selected for E2p activity, were analyzed for binding of E3 and E1p. The shortest fusion protein containing a functional binding domain was expressed and purified. [F16]E3 was combined with this fusion protein in a stoichiometric ratio and the resulting complex was subjected to limited proteolysis to remove the catalytic domain. The resulting [F16]E3-binding domain preparation was purified to homogeneity.
Collapse
Affiliation(s)
- A H Westphal
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
7
|
Schulze E, Westphal AH, Hanemaaijer R, de Kok A. Structure/function relationships in the pyruvate dehydrogenase complex from Azotobacter vinelandii. Role of the linker region between the binding and catalytic domain of the dihydrolipoyl transacetylase component. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:591-9. [PMID: 8436118 DOI: 10.1111/j.1432-1033.1993.tb17586.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The role of the hinge region between the binding domain and the catalytic domain in dihydrolipoyl transacetylase (E2p) from Azotobacter vinelandii was addressed by deletion mutagenesis. Mutated dihydrolipoyl transacetylase proteins were constructed with a deletion of 11 amino acids in the hinge region between the binding domain and the N-terminal part of the catalytic domain of E2p [E2p(pAPE1)] and with a further deletion of 9 amino acids into the N-terminal sequence protruding from the globular structure of the catalytic domain [E2p(pAPE2)] and found to take part in the intratrimer interaction. Both proteins behaved as wild-type E2p with respect to catalytic activity and quaternary structure. The interaction of the peripheral components pyruvate dehydrogenase (E1p) and lipoamide dehydrogenase (E3) with the mutated E2p proteins was studied. E2p(pAPE1) assembles to a trimeric pyruvate dehydrogenase complex (PDC) with 15% decreased complex activity. No difference in affinity towards the peripheral components was detected. Upon binding of E3, E2p(pAPE2) dissociates into trimers and monomers. At saturation, two dimers of E3 were bound/E2p monomer instead of one dimer/E2p chain in trimeric wild-type E2p or E2p (pAPE1). The monomeric E2p species was catalytically inactive. Upon binding of excess E1p, some monomer formation of the E2p mutant took place. E1p however can prevent monomerization by E3. It is concluded that E1p is bound between two different E2p chains in the trimer. The substrates CoA and acetyl-CoA also prevent monomerization because they are bound by amino acid residues of two different E2p chains. In the presence of CoA no difference in affinity with respect to E1p and E3 binding was observed. CoA (and acetylCoA) also prevent dissociation of the 24-subunit core structure of wild-type E2p when added before addition of E1p or E3. Therefore, it seems likely that in vivo A. vinelandii PDC is based on a 24-subunit E2p core, like Escherichia coli PDC. A functional difference between complexes based on a trimer or a 24-subunit core has not been observed. A role of the hinge region as a spacer to allow binding of E1p or E3 seems unlikely. The results are discussed on the basis of the three-dimensional structure of the catalytic domain.
Collapse
Affiliation(s)
- E Schulze
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
8
|
Schulze E, Westphal AH, Veeger C, de Kok A. Reconstitution of pyruvate dehydrogenase multienzyme complexes based on chimeric core structures from Azotobacter vinelandii and Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:427-35. [PMID: 1597183 DOI: 10.1111/j.1432-1033.1992.tb16943.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two unique restriction sites were introduced by site-directed mutagenesis at identical positions in the DNA encoding the dihydrolipoyltransacetylase (E2p) components of the pyruvate dehydrogenase complex from Azotobacter vinelandii and from Escherichia coli. In this manner each DNA chain could be cut into three parts, coding for the lipoyl domain, which consists of three lipoyl subdomains, the binding domain and the core-forming catalytic domain, respectively. Chimeric E2p components were constructed by exchanging the three domains between E2p from A. vinelandii and E. coli on gene level. The six chimeric E2p proteins were expressed and purified from E. coli TG2. All chimeras were catalytically active, 24-subunit E2p proteins. Interactions of the peripheral components E1p and E3 with the wild-type enzymes from A. vinelandii and E. coli and with the chimeric proteins were studied by gel-filtration experiments, analytical ultracentrifugation and reconstitution of the overall activity of the complex. A. vinelandii E3 interacts only with those chimeras that contain the A. vinelandii binding domain, whereas E. coli E3 interacts with all chimeras. Exchange of the lipoyl or catalytic domain did not influence the binding properties of E3. Recognition of E1p depends on the origin of both the binding domain and the catalytic domain. E. coli E1p interacts strongly with those chimeras in which both the binding domain and the catalytic domain were derived from E. coli E2p and weakly with chimeras that contained either the binding domain or the catalytic domain from E. coli E2p. No binding of E. coli E1p was observed when both domains were of A. vinelandii origin. A. vinelandii E1p recognizes E2p from A. vinelandii and E. coli, but strong interaction required that the binding and catalytic domain were of the same origin. Exchange of lipoyl domains had no effect on the binding properties of the E1p component. These observations confirm previous conclusions, based on site-directed mutagenesis of A. vinelandii E2p [Schulze, E., Westphal, A. H., Boumans, H., and de Kok, A. (1991) Eur. J. Biochem. 202, 841-848], that the binding site for E1p consists of amino acid residues derived from both the binding and the catalytic domain and extend these conclusions to E. coli E2p. Dissociation of the 24 subunit E2p core was only detected when the chimeric E2p proteins contained the catalytic domain from A. vinelandii E2p. Dissociation depends on the binding of peripheral components to the E1p-binding sites, pointing to differences in the inter-trimer contacts between the E2p proteins from both species.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Schulze
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
9
|
Schulze E, Westphal AH, Veenhuis M, de Kok A. Purification and cellular localization of wild type and mutated dihydrolipoyltransacetylases from Azotobacter vinelandii and Escherichia coli expressed in E. coli. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1120:87-96. [PMID: 1554745 DOI: 10.1016/0167-4838(92)90428-g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Wild type dihydrolipoyltransacetylase(E2p)-components from the pyruvate dehydrogenase complex of A. vinelandii or E. coli, and mutants of A. vinelandii E2p with stepwise deletions of the lipoyl domains or the alanine- and proline-rich region between the binding and the catalytic domain have been overexpressed in E. coli TG2. The high expression of A. vinelandii wild type E2p (20% of cellular protein) and of a mutant enzyme with two lipoyl domains changed the properties of the inner bacterial membrane. This resulted in a solubilization of A. vinelandii E2p after degradation of the outer membrane by lysozyme without any contamination by E. coli pyruvate dehydrogenase complex (PDC) or other high-molecular-weight contaminants. The same effect could be detected for A. vinelandii E2o, an E2 which contains only one lipoyl domain, whereas almost no solubilization of A. vinelandii E2p with one lipoyl domain or of E2p consisting only of the binding and catalytic domain was found. Partial or complete deletion of the alanine- and proline-rich sequence between the binding and the catalytic domain did also decrease the solubilization of the E2p-mutants after lysozyme treatment. Immunocytochemical experiments on E. coli TG2 cells expressing A. vinelandii wild type E2p indicated that the enzyme was present as a soluble protein in the cytoplasm. In contrast, overexpressed A. vinelandii E2p with deletion of all three lipoyl domains and E. coli wild type E2p aggregated intracellularly. The solubilization by lysozyme is therefore ascribed to excluded volume effects leading to changes in the properties of the inner bacterial membrane.
Collapse
Affiliation(s)
- E Schulze
- Department of Biochemistry, Agricultural University, Wageningen, Netherlands
| | | | | | | |
Collapse
|
10
|
Schulze E, Westphal AH, Boumans H, de Kok A. Site-directed mutagenesis of the dihydrolipoyl transacetylase component (E2p) of the pyruvate dehydrogenase complex from Azotobacter vinelandii. Binding of the peripheral components E1p and E3. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:841-8. [PMID: 1765097 DOI: 10.1111/j.1432-1033.1991.tb16441.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Site-directed mutagenesis was performed in the protease-sensitive region, between the lipoyl and catalytic domains and in the catalytic domain, of the dihydrolipoyl transacetylase component (E2p) of the pyruvate dehydrogenase complex from Azotobacter vinelandii. The interaction of the mutated enzymes with the peripheral components pyruvate dehydrogenase (E1p) and lipoamide dehydrogenase (E3) was studied by gel filtration experiments, analytical ultracentrifugation and reconstitution of the pyruvate dehydrogenase complex. Upon binding of peripheral components, the 24-subunit core of A. vinelandii wild-type E2p dissociates into tetramers. Four E1p or E3 dimers can bind to a tetramer. Binding is mutually exclusive, resulting in an active complex containing one E3 and three E1p dimers. Large deletions of the protease-sensitive region of E2p resulted in a total loss of the E1p and E3 binding. A small deletion (delta P361-R362) or the point mutation K367Q in the protease-sensitive region did not influence E3 binding, but affected E1p binding strongly, although with excess E1p almost complete reconstitution was reached. For E2p with the point mutation R416D in the N-terminal region of the catalytic domain only 16% overall activity could be measured in reconstituted complexes. This is due to a very weak E1p/E2p interaction, whereas the E3 binding was not affected. The point mutation R416D did not influence the catalytic activity of E2p, although a function for this residue in the formation of the active site was predicted from amino acid similarities with chloramphenicol acetyltransferase type III from Escherichia coli. Deletion of the complete Ala + Pro-rich sequence between the protease-sensitive region and the catalytic domain did not affect the enzymological properties of E2p, nor the affinity for E1p or E3. A further deletion of 20 N-terminal residues from the catalytic domain destroyed the E2p activity. From gel filtration experiments it was concluded that the quaternary structure was unaffected, as was E3 binding. E1p binding was lost and, in contrast to the wild-type enzyme, no dissociation of the core upon addition of E3 was observed. This mutant enzyme possesses, like E. coli E2p, six E3 binding sites and clearly shows that interaction of E3 or E1p with the E1p sites and dissociation are linked processes. It is concluded that the binding site for E3 is located on the N-terminal part of the protease-sensitive region. In contrast, the binding site for E1p consists of two regions, one located on the protease-sensitive region and one of the catalytic domain. These regions are separated by a flexible sequence of about 20 amino acids.
Collapse
Affiliation(s)
- E Schulze
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
11
|
Schulze E, Westphal AH, Obmolova G, Mattevi A, Hol WG, de Kok A. The catalytic domain of the dihydrolipoyl transacetylase component of the pyruvate dehydrogenase complex from Azotobacter vinelandii and Escherichia coli. Expression, purification, properties and preliminary X-ray analysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 201:561-8. [PMID: 1935951 DOI: 10.1111/j.1432-1033.1991.tb16315.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Partial sequences of the dihydrolipoyl transacetylase component (E2p) of the pyruvate dehydrogenase complex from Azotobacter vinelandii and Escherichia coli, containing the catalytic domain, were cloned in pUC plasmids and over-expressed in E. coli TG2. A high expression of a homogeneous protein was only detectable for E2p mutants consisting of the catalytic domain and the alanine-proline-rich sequence between a putative binding region for the peripheral components and the catalytic domain (apa-4). Most of the catalytic domain from A. vinelandii without the apa-4 sequence was degraded intracellularly, probably due to incorrect folding. Fusion proteins of six amino acids from beta-galactosidase, the apa-4 region and the catalytic domains of A. vinelandii or E. coli E2p could be highly purified. Both catalytic domains were assembled in 24-subunit structures with a molecular mass of approximately 670 kDa. The expression of catalytic domain from A. vinelandii E2p is more than twice as high as found for wild-type E2p. This can be explained by intracellular degradation of over-expressed wild-type E2p, whereas the catalytic domains are stable against proteolysis in vivo and in vitro. The interaction of the peripheral components pyruvate dehydrogenase (E1p) and dihydrolipoamide dehydrogenase (E3) with the catalytic domains was studied, using gel filtration on Superose-6 and sedimentation velocity experiments. No binding of either E1p or E3 to the catalytic domain of either organism was detectable. Crystals of the catalytic domain of A. vinelandii E2p could be grown to a maximum size of 0.6 x 0.6 x 0.4 mm. They diffract up to a resolution of 0.28 nm.
Collapse
Affiliation(s)
- E Schulze
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Schulze E, Benen JA, Westphal AH, de Kok A. Interaction of lipoamide dehydrogenase with the dihydrolipoyl transacetylase component of the pyruvate dehydrogenase complex from Azotobacter vinelandii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 200:29-34. [PMID: 1908777 DOI: 10.1111/j.1432-1033.1991.tb21044.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The interaction between lipoamide dehydrogenase (E3) and dihydrolipoyl transacetylase (E2p) from the pyruvate dehydrogenase complex was studied during the reconstitution of monomeric E3 apoenzymes from Azotobacter vinelandii and Pseudomonas fluorescens. The dimeric form of E3 is not only essential for catalysis but also for binding to the E2p core, because the apoenzymes as well as a monomeric holoenzyme from P. fluorescens, which can be stabilized as an intermediate at 0 degree C, do not bind to E2p. Lipoamide dehydrogenase from A. vinelandii contains a C-terminal extension of 15 amino acids with respect to glutathione reductase which is, in contrast to E3, presumably not part of a multienzyme complex. Furthermore, the last 10 amino acid residues of E3 are not visible in the electron density map of the crystal structure and are probably disordered. Therefore, the C-terminal tail of E3 might be an attractive candidate for a binding region. To probe this hypothesis, a set of deletions of this part was prepared by site-directed mutagenesis. Deletion of the last five amino acid residues did not result in significant changes. A further deletion of four amino acid residues resulted in a decrease of lipoamide activity to 5% of wild type, but the binding to E2p was unaffected. Therefore it is concluded that the C-terminus is not directly involved in binding to the E2p core. Deletion of the last 14 amino acids produced an enzyme with a high tendency to dissociate (Kd approximately 2.5 microM). This mutant binds only weakly to E2p. The diaphorase activity was still high. This indicates, together with the decreased Km for NADH, that the structure of the monomer is not appreciably changed by the mutation. Rather the orientation of the monomers with respect to each other is changed. It can be concluded that the binding region of E3 for E2p is constituted from structural parts of both monomers and binding occurs only when dimerization is complete.
Collapse
Affiliation(s)
- E Schulze
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
13
|
Schulze E, Westphal AH, Berg A, de Kok A. Time-resolved fluorescence studies on mutants of the dihydrolipoyl transacetylase (E2) component of the pyruvate dehydrogenase complex from Azotobacter vinelandii. FEBS Lett 1990; 273:46-50. [PMID: 2226864 DOI: 10.1016/0014-5793(90)81047-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fluorescence anisotropy decays were measured for the wild-type dihydrolipoyl transacetylase (E2) component of pyruvate dehydrogenase complex from Azotobacter vinelandii and E. coli and for E2-mutants from A. vinelandii in which the alanine-proline-rich sequence between the binding domain and the catalytic domain is partially or completely deleted. In both E2-mutants the rotational mobility of the lipoyl domain and the overall activity after reconstitution of the complex are significantly decreased indicating the important role of the deleted sequence for the movement of the lipoyl domain and the transfer of substrates between the different active sites within the complex.
Collapse
Affiliation(s)
- E Schulze
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|