1
|
Cooper A, Singh S, Hook S, Tyndall JDA, Vernall AJ. Chemical Tools for Studying Lipid-Binding Class A G Protein-Coupled Receptors. Pharmacol Rev 2017; 69:316-353. [PMID: 28655732 DOI: 10.1124/pr.116.013243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022] Open
Abstract
Cannabinoid, free fatty acid, lysophosphatidic acid, sphingosine 1-phosphate, prostanoid, leukotriene, bile acid, and platelet-activating factor receptor families are class A G protein-coupled receptors with endogenous lipid ligands. Pharmacological tools are crucial for studying these receptors and addressing the many unanswered questions surrounding expression of these receptors in normal and diseased tissues. An inherent challenge for developing tools for these lipid receptors is balancing the often lipophilic requirements of the receptor-binding pharmacophore with favorable physicochemical properties to optimize highly specific binding. In this study, we review the radioligands, fluorescent ligands, covalent ligands, and antibodies that have been used to study these lipid-binding receptors. For each tool type, the characteristics and design rationale along with in vitro and in vivo applications are detailed.
Collapse
Affiliation(s)
- Anna Cooper
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sameek Singh
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
2
|
Chuang VTG, Otagiri M. Photoaffinity labeling of plasma proteins. Molecules 2013; 18:13831-59. [PMID: 24217326 PMCID: PMC6270137 DOI: 10.3390/molecules181113831] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/22/2013] [Accepted: 11/04/2013] [Indexed: 12/20/2022] Open
Abstract
Photoaffinity labeling is a powerful technique for identifying a target protein. A high degree of labeling specificity can be achieved with this method in comparison to chemical labeling. Human serum albumin (HSA) and α1-acid glycoprotein (AGP) are two plasma proteins that bind a variety of endogenous and exogenous substances. The ligand binding mechanism of these two proteins is complex. Fatty acids, which are known to be transported in plasma by HSA, cause conformational changes and participate in allosteric ligand binding to HSA. HSA undergoes an N-B transition, a conformational change at alkaline pH, that has been reported to result in increased ligand binding. Attempts have been made to investigate the impact of fatty acids and the N-B transition on ligand binding in HSA using ketoprofen and flunitrazepam as photolabeling agents. Meanwhile, plasma AGP is a mixture of genetic variants of the protein. The photolabeling of AGP with flunitrazepam has been utilized to shed light on the topology of the protein ligand binding site. Furthermore, a review of photoaffinity labeling performed on other major plasma proteins will also be discussed. Using a photoreactive natural ligand as a photolabeling agent to identify target protein in the plasma would reduce non-specific labeling.
Collapse
Affiliation(s)
- Victor Tuan Giam Chuang
- School of Pharmacy, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth 6845, WA, Australia
- Authors to whom correspondence should be addressed; E-Mails: (V.T.G.C.); (M.O.); Tel.: +61-8-9266-1983 (V.T.G.C.); Fax: +61-8-9266-2769 (V.T.G.C.); Tel./Fax: +81-96-326-3887 (M.O.)
| | - Masaki Otagiri
- Graduate School of Pharmaceutical Sciences, DDS Research Institute, Sojo University, Kumamoto 860-0082, Japan
- Authors to whom correspondence should be addressed; E-Mails: (V.T.G.C.); (M.O.); Tel.: +61-8-9266-1983 (V.T.G.C.); Fax: +61-8-9266-2769 (V.T.G.C.); Tel./Fax: +81-96-326-3887 (M.O.)
| |
Collapse
|
3
|
Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch 2006; 453:643-59. [PMID: 16847695 DOI: 10.1007/s00424-006-0109-y] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 05/29/2006] [Indexed: 12/14/2022]
Abstract
ABCC2 is a member of the multidrug resistance protein subfamily localized exclusively to the apical membrane domain of polarized cells, such as hepatocytes, renal proximal tubule epithelia, and intestinal epithelia. This localization supports the function of ABCC2 in the terminal excretion and detoxification of endogenous and xenobiotic organic anions, particularly in the unidirectional efflux of substances conjugated with glutathione, glucuronate, or sulfate, as exemplified by leukotriene C(4), bilirubin glucuronosides, and some steroid sulfates. The hepatic ABCC2 pump contributes to the driving forces of bile flow. Acquired or hereditary deficiency of ABCC2, the latter known as Dubin-Johnson syndrome in humans, causes an increased concentration of bilirubin glucuronosides in blood because of their efflux from hepatocytes via the basolateral ABCC3, which compensates for the deficiency in ABCC2-mediated apical efflux. In this article we provide an overview on the molecular characteristics of ABCC2 and its expression in various tissues and species. We discuss the transcriptional and posttranscriptional regulation of ABCC2 and review approaches to the functional analysis providing information on its substrate specificity. A comprehensive list of sequence variants in the human ABCC2 gene summarizes predicted and proven functional consequences, including variants leading to Dubin-Johnson syndrome.
Collapse
Affiliation(s)
- Anne T Nies
- Division of Tumor Biochemistry, German Cancer Research Center, Heidelberg, Germany.
| | | |
Collapse
|
4
|
Cole SPC, Deeley RG. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci 2006; 27:438-46. [PMID: 16820223 DOI: 10.1016/j.tips.2006.06.008] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 04/25/2006] [Accepted: 06/19/2006] [Indexed: 11/30/2022]
Abstract
Glutathione (GSH)-conjugated xenobiotics and GSH-conjugated metabolites (e.g. the cysteinyl leukotriene C4) must be exported from the cells in which they are formed before they can be eliminated from the body or act on their cellular targets. This efflux is often mediated by the multidrug resistance protein 1 (MRP1) transporter, which also confers drug resistance to tumour cells and can protect normal cells from toxic insults. In addition to drugs and GSH conjugates, MRP1 exports GSH and GSH disulfide, and might thus have a role in cellular responses to oxidative stress. The transport of several drugs and conjugated organic anions by MRP1 requires the presence of GSH, but it is not well understood how GSH (and its analogues) enhances transport. Site-directed mutagenesis studies and biophysical analyses have provided important insights into the structural determinants of MRP1 that influence GSH and GSH conjugate binding and transport.
Collapse
Affiliation(s)
- Susan P C Cole
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | |
Collapse
|
5
|
Wu P, Oleschuk CJ, Mao Q, Keller BO, Deeley RG, Cole SPC. Analysis of human multidrug resistance protein 1 (ABCC1) by matrix-assisted laser desorption ionization/time of flight mass spectrometry: toward identification of leukotriene C4 binding sites. Mol Pharmacol 2005; 68:1455-65. [PMID: 16105987 DOI: 10.1124/mol.105.016576] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance in tumor cells may be caused by reduced drug accumulation resulting from expression of one or more proteins belonging to the ATP-binding cassette (ABC) transporter superfamily. In addition to their drug efflux properties, certain ABC proteins such as multidrug resistance protein 1 (MRP1) (ABCC1) mediate the ATP-dependent transport of a broad array of organic anions. The intrinsically photoreactive glutathione-conjugated cysteinyl leukotriene C4 (LTC4) is a high-affinity physiological substrate of MRP1 and is widely regarded as a model compound for evaluating the substrate binding and transport properties of wild-type and mutant forms of the transporter. In the present study, we have optimized high-level expression of recombinant human MRP1 in Pichia pastoris and developed a two-step purification scheme that results in purification of the transporter to >90% homogeneity. Peptide mapping by matrix-assisted laser desorption ionization/time of flight mass spectrometry of the peptides generated by in-gel protease digestions of purified underglycosylated MRP1 identified 96.7% of the MRP1 sequence with >98% coverage of its 17 transmembrane helices. Subsequent comparisons with mass spectra of MRP1 photolabeled with LTC4 identified six candidate LTC4-modified peptide fragments that are consistent with the conclusion that the intracellular juxtamembrane positions of transmembrane helices 6, 7, 10, 17, and a COOH-proximal portion of the cytoplasmic loop that links the first and second membrane spanning domains are part of the LTC4 binding site of the transporter. Our studies confirm the usefulness of mass spectrometry for analysis of mammalian polytopic membrane proteins and for identification of substrate binding sites of human MRP1.
Collapse
Affiliation(s)
- Peng Wu
- Division of Cancer Biology and Genetics, Cancer Research Institute, 3rd Floor Botterell Hall, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Leukotrienes are potent biological mediators implicated in an increasing number of disease processes. This review outlines the basic biology of leukotrienes and discusses recent developments in our understanding of the specific role of cysteinyl-leukotrienes (cLTs) in cholestasis, hepatic inflammation, portal hypertension, and the pathogenesis of the hepatorenal syndrome (HRS).
Collapse
Affiliation(s)
- Ramin Farzaneh-Far
- Department of Medicine, Centre for Hepatology, Royal Free & University College Medical School, Rowland Hill St., London NW3 2PF, UK
| | | |
Collapse
|
7
|
Jedlitschky G, Keppler D. Transport of leukotriene C4 and structurally related conjugates. VITAMINS AND HORMONES 2002; 64:153-84. [PMID: 11898391 DOI: 10.1016/s0083-6729(02)64005-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Transport proteins control the release of the endogenous glutathione conjugate leukotriene C4 (LTC4) from leukotriene-synthesizing cells as well as its hepatobiliary and renal elimination. The photolabile conjugated triene structure of LTC4 has enabled direct photoaffinity labeling of the multidrug resistance protein 1 (MRP1, symbol ABC C1) in membranes from mastocytoma cells, leading to the identification of the function of this protein as an ATP-dependent export pump for LTC4 and structurally related conjugates. MRP1 is assigned to the C branch of the superfamily of ATP-binding cassette (ABC) transporters and was originally identified by virtue of its association with drug resistance in tumor cells. Besides LTC4, which is a high-affinity substrate, a variety of conjugates of hydrophobic endogenous or xenobiotic substances with glutathione, glucuronate, or sulfate are transported by MRP1. In addition, hydrophobic compounds may undergo cotransport with glutathione. Effective inhibitors of MRP1-mediated transport include structural analogs of LTC4 and of other cysteinyl leukotrienes. The ATP-dependent transport system which transports cysteinyl leukotrienes across the hepatocyte canalicular membrane into bile was cloned and characterized as the second isoform or paralog of the mammalian MRP family, MRP2 (ABC C2). MRP2 is localized to the apical membrane of polarized cells. The overall substrate specificities of MRP1 and MRP2 are similar, despite an amino acid identity of only 48%. The transport proteins mediating the uptake of LTC4 into hepatocytes across the basolateral membrane are members of the organic anion transporter (OATP) branch of the solute carrier (SLC) superfamily and are thus distinct from the ATP-dependent export pumps of the MRP family.
Collapse
Affiliation(s)
- Gabriele Jedlitschky
- Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | | |
Collapse
|
8
|
Qian YM, Qiu W, Gao M, Westlake CJ, Cole SP, Deeley RG. Characterization of binding of leukotriene C4 by human multidrug resistance protein 1: evidence of differential interactions with NH2- and COOH-proximal halves of the protein. J Biol Chem 2001; 276:38636-44. [PMID: 11507101 DOI: 10.1074/jbc.m107025200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1) is capable of actively transporting a wide range of conjugated and unconjugated organic anions. The protein can also transport additional conjugated and unconjugated compounds in a GSH- or S-methyl GSH-stimulated manner. How MRP1 binds and transports such structurally diverse substrates is not known. We have used [(3)H]leukotriene C(4) (LTC(4)), a high affinity glutathione-conjugated physiological substrate, to photolabel intact MRP1, as well as fragments of the protein expressed in insect cells. These studies revealed that: (i) LTC(4) labels sites in the NH(2)- and COOH-proximal halves of MRP1, (ii) labeling of the NH(2)-half of MRP1 is localized to a region encompassing membrane-spanning domain (MSD) 2 and nucleotide binding domain (NBD) 1, (iii) labeling of this region is dependent on the presence of all or part of the cytoplasmic loop (CL3) linking MSD1 and MSD2, but not on the presence of MSD1, (iv) labeling of the NH(2)-proximal site is preferentially inhibited by S-methyl GSH, (v) labeling of the COOH-proximal half of the protein occurs in a region encompassing transmembrane helices 14-17 and appears not to require NBD2 or the cytoplasmic COOH-terminal region of the protein, (vi) labeling of intact MRP1 by LTC(4) is strongly attenuated in the presence of ATP and vanadate, and this decrease in labeling is attributable to a marked reduction in LTC(4) binding to the NH(2)-proximal site, and (vii) the attenuation of LTC(4) binding to the NH(2)-proximal site is a consequence of ATP hydrolysis and trapping of Vi-ADP exclusively at NBD2. These data suggest that MRP1-mediated transport involves a conformational change, driven by ATP hydrolysis at NBD2, that alters the affinity with which LTC(4) binds to one of two sites composed, at least in part, of elements in the NH(2)-proximal half of the protein.
Collapse
Affiliation(s)
- Y M Qian
- Cancer Research Laboratories, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Keppler D, Jedlitschky G, Leier I. Transport function and substrate specificity of multidrug resistance protein. Methods Enzymol 1998; 292:607-16. [PMID: 9711586 DOI: 10.1016/s0076-6879(98)92047-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- D Keppler
- Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | |
Collapse
|
10
|
Leier I, Jedlitschky G, Büchler M, Buchholz U, Brom M, Keppler D. Identification of the biosynthetic leukotriene C4 export pump in murine mastocytoma cells as a homolog of the multidrug-resistance protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:201-5. [PMID: 8973633 DOI: 10.1111/j.1432-1033.1996.0201r.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A membrane glycoprotein of 190 kDa has been identified previously by photoaffinity labeling as a candidate for the ATP-dependent export pump for leukotriene C4 in mastocytoma cells [Leier, I., Jedlitschky, G., Buchholz, U. & Keppler, D. (1994) Eur. J. Biochem. 220, 599-606]. The present study indicates that this protein represents the murine homolog of the human multidrug resistance protein (MRP). In immunoblot analyses several polyclonal anti-MRP antibodies and one monoclonal antibody recognized the protein of 190-kDa in plasma membranes of mastocytoma cells. Immunoprecipitation after photoaffinity labeling with [3H]leukotriene C4 precipitated the labeled 190-kDa glycoprotein. Deglycosylation by glycopeptide N-glycosidase F of mastocytoma membrane proteins was performed in comparison with membranes from MRP-overexpressing cells and resulted in a reduction of the molecular mass of 190 kDa by about 20 kDa in all membrane preparations. The expression of the murine mrp gene in the mastocytoma cells was analyzed by amplification and sequencing of two mrp cDNA fragments in the first nucleotide binding domain (182 bp) and in a domain proximal to the 3'-end (291 bp). The deduced amino acid sequences of these fragments were identical with murine Mrp and 86.7% and 89.7% identical with the corresponding sequences of human MRP. These results indicate that the ATP-dependent release of leukotriene C4 by murine mastocytoma cells is mediated by murine Mrp.
Collapse
Affiliation(s)
- I Leier
- Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Pulaski L, Jedlitschky G, Leier I, Buchholz U, Keppler D. Identification of the multidrug-resistance protein (MRP) as the glutathione-S-conjugate export pump of erythrocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:644-8. [PMID: 8917467 DOI: 10.1111/j.1432-1033.1996.00644.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The identification of the multidrug resistance protein (MRP) as a conjugate export pump in several cell types suggested its involvement in the long-known glutathione-S-conjugate transport across erythrocyte membranes. We investigated the ATP-dependent transport of glutathione S-conjugates in human erythrocyte and erythroleukemia cell membrane vesicles using the endogenous conjugate leukotriene C4 (LTC4), known to be a high-affinity substrate for MRP, in addition to S-(2,4-dinitrophenyl)glutathione. The kinetic parameters, including the Km value for LTC4 of 118 +/- 5 nM and the inhibition constants for transport of both substrates for the quinoline-based inhibitor MK 571, were similar to those obtained for transport mediated by recombinant MRP. Direct photoaffinity labeling of human erythrocyte membranes with [3H]LTC4 revealed a major binding protein of about 190 kDa which was immunoprecipitated by an anti-MRP serum. The radiolabeling of this protein was specifically suppressed by the transport inhibitor MK 571. Several additional anti-MRP sera detected the protein of about 190 kDa in human erythrocyte and erythroleukemia cell membranes. These data identify for the first time the glutathione-S-conjugate transporting protein in erythrocyte membranes.
Collapse
Affiliation(s)
- L Pulaski
- Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- C Denzlinger
- Medizinische Klinik III, Klinikum Grosshadern, Ludwig-Maximilians Universität München, Germany
| |
Collapse
|
13
|
Schmider W, Fahr A, Voges R, Gerok W, Kurz G. Irreversible inhibition of hepatic fatty acid salt uptake by photoaffinity labeling with 11, 11-azistearate. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)37572-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
|
15
|
Feldwisch J, Zettl R, Campos N, Palme K. Identification of a 23 kDa protein from maize photoaffinity-labelled with 5-azido-[7-3H]indol-3-ylacetic acid. Biochem J 1995; 305 ( Pt 3):853-7. [PMID: 7848285 PMCID: PMC1136337 DOI: 10.1042/bj3050853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A 23 kDa protein (p23) was identified in microsomal extracts from maize coleoptiles by photoaffinity labelling with 5-azido-[7-3H]indol-3-ylacetic acid ([3H]N3IAA). Labelling of p23 was blocked by unlabelled IAA, N3IAA, indol-3-ylbutyric acid and indol-3-yl-lactate. In addition, labelling was efficiently decreased by tryptophan, as well as by the scavenger p-aminobenzoic acid. Labelling was, however, not affected by synthetic auxins such as 1-naphthylacetic acid or 2,4-dichlorophenoxyacetic acid. Competition data suggest that the label was probably bound via the indole ring, and hence labelling was not specific for auxins. The 23 kDa protein was solubilized from crude microsomes by extraction with Triton X-100 and purified to homogeneity by ion-exchange, size-exclusion and reversed-phase chromatography. After electroblotting, the amino acid sequences of the p23 N-terminus as well as the several tryptic peptides were obtained. Database comparisons revealed sequence identity with a maize manganese superoxide dismutase. We conclude that photoaffinity labelling of p23 was pseudo-affinity, and therefore the binding site for IAA is not specific.
Collapse
Affiliation(s)
- J Feldwisch
- Max-Planck-Institut für Züchtungsforschung, Köln, Germany
| | | | | | | |
Collapse
|
16
|
Leier I, Jedlitschky G, Buchholz U, Cole SP, Deeley RG, Keppler D. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46856-1] [Citation(s) in RCA: 343] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Uemura M, Buchholz U, Kojima H, Keppler A, Hafkemeyer P, Fukui H, Tsujii T, Keppler D. Cysteinyl leukotrienes in the urine of patients with liver diseases. Hepatology 1994; 20:804-12. [PMID: 7927219 DOI: 10.1002/hep.1840200406] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The significance of cysteinyl leukotrienes was investigated in patients with liver diseases by measurements of leukotriene E4 and N-acetyl-leukotriene E4 in urine. A marked increase of renal cysteinyl leukotriene excretion was observed in patients with cirrhosis without and with ascites, intrahepatic cholestasis, and obstructive jaundice as compared with healthy subjects (leukotriene E4: means 82, 264, 221 and 142 versus 40 nmol/mol creatinine, respectively; N-acetyl-leukotriene E4: means 25, 64, 61 and 47 versus 13 nmol/mol creatinine, respectively). The urinary concentration of leukotriene E4 was positively correlated with the one of N-acetyl-leukotriene E4 (r = 0.81, p < 0.001). In patients with cirrhosis, the excretion of cysteinyl leukotrienes was strongly increased in patients in Child-Turcotte stage C as compared with those in Child-Turcotte stages A and B. In patients with intrahepatic cholestasis and in those with obstructive jaundice, the excretion of leukotriene E4 plus N-acetyl-leukotriene E4 was positively correlated with total serum bilirubin. In patients with cirrhosis and in those with obstructive jaundice, the cysteinyl leukotrienes in urine were negatively correlated with creatinine clearance. The elevated renal excretion of cysteinyl leukotrienes decreased after biliary drainage in patients with obstructive jaundice. These data support the concept that increased urinary excretion of cysteinyl leukotrienes in patients with cirrhosis is due to a reduced functional liver mass and that in patients with cholestasis it is mainly due to an impaired elimination into the biliary tract that results in a diversion to renal excretion.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Uemura
- Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Leier I, Jedlitschky G, Buchholz U, Keppler D. Characterization of the ATP-dependent leukotriene C4 export carrier in mastocytoma cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:599-606. [PMID: 8125120 DOI: 10.1111/j.1432-1033.1994.tb18661.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The biosynthesis of leukotriene C4 (LTC4) must be followed by an export of this mediator into the extracellular space where it interacts with receptors. Using mastocytoma cells we have demonstrated the existence of a primary-active, ATP-dependent transport mediating this export of LTC4 [Schaub, T., Ishikawa, T. & Keppler, D. (1991) FEBS Lett. 279, 83-86]. The following inhibitors served to characterize further this transport system in plasma membrane vesicles from mastocytoma cells: Probenecid, an inhibitor of organic anion transport, induced half-maximal inhibition of the ATP-dependent LTC4 transport at 71 microM. Cyclosporin A and its non-immunosuppressive analog PSC 833 inhibited the ATP-dependent transport with Ki values of 4.5 microM and 30 microM, respectively. The LTD4 receptor antagonist 3-([(3-(2-[7-chloro-2-quinolinyl]ethenyl)phenyl)-[(3-dimethylamino-3- oxopropyl)-thio]-methyl]thio)propanoic acid (MK 571) was the most potent competitive inhibitor of the export carrier with a Ki value of 0.8 microM. The transport inhibitor MK 571 served as competitor in the photoaffinity labeling of LTC4-binding membrane proteins using [3H]LTC4 as the photolabile ligand. Proteins with molecular masses of about 190 kDa and 35 kDa were predominantly labeled. In addition, a minor [3H]LTC4 labeling was observed in the molecular mass range of 100 kDa. The [3H]LTC4 labeling of the 190-kDa protein was competed for by MK 571. The labeled proteins resisted extraction from the membrane with 2% sodium taurocholate suggesting that they are integral membrane proteins. Treatment of the membrane proteins with peptide N-glycosidase F resulted in the appearance of an additional labeled polypeptide of about 140 kDa suggesting that the 190-kDa protein is a glycoprotein. Photoaffinity labeling with 8-azido[alpha-32P]ATP predominantly labeled the LTC4-binding 35-kDa protein. The [3H]LTC4-labeled 190-kDa protein showed a mean isoelectric point at pH 6.3 with a range of pH 5.8-6.7, while the 35-kDa protein had an isoelectric point at pH 6.8. Specific labeling of a 190-kDa membrane glycoprotein by the glutathione conjugate LTC4, which is competed for by a potent inhibitor of the ATP-dependent LTC4 export carrier, pinpoints its involvement in the ATP-dependent transport of LTC4 and related conjugates.
Collapse
Affiliation(s)
- I Leier
- Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | |
Collapse
|
19
|
Mayatepek E, Pecher G. Increased excretion of endogenous urinary leukotriene E4 in extrahepatic cholestasis. Clin Chim Acta 1993; 218:185-92. [PMID: 8306442 DOI: 10.1016/0009-8981(93)90182-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cysteinyl leukotrienes LTC4, LTD4 and LTE4 are potent lipid mediators eliminated from the blood circulation mainly due to uptake by the liver and the kidneys. In man hepatobiliary elimination of cysteinyl leukotrienes predominates over renal excretion. In the present study, the urine from patients with extrahepatic cholestasis (n = 25) and age- and sex-matched healthy control subjects (n = 25) was analyzed for endogenous LTE4, the predominant metabolite of LTC4 excreted into urine. LTE4 was separated by reversed-phase high-performance liquid chromatography and subsequently quantified by enzyme immunoassay. Healthy subjects excreted a median concentration of 14 nmol LTE4/mol creatinine (range 5-24 nmol/mol creatinine). Its median concentration increased significantly to more than 5-fold higher levels to 74 nmol LTE4/mol creatinine (range 52-93 nmol/mol creatinine) in patients with extrahepatic cholestasis (P < 0.01). These results indicate that extrahepatic cholestasis leads to a compensatory diversion of cysteinyl leukotriene elimination to the kidney with subsequent increased excretion of LTE4 into urine.
Collapse
Affiliation(s)
- E Mayatepek
- University Children's Hospital, University of Heidelberg, Germany
| | | |
Collapse
|
20
|
Schramm U, Fricker G, Buscher HP, Gerok W, Kutz G. Fluorescent derivatives of bile salts. III. Uptake of 7 beta-NBD-NCT into isolated hepatocytes by the transport systems for cholyltaurine. J Lipid Res 1993. [DOI: 10.1016/s0022-2275(20)39695-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
21
|
Slipetz DM, Scoggan KA, Nicholson DW, Metters KM. Photoaffinity labelling and radiation inactivation of the leukotriene B4 receptor in human myeloid cells. Eur J Pharmacol 1993; 244:161-73. [PMID: 8381743 DOI: 10.1016/0922-4106(93)90022-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The leukotriene (LT) B4 receptor has been characterized in the human monocyte leukemia THP-1 cell line. Scatchard analysis of [3H]LTB4 specific binding to THP-1 cell membranes revealed a single population of high affinity (KD = 56 pM) and saturable (2000 receptors/cell) binding sites. [3H]LTB4 specific binding was enhanced by divalent cations, but inhibited by both monovalent cations and a non-hydrolysable GTP analogue. Treatment with GTP analogue resulted in a concentration-dependent reduction in the number of high affinity binding sites, accompanied by the appearance of an equal number of binding sites of lower affinity (KD = 1250 pM). In contrast, Scatchard analysis with human polymorphonuclear leukocyte (PMN) membranes consistently revealed two populations of LTB4 receptors (KD = 48 pM and 270 pM). Treatment with GTP analogue, however, converted all these detectable binding sites to the lower affinity state. These data suggest that the LTB4 receptor in both THP-1 cell and PMN membranes exists in interconverting affinity states modulated by G-protein coupling. The similarity between the LTB4 receptors present in these two cell types was also substantiated by target-size analysis by radiation inactivation, which estimated a comparable molecular mass of 56.5 kDa and 52.8 kDa for the THP-1 cell and PMN LTB4 receptors, respectively. Finally, the presence of a single LTB4 receptor in PMN was demonstrated by direct photolabelling. Irradiation of frozen [3H]LTB4 equilibrium binding assay incubations resulted in complete photolysis of [3H]LTB4. Subsequent resolution of the tritiated PMN proteins by sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis (PAGE) revealed one major radioactive peak migrating with an apparent molecular weight of 61,000. This peak was identified as the LTB4 receptor since radiolabelling could be completely inhibited by the presence of excess unlabelled LTB4 or the LTB4-receptor antagonist, L-662,328. Photolabelling was also partially inhibited by pretreatment with GTP analogue, consistent with G-protein uncoupling reagents reducing receptor affinity without complete inhibition. In summary, the LTB4 receptor identified in human myeloid cells is a G-protein coupled receptor with interconvertible high and low affinity states, having a molecular mass of 53-61 kDa.
Collapse
Affiliation(s)
- D M Slipetz
- Department of Pharmacology, Merck Frosst Centre for Therapeutic Research, Dorval, Que., Canada
| | | | | | | |
Collapse
|
22
|
Leier I, Müller M, Jedlitschky G, Keppler D. Leukotriene uptake by hepatocytes and hepatoma cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 209:281-9. [PMID: 1327771 DOI: 10.1111/j.1432-1033.1992.tb17287.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The uptake of tritiated cysteinyl leukotrienes (LTC4, LTD4, LTE4) and LTB4 was investigated in freshly isolated rat hepatocytes and different hepatoma cell lines under initial-rate conditions. Leukotriene uptake by hepatocytes was independent of an Na+ gradient and a K+ diffusion potential across the hepatocyte membranes as established in experiments with isolated hepatocytes and plasma membrane vesicles. Kinetic experiments with isolated hepatocytes indicated a low-Km system and a non-saturable system for the uptake of cysteinyl leukotrienes as well as LTB4 under the conditions used. AS-30D hepatoma cells and human Hep G2 hepatoma cells were deficient in the uptake of cysteinyl leukotrienes, but showed significant accumulation of LTB4. Moreover, only LTB4 was metabolized in Hep G2 hepatoma cells. Competition studies on the uptake of LTE4 and LTB4 (10 nM each) indicated inhibition by the organic anions bromosulfophthalein, S-decyl glutathione, 4,4'-diisothiocyanato-stilbene-2,2'-disulfonate, probenecid, docosanedioate, and hexadecanedioate (100 microM each), but not by taurocholate, the amphiphilic cations verapamil and N-propyl ajmaline, and the neutral glycoside ouabain. Cholate and the glycoside digitoxin were inhibitors of LTB4 uptake only. Bromosulfophthalein, the strongest inhibitor of leukotriene uptake by hepatocytes, did not inhibit LTB4 uptake by Hep G2 hepatoma cells under the same experimental conditions. Leukotriene-binding proteins were analyzed by comparative photoaffinity labeling of human hepatocytes and Hep G2 hepatoma cells using [3H]LTE4 and [3H]LTB4 as the photolabile ligands. Predominant leukotriene-binding proteins with apparent molecular masses in the ranges of 48-58 kDa and 38-40 kDa were labeled by both leukotrienes in the particulate and in the cytosolic fraction of hepatocytes, respectively. In contrast, no labeling was obtained with [3H]LTE4 in Hep G2 cells. With [3H]LTB4 a protein with a molecular mass of about 48 kDa was predominantly labeled in the particulate fraction of the hepatoma cells, whereas in the cytosolic fraction a labeled protein in the range of 40 kDa was detected. Our results provide evidence for the existence of distinct uptake systems for cysteinyl leukotrienes and LTB4 at the sinusoidal membrane of hepatocytes; however, some of the inhibitors tested interfere with both transport systems. Only LTB4, but not cysteinyl leukotrienes, is taken up and metabolized by the transformed hepatoma cells.
Collapse
Affiliation(s)
- I Leier
- Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
23
|
Keppler D, Müller M, Klünemann C, Guhlmann A, Krauss K, Müller J, Berger U, Leier I, Mayatepek E. Transport and in vivo elimination of cysteinyl leukotrienes. ADVANCES IN ENZYME REGULATION 1992; 32:107-16. [PMID: 1496913 DOI: 10.1016/0065-2571(92)90011-n] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transport processes control not only synthesis and release of LTC4 but also the elimination and excretion of LTC4 and its metabolites. (i) A primary-active ATP-dependent export carrier mediates the release of LTC4 from a leukotriene-generating cell, as exemplified by mastocytoma cells, and as measured in mastocytoma plasma membrane vesicles (2). (ii) Release of cysteinyl leukotrienes into the blood circulation is followed by a rapid elimination with an initial half-life of 38 sec in rats and 4.0 min in man, as measured with the labeled, representative LTC4 catabolite, N-acetyl-LTE4. (iii) 11C-labeled N-acetyl-LTE4 can serve for non-invasive studies on cysteinyl leukotriene elimination and excretion by the liver and kidney in the intact organism using positron emission tomography. An impairment of leukotriene transport from the liver across the canalicular membrane into bile, studied in mutant rats and in extrahepatic cholestasis, leads to a compensatory diversion of cysteinyl leukotriene elimination to the kidney. N-Acetyl-LTE4 labeled with a short-lived positron-emitting isotope provides quantitative insight into the pathways of cysteinyl leukotriene elimination in vivo. (iv) Cysteinyl leukotriene export from the liver into bile is mediated by an ATP-dependent primary-active export carrier. This decisive step in cysteinyl leukotriene elimination has been characterized in hepatocyte canalicular membrane vesicles (3). The leukotriene exporter is deficient in transport mutant rats. The leukotriene carrier is distinct from other ATP-dependent export carriers identified in this membrane domain, such as the ATP-dependent bile salt export carrier (25) and the multidrug export carrier (27).
Collapse
Affiliation(s)
- D Keppler
- Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, Heidelberg, Federal Republic of Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The glutathione transferases, a family of multifunctional proteins, catalyze the glutathione conjugation reaction with electrophilic compounds biotransformed from xenobiotics, including carcinogens. In preneoplastic cells as well as neoplastic cells, specific molecular forms of glutathione transferase are known to be expressed and have been known to participate in the mechanisms of their resistance to drugs. In this article, following a brief description of recently identified molecular forms, we review new findings regarding the respective molecular forms involved in carcinogenesis and anticancer drug resistance, with particular emphasis on Pi class forms in preneoplastic tissues. The rat Pi class form, GST-P (GST 7-7), is strongly expressed not only in hepatic foci and hepatomas, but also in initiated cells that occur at the very early stages of chemical hepatocarcinogenesis, and is regarded as one of the most reliable markers for preneoplastic lesions in the rat liver. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-responsive element-like sequences have been identified in upstream regions of the GST-P gene, and oncogene products c-jun and c-fos are suggested to activate the gene. The Pi-class forms possess unique enzymatic properties, including broad substrate specificity, glutathione peroxidase activity toward lipid hydroperoxides, low sensitivity to organic anion inhibitors, and high sensitivity to active oxygen species. The possible functions of Pi class glutathione transferases in neoplastic tissues and drug-resistant cells are discussed.
Collapse
Affiliation(s)
- S Tsuchida
- Second Department of Biochemistry, Hirosaki University School of Medicine, Japan
| | | |
Collapse
|
25
|
Keppler D. Leukotrienes: biosynthesis, transport, inactivation, and analysis. Rev Physiol Biochem Pharmacol 1992; 121:1-30. [PMID: 1485071 DOI: 10.1007/bfb0033192] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- D Keppler
- Division of Tumor Biochemistry, Deutsches Krebsforschungszentrum, Heidelberg, FRG
| |
Collapse
|
26
|
Jedlitschky G, Huber M, Völkl A, Müller M, Leier I, Müller J, Lehmann W, Fahimi H, Keppler D. Peroxisomal degradation of leukotrienes by beta-oxidation from the omega-end. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54295-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Schramm U, Dietrich A, Schneider S, Buscher HP, Gerok W, Kurz G. Fluorescent derivatives of bile salts. II. Suitability of NBD-amino derivatives of bile salts for the study of biological transport. J Lipid Res 1991. [DOI: 10.1016/s0022-2275(20)41631-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
ATP-dependent transport of taurocholate across the hepatocyte canalicular membrane mediated by a 110-kDa glycoprotein binding ATP and bile salt. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55151-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Keppler D, Guhlmann A, Oberdorfer F, Krauss K, Müller J, Ostertag H, Huber M. Generation and metabolism of cysteinyl leukotrienes in vivo. Ann N Y Acad Sci 1991; 629:100-4. [PMID: 1952541 DOI: 10.1111/j.1749-6632.1991.tb37965.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- D Keppler
- Deutsches Krebsforschungszentrum, Heidelberg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Ishikawa T, Müller M, Klünemann C, Schaub T, Keppler D. ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30655-5] [Citation(s) in RCA: 205] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|