1
|
A Precision Strategy to Cure Renal Cell Carcinoma by Targeting Transglutaminase 2. Int J Mol Sci 2020; 21:ijms21072493. [PMID: 32260198 PMCID: PMC7177245 DOI: 10.3390/ijms21072493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
In a recent report, no significance of transglutaminase 2 (TGase 2) was noted in the analyses of expression differences between normal and clear cell renal cell carcinoma (ccRCC), although we found that knock down of TGase 2 induced significant p53-mediated cell death in ccRCC. Generally, to find effective therapeutic targets, we need to identify targets that belong specifically to a cancer phenotype that can be differentiated from a normal phenotype. Here, we offer precise reasons why TGase 2 may be the first therapeutic target for ccRCC, according to several lines of evidence. TGase 2 is negatively regulated by von Hippel-Lindau tumor suppressor protein (pVHL) and positively regulated by hypoxia-inducible factor 1-α (HIF-1α) in renal cell carcinoma (RCC). Therefore, most of ccRCC presents high level expression of TGase 2 because over 90% of ccRCC showed VHL inactivity through mutation and methylation. Cell death, angiogenesis and drug resistance were specifically regulated by TGase 2 through p53 depletion in ccRCC because over 90% of ccRCC express wild type p53, which is a cell death inducer as well as a HIF-1α suppressor. Although there have been no detailed studies of the physiological role of TGase 2 in multi-omics analyses of ccRCC, a life-long study of the physiological roles of TGase 2 led to the discovery of the first target as well as the first therapeutic treatment for ccRCC in the clinical field.
Collapse
|
2
|
JAROS DORIS, PARTSCHEFELD CLAUDIA, HENLE THOMAS, ROHM HARALD. TRANSGLUTAMINASE IN DAIRY PRODUCTS: CHEMISTRY, PHYSICS, APPLICATIONS. J Texture Stud 2006. [DOI: 10.1111/j.1745-4603.2006.00042.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Lai TS, Tucker T, Burke JR, Strittmatter WJ, Greenberg CS. Effect of tissue transglutaminase on the solubility of proteins containing expanded polyglutamine repeats. J Neurochem 2004; 88:1253-60. [PMID: 15009681 DOI: 10.1046/j.1471-4159.2003.02249.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expansion of a polyglutamine (polyQ) domain in neuronal proteins is the molecular genetic cause of at least eight neurodegenerative diseases. Proteins with a polyQ domain that is greater than 40 Q (Q40) residues form insoluble intranuclear and cytoplasmic inclusions. Expanded polyQ proteins self-associate by non-covalent interactions and become insoluble. They can also be covalently cross-linked by tissue transglutaminase (TTG), a calcium-dependent enzyme present in cells throughout the nervous system. However, it remains unclear whether TTG cross-linking directly contributes to the insolubility of the expanded polyQ proteins. Using an in vitro solubility assay, we found TTG cross-linked Q62 monomers into high molecular weight soluble complexes in a calcium-dependent reaction. Inhibition of TTG cross-linking by primary amine substrates including putrescine and biotinylated pentylamine antagonized TTG's ability to form soluble complexes. In contrast, primary amines (histamine and lysine) that were less effective inhibitors of TTG cross-linking did not inhibit Q62 from becoming insoluble. In summary, TTG can increase the solubility of expanded polyQ proteins by catalyzing intermolecular cross-links. This demonstrates directly that TTG will reduce the ability of expanded polyQ proteins from becoming insoluble. Furthermore, the effectiveness of a primary amine substrate at inhibiting formation of insoluble inclusions may be related to their ability to inhibit intermolecular cross-linking by TTG.
Collapse
Affiliation(s)
- T-S Lai
- Department of Medicine (Hematology Neurology Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
4
|
Gillet SMFG, Chica RA, Keillor JW, Pelletier JN. Expression and rapid purification of highly active hexahistidine-tagged guinea pig liver transglutaminase. Protein Expr Purif 2004; 33:256-64. [PMID: 14711514 DOI: 10.1016/j.pep.2003.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tissue transglutaminase has been identified as a contributor to a wide variety of diseases, including cataract formation and Celiac disease. Guinea pig tissue transglutaminase has a very broad substrate specificity and therefore is useful for kinetic studies using substrate analogues. Here, we report the expression in Escherichia coli of a hexahistidine-tagged guinea pig liver tissue transglutaminase (His(6)-tTGase) allowing rapid purification by immobilized-metal affinity chromatography. Using this procedure we have obtained the highest reported specific activity (17 U/mg) combined with a high yield (22 mg/L of culture) for recombinant TGase using a single-step purification protocol. Using two independent spectrophotometric assays, we determined that the K(m) value of the recombinant enzyme with the substrate Cbz-Gln-Gly is in the same range as values reported in the literature for the native enzyme. We have thus developed a rapid and reproducible protocol for the preparation of high quality tissue TGase.
Collapse
Affiliation(s)
- Steve M F G Gillet
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | |
Collapse
|
5
|
Ikura K, Kokubu T, Natsuka S, Ichikawa A, Adachi M, Nishihara K, Yanagi H, Utsumi S. Co-overexpression of folding modulators improves the solubility of the recombinant guinea pig liver transglutaminase expressed in Escherichia coli. Prep Biochem Biotechnol 2002; 32:189-205. [PMID: 12071648 DOI: 10.1081/pb-120004130] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Transglutaminases (EC 2.3.2.13) catalyze the formation of epsilon-(gamma-glutamyl)lysine cross-links and the substitution of primary amines for the gamma-carboxamide groups of protein bound glutamine residues, and are involved in many biological phenomena. Transglutaminase reactions are also applicable in applied enzymology. Here, we established an expression system of recombinant mammalian tissue-type transglutaminase with high productivity. Overexpression of guinea pig liver transglutaminase in Escherichia coli, using a plasmid pET21-d, mostly resulted in the accumulation of insoluble and inactive enzyme protein. By the expression culture at lower temperatures (25 and 18 degrees C), however, a fraction of the soluble and active enzyme protein slightly increased. Co-overexpression of a molecular chaperone system (DnaK-DnaJ-GrpE) and/or a folding catalyst (trigger factor) improved the solubility of the recombinant enzyme produced in E. coli cells. The specific activity, the affinity to the amine substrate, and the sensitivity to the calcium activation and GTP inhibition of the purified soluble recombinant enzyme were lower than those of the natural liver enzyme. These results indicated that co-overexpression of folding modulators tested improved the solubility of the overproduced recombinant mammalian tissue-type transglutaminase, but the catalytic properties of the soluble recombinant enzyme were not exactly the same as those of the natural enzyme.
Collapse
Affiliation(s)
- Koji Ikura
- Department of Applied Biology, Kyoto Institute of Technology, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Shi Q, Kim SY, Blass JP, Cooper AJL. Expression in Escherichia coli and purification of hexahistidine-tagged human tissue transglutaminase. Protein Expr Purif 2002; 24:366-73. [PMID: 11922752 DOI: 10.1006/prep.2001.1587] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence suggests that aberrant transglutaminase activity is associated with a wide variety of diseases. Tissue transglutaminase is the most widely distributed of the six well-characterized transglutaminases in humans. We describe a method for expressing hexahistidine-tagged human tissue transglutaminase in Escherichia coli BL21(DE3) using the pET-30 Ek/LIC expression vector. Purification of the expressed enzyme from suspensions of E. coli cells treated with CelLytic B Bacterial Cell Lysis/Extraction Reagent was accomplished by immobilized metal (Ni2+) affinity column chromatography. The procedure typically yields highly purified and highly active recombinant human tissue transglutaminase in about 1 day (about 0.6 mg/from a 1-liter culture).
Collapse
Affiliation(s)
- Qingli Shi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
7
|
Gaudry CA, Verderio E, Aeschlimann D, Cox A, Smith C, Griffin M. Cell surface localization of tissue transglutaminase is dependent on a fibronectin-binding site in its N-terminal beta-sandwich domain. J Biol Chem 1999; 274:30707-14. [PMID: 10521459 DOI: 10.1074/jbc.274.43.30707] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence indicates that tissue transglutaminase (tTG) plays a role in the assembly and remodeling of extracellular matrices and promotes cell adhesion. Using an inducible system we have previously shown that tTG associates with the extracellular matrix deposited by stably transfected 3T3 fibroblasts overexpressing the enzyme. We now show by confocal microscopy that tTG colocalizes with pericellular fibronectin in these cells, and by immunogold electron microscopy that the two proteins are found in clusters at the cell surface. Expression vectors encoding the full-length tTG or a N-terminal truncated tTG lacking the proposed fibronectin-binding site (fused to the bacterial reporter enzyme beta-galactosidase) were generated to characterize the role of fibronectin in sequestration of tTG in the pericellular matrix. Enzyme-linked immunosorbent assay style procedures using extracts of transiently transfected COS-7 cells and immobilized fibronectin showed that the truncation abolished fibronectin binding. Similarly, the association of tTG with the pericellular matrix of cells in suspension or with the extracellular matrix deposited by cell monolayers was prevented by the truncation. These results demonstrate that tTG binds to the pericellular fibronectin coat of cells via its N-terminal beta-sandwich domain and that this interaction is crucial for cell surface association of tTG.
Collapse
Affiliation(s)
- C A Gaudry
- Department of Life Sciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Tissue transglutaminase (tTG) belongs to the family of transglutaminase enzymes that catalyze the posttranslational modification of proteins via Ca(2+)-dependent cross-linking reactions. The catalytic action of tTG results in the formation of an isopeptide bond that is of great physiological significance since it is highly resistant to proteolysis and denaturants. Although tTG-mediated cross-linking reactions have been implicated to play a role in diverse biological processes, the precise physiological function of the enzyme remains unclear. Recent data, however, suggest that the protein polymers resulting from tTG-catalyzed reactions may play a role in commitment of cells to undergo apoptosis. On the same token, tTG-mediated formation of insoluble protein aggregates may underlie the markers of numerous pathological conditions, such as the senile plaques in Alzheimer's disease and the Lewy bodies in Parkinson's disease. In addition to catalyzing Ca(2+)-dependent cross-linking reactions, tTG can also bind and hydrolyze guanosine triphosphate and adenosine triphosphate. By virtue of this ability, tTG has been identified as a novel G-protein that interacts and activates phospholipase C following stimulation of the alpha-adrenergic receptor. The ability of tTG to mediate signal transduction may contribute to its involvement in the regulation of cell cycle progression. The following review summarizes the important features of this multifunctional enzyme that have emerged as a result of recent work from different laboratories.
Collapse
Affiliation(s)
- J S Chen
- Department of Bioimmunotherapy, University of Texas, M.D. Anderson Cancer Center, Houston 77030, USA
| | | |
Collapse
|
9
|
Nozawa H, Mamegoshi S, Seki N. Partial purification and characterization of six transglutaminases from ordinary muscles of various fishes and marine invertebrates. Comp Biochem Physiol B Biochem Mol Biol 1997; 118:313-7. [PMID: 9440224 DOI: 10.1016/s0305-0491(97)00062-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Six transglutaminases were prepared from ordinary muscles of scallop (Patinopecten yessoensis), botan shrimp (Pandalus nipponensis), squid (Todarodes pacificus), carp (Cyprinus carpio), rainbow trout (Oncorhynchus mykiss), and atka mackerel (Pleurogrammus azonus), and their physicochemical and enzymatic properties were compared with each other. The Km value of carp transglutaminase for monodansyl cadaverine, a kind of primary amines, was 0.33 mM, while the other enzymes had Km values of 0.01-0.03 mM. The Km, values for succinylated casein of scallop, botan shrimp, squid, carp, rainbow trout, and atka mackerel enzymes were 1.2, 0.3, 1.8, 0.3, 0.2, and 0.1 mg/ml, respectively. In the presence of 0.5 M NaCl, the activities of scallop, botan shrimp, and squid transglutaminases were further enhanced about 11-, 2-, and 6-fold, respectively. There was no effect of NaCl on the activities of fish enzymes. These increment in the activities were dependent of NaCl concentrations and could be exhibited by using KCl instead of NaCl. To date there are no reports on types of transglutaminases whose activities are stimulated by salts. These findings suggest there exist a novel type of TGase in marine invertebrate muscles in which the osmotic pressure is isotonic to sea water.
Collapse
Affiliation(s)
- H Nozawa
- Department of Marine Bioresources Chemistry, Faculty of Fisheries, Hokkaido University, Japan.
| | | | | |
Collapse
|
10
|
Kang HM, Kassam G, Jarvis SE, Fitzpatrick SL, Waisman DM. Characterization of human recombinant annexin II tetramer purified from bacteria: role of N-terminal acetylation. Biochemistry 1997; 36:2041-50. [PMID: 9047302 DOI: 10.1021/bi962569b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Annexin II tetramer (AIIt) is a Ca2+-dependent, phosphatidylserine-binding, and F-actin-bundling phosphoprotein which is localized to both the extracellular and cytoplasmic surfaces of the plasma membrane. The tetramer is composed of two p36 heavy chains and two p11 light chains. We have produced prokaryotic cDNA expression constructs for both p36 and p11. Both proteins were expressed in large amounts in Escherichia coli upon induction with IPTG. Electrospray ionization mass spectrometry and amino acid sequence analysis of purified recombinant p36 (rp36) and recombinant p11 (rp11) suggested that the recombinant proteins were identical to their native counterparts except for the lack of N-terminal acetylation of rp36. Furthermore, the non-acetylated rp36 bound rp11 and formed AIIt. The circular dichroism spectra and urea denaturation profiles of acetylated AIIt and non-acetylated rAIIt were identical. In addition, both the acetylated AIIt and non-acetylated rAIIt were similar in their Ca2+ dependence and concentration dependence of phospholipid liposome aggregation, chromaffin granule aggregation, and F-actin bundling. These results suggest that N-terminal acetylation of p36 is not in fact necessary for binding of the protein to p11 and that N-terminal acetylation does not affect the conformational stability of AIIt or the in vitro activities of AIIt. The availability of large amounts of rAIIt will facilitate further characterization of the structure-function relationships of the protein.
Collapse
Affiliation(s)
- H M Kang
- Cell Regulation Research Group, Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
11
|
Yasueda H, Nakanishi K, Kumazawa Y, Nagase K, Motoki M, Matsui H. Tissue-type transglutaminase from red sea bream (Pagrus major). Sequence analysis of the cDNA and functional expression in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:411-9. [PMID: 7556189 DOI: 10.1111/j.1432-1033.1995.tb20826.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A cDNA clone encoding a tissue-type transglutaminase (TGase) was isolated from a cDNA library prepared from the liver of red sea bream (Pagrus major). The cDNA sequence had an open reading frame coding for a protein of 695 amino acids and showed 43% identity to the sequence of guinea pig liver TGase, revealing a relatively low overall similarity. However, the 25-amino-acid sequence containing the putative active site (Cys272) of the enzyme was completely conserved between the two species, and was also identical to the corresponding regions of human and bovine endothelial cell TGases. In addition, the critical residues (His332 and Asp355) thought to form the catalytic-center triad together with Cys272, were found in the highly conserved region. The red sea bream TGase had an extension of 11 amino acids in the C-terminal region and some differences in the N-terminal region when compared with guinea pig TGase. From the cloned cDNA, a semi-synthetic TGase gene suitable for overexpression in Escherichia coli was constructed (pTTG2-22). At a reduced temperature (28 degrees C), E. coli cells transformed with pTTG2-22 could produce soluble TGase which exhibited catalytic activity in the presence of calcium. E. coli extracts containing the recombinant red sea bream TGase induced gelation of actomyosin solutions, accompanied by a significant increase of epsilon-(gamma-glutamyl)lysine bonds, which are predominantly derived from the cross-linking of myosin heavy chains. These results indicate that this fish TGase should be useful for further analysis of TGase structure/function relationships and that it could also be employed to enhance the viscoelastic properties of proteinaceous materials.
Collapse
Affiliation(s)
- H Yasueda
- Food Research & Development Laboratories, Ajinomoto Co., Inc., Japan
| | | | | | | | | | | |
Collapse
|
12
|
Gerber U, Jucknischke U, Putzien S, Fuchsbauer HL. A rapid and simple method for the purification of transglutaminase from Streptoverticillium mobaraense. Biochem J 1994; 299 ( Pt 3):825-9. [PMID: 7910736 PMCID: PMC1138095 DOI: 10.1042/bj2990825] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transglutaminase from Streptoverticillium mobaraense was partially purified by ion-exchange chromatography on a weak acid material and hydrophobic chromatography. The separation with a strong acid ion-exchanger produces homogeneous transglutaminase, in a single step and with high yields, directly from the centrifuged and filtered culture fluid of the micro-organism. The procedure reproduced several times could be also carried out on a larger scale with the optimized parameters of the laboratory isolations. The purified enzyme demonstrated good storage stability.
Collapse
Affiliation(s)
- U Gerber
- Fachbereich Chemische Technologie, Fachhochschule Darmstadt, Germany
| | | | | | | |
Collapse
|
13
|
Lee KN, Arnold SA, Birckbichler PJ, Patterson MK, Fraij BM, Takeuchi Y, Carter HA. Site-directed mutagenesis of human tissue transglutaminase: Cys-277 is essential for transglutaminase activity but not for GTPase activity. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1202:1-6. [PMID: 8104036 DOI: 10.1016/0167-4838(93)90055-v] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transglutaminases (EC 2.3.2.13) catalyze an acyl-transfer reaction between peptide-bound glutamine residues and primary amines, including the epsilon-amino group of lysine residues in protein. Purified human erythrocyte transglutaminase was found to have another activity, i.e., GTP hydrolysis. Treatment of the enzyme with iodoacetamide, a cysteine-directed reagent, caused a 94% loss of TGase activity within 8 min, but no significant loss of GTPase activity. Cys-277, a known residue which is selectively modified by iodoacetamide, was replaced with Ser by site-directed mutagenesis to assess the role of the Cys-277 in the transglutaminase/GTPase activities. Wild-type cDNA, coding for human endothelial cell transglutaminase, and its C277S-mutated cDNA were cloned into a plasmid vector that contained a promoter from phage T7, and then expressed in Escherichia coli. The wild-type recombinant enzyme was indistinguishable from human erythrocyte transglutaminase in mobility on a SDS-polyacrylamide gel, immunoreactivity and catalytic activities for transglutaminase and GTPase. However, the recombinant enzyme was not blocked at the N-terminal alanine residue, as is the case in the naturally occurring erythrocyte enzyme. The C277S mutant enzyme showed no transglutaminase activity, but had Km and kcat values for GTPase activity that were comparable to those of wild-type recombinant and natural erythrocyte enzymes. These results demonstrate that Cys-277 is essential for transglutaminase activity, but not for GTPase activity, and that N-terminal blocking of tissue-type transglutaminase is not critical for either transglutaminase or GTPase activities.
Collapse
Affiliation(s)
- K N Lee
- Samuel Roberts Noble Foundation, Inc., Biomedical Division, Ardmore, OK
| | | | | | | | | | | | | |
Collapse
|
14
|
Suto N, Ikura K, Sasaki R. Expression induced by interleukin-6 of tissue-type transglutaminase in human hepatoblastoma HepG2 cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53198-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Ikura K, Suto N, Sasaki R. Activity and gene expression of transglutaminase in guinea pig liver during the postnatal growing phase. FEBS Lett 1990; 268:203-5. [PMID: 1974519 DOI: 10.1016/0014-5793(90)81008-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During the postnatal growing phase from birth to 7 weeks old, the cytosolic transglutaminase activity of guinea pig liver increased 3.8-fold. The enzyme activity in the particulate fraction increased slightly. Immunoblot analyses showed that the postnatal increase in the activity was correlated with in increase in the enzyme protein. The quantity of mRNA of the liver transglutaminase did not change significantly during the postnatal growing phase examined. These results indicated that transglutaminase may be involved in the postnatal development of guinea pig liver and that the amount of transglutaminase in the postnatal liver may be controlled post-transcriptionally.
Collapse
Affiliation(s)
- K Ikura
- Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Japan
| | | | | |
Collapse
|