1
|
Kim SK, Min YH, Jin HJ. Characteristics of the ErmK Protein of Bacillus halodurans C-125. Microbiol Spectr 2023; 11:e0259822. [PMID: 36511701 PMCID: PMC9927578 DOI: 10.1128/spectrum.02598-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
Bacillus halodurans C-125 is an alkaliphilic microorganism that grows best at pH 10 to 10.5. B. halodurans C-125 harbors the erm (erythromycin resistance methylase) gene as well as the mphB (macrolide phosphotransferase) and putative mef (macrolide efflux) genes, which confer resistance to macrolide, lincosamide, and streptogramin B (MLSB) antibiotics. The Erm protein expressed in B. halodurans C-125 could be classified as ErmK because it shares 66.2% and 61.2% amino acid sequence identity with the closest ErmD and Erm(34), respectively. ErmK can be regarded as a dimethylase, as evidenced by reverse transcriptase analysis and the antibiotic resistance profile exhibited by E. coli expressing ermK. Although ErmK showed one-third or less in vitro methylating activity compared to ErmC', E. coli cells expressing ErmK exhibited comparable resistance to erythromycin and tylosin, and a similar dimethylation proportion of 23S rRNA due to the higher expression rate in a T7 promoter-mediated expression system. The less efficient methylation activity of ErmK might reflect an adaption to mitigate the fitness cost caused by dimethylation through the Erm protein presumably because B. halodurans C-125 has less probability to encounter the antibiotics in its favorable growth conditions and grows retardedly in neutral environments. IMPORTANCE Erm proteins confer MLSB antibiotic resistance (minimal inhibitory concentration [MIC] value up to 4,096 μg/mL) on microorganisms ranging from antibiotic producers to pathogens, imposing one of the most pressing threats to clinics. Therefore, Erm proteins have long been speculated to be plausible targets for developing inhibitor(s). In our laboratory, it has been noticed that there are variations in enzymatic activity among the Erm proteins, Erm in antibiotic producers being better than that in pathogens. In this study, it has been observed that Erm protein in B. halodurans C-125 extremophile is a novel member of Erm protein and acts more laggardly, compared to that in pathogen. While this sluggishness of Erm protein in extremophile might be evolved to reduce the fitness cost incurred by Erm activity adapting to its environments, this feature could be exploited to develop the more potent and/or efficacious drug to combat formidably problematic antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Sung Keun Kim
- Department of Bioscience and Biotechnology, The University of Suwon, Hwaseong City, South Korea
| | - Yu Hong Min
- College of Health and Welfare, Daegu Haany University, Gyeongsangbuk-Do, South Korea
| | - Hyung Jong Jin
- Department of Bioscience and Biotechnology, The University of Suwon, Hwaseong City, South Korea
| |
Collapse
|
2
|
Lee HJ, Park YI, Jin HJ. Plausible Minimal Substrate for Erm Protein. Antimicrob Agents Chemother 2020; 64:e00023-20. [PMID: 32571809 PMCID: PMC7449152 DOI: 10.1128/aac.00023-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/13/2020] [Indexed: 11/20/2022] Open
Abstract
Erm proteins methylate a specific adenine residue (A2058, Escherichia coli coordinates) conferring macrolide-lincosamide-streptogramin B (MLSB) antibiotic resistance on a variety of microorganisms, ranging from antibiotic producers to pathogens. To identify the minimal motif required to be recognized and methylated by the Erm protein, various RNA substrates from 23S rRNA were constructed, and the substrate activity of these constructs was studied using three Erm proteins, namely, ErmB from Firmicutes and ErmE and ErmS from Actinobacteria The shortest motif of 15 nucleotides (nt) could be recognized and methylated by ErmS, consisting of A2051 to the methylatable adenine (A2058) and its base-pairing counterpart strand, presumably assuming a quite similar structure to that in 23S rRNA, an unpaired target adenine immediately followed by an irregular double-stranded RNA region. This observation confirms the ultimate end of each side in helix 73 for methylation, determined by the approaches described above, and could reveal the mechanism behind the binding, recognition, induced fit, methylation, and conformational change for product release in the minimal context of substrate, presumably with the help of structural determination of the protein-RNA complex. In the course of determining the minimal portion of substrate from domain V, protein-specific features could be observed among the Erm proteins in terms of the methylation of RNA substrate and cooperativity and/or allostery between the region in helix 73 furthest away from the target adenine and the large portion of domain V above the methylatable adenine.
Collapse
Affiliation(s)
- Hak Jin Lee
- Department of Life Science, Korea University Graduate School, Seoul, Republic of Korea
- Department of Bioscience and Biotechnology, The University of Suwon, Whasung City, Republic of Korea
| | - Young In Park
- Department of Life Science, Korea University Graduate School, Seoul, Republic of Korea
| | - Hyung Jong Jin
- Department of Bioscience and Biotechnology, The University of Suwon, Whasung City, Republic of Korea
| |
Collapse
|
3
|
Guerin F, Rose S, Cattoir V, Douthwaite S. Helcococcus kunzii methyltransferase Erm(47) responsible for MLSB resistance is induced by diverse ribosome-targeting antibiotics. J Antimicrob Chemother 2020; 75:371-378. [PMID: 31670815 DOI: 10.1093/jac/dkz441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To determine the mechanism of induction of erm(47) and its atypical expression in the Gram-positive opportunistic pathogen Helcococcus kunzii, where it confers resistance to a subset of clinically important macrolide, lincosamide and streptogramin B (MLSB) antibiotics. METHODS The resistant H. kunzii clinical isolate UCN99 was challenged with subinhibitory concentrations of a wide range of ribosome-targeting drugs. The methylation status of the H. kunzii ribosomal RNA at the MLSB binding site was then determined using an MS approach and was correlated with any increase in resistance to the drugs. RESULTS The H. kunzii erm(47) gene encodes a monomethyltransferase. Expression is induced by subinhibitory concentrations of the macrolide erythromycin, as is common for many erm genes, and surprisingly also by 16-membered macrolide, lincosamide, streptogramin, ketolide, chloramphenicol and linezolid antibiotics, all of which target the 50S ribosomal subunit. No induction was detected with spectinomycin, which targets the 30S subunit. CONCLUSIONS The structure of the erm(47) leader sequence functions as a hair trigger for the induction mechanism that expresses resistance. Consequently, translation of the erm(47) mRNA is tripped by MLSB compounds and also by drugs that target the 50S ribosomal subunit outside the MLSB site. Expression of erm(47) thus extends previous assumptions about how erm genes can be induced.
Collapse
Affiliation(s)
- François Guerin
- Service de Microbiologie, CHU de Caen, Avenue de la Côte de Nacre - CS30001 - 14033 Caen Cedex 9, France
| | - Simon Rose
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Vincent Cattoir
- Service de Bactériologie-Hygiène hospitalière & CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), CHU de Rennes, 2 rue Henri Le Guilloux, 35033 Rennes Cedex 9, France.,Unité Inserm U1230, Université de Rennes 1, 2 avenue du Pr. Léon Bernard, 35043 Rennes, France
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
4
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
5
|
O'Neill EC, Schorn M, Larson CB, Millán-Aguiñaga N. Targeted antibiotic discovery through biosynthesis-associated resistance determinants: target directed genome mining. Crit Rev Microbiol 2019; 45:255-277. [PMID: 30985219 DOI: 10.1080/1040841x.2019.1590307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intense competition between microbes in the environment has directed the evolution of antibiotic production in bacteria. Humans have harnessed these natural molecules for medicinal purposes, magnifying them from environmental concentrations to industrial scale. This increased exposure to antibiotics has amplified antibiotic resistance across bacteria, spurring a global antimicrobial crisis and a search for antibiotics with new modes of action. Genetic insights into these antibiotic-producing microbes reveal that they have evolved several resistance strategies to avoid self-toxicity, including product modification, substrate transport and binding, and target duplication or modification. Of these mechanisms, target duplication or modification will be highlighted in this review, as it uniquely links an antibiotic to its mode of action. We will further discuss and propose a strategy to mine microbial genomes for these genes and their associated biosynthetic gene clusters to discover novel antibiotics using target directed genome mining.
Collapse
Affiliation(s)
- Ellis C O'Neill
- a Department of Plant Sciences, University of Oxford , Oxford , Oxfordshire , UK
| | - Michelle Schorn
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego , CA , USA
| | - Charles B Larson
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California , San Diego , CA , USA
| | - Natalie Millán-Aguiñaga
- c Universidad Autónoma de Baja California, Facultad de Ciencias Marinas , Ensenada , Baja California , México
| |
Collapse
|
6
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Combinations of macrolide resistance determinants in field isolates of Mannheimia haemolytica and Pasteurella multocida. Antimicrob Agents Chemother 2011; 55:4128-33. [PMID: 21709086 DOI: 10.1128/aac.00450-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Respiratory tract infections in cattle are commonly associated with the bacterial pathogens Mannheimia haemolytica and Pasteurella multocida. These infections can generally be successfully treated in the field with one of several groups of antibiotics, including macrolides. A few recent isolates of these species exhibit resistance to veterinary macrolides with phenotypes that fall into three distinct classes. The first class has type I macrolide, lincosamide, and streptogramin B antibiotic resistance and, consistent with this, the 23S rRNA nucleotide A2058 is monomethylated by the enzyme product of the erm(42) gene. The second class shows no lincosamide resistance and lacks erm(42) and concomitant 23S rRNA methylation. Sequencing of the genome of a representative strain from this class, P. multocida 3361, revealed macrolide efflux and phosphotransferase genes [respectively termed msr(E) and mph(E)] that are arranged in tandem and presumably expressed from the same promoter. The third class exhibits the most marked drug phenotype, with high resistance to all of the macrolides tested, and possesses all three resistance determinants. The combinations of erm(42), msr(E), and mph(E) are chromosomally encoded and intermingled with other exogenous genes, many of which appear to have been transferred from other members of the Pasteurellaceae. The presence of some of the exogenous genes explains recent reports of resistance to additional drug classes. We have expressed recombinant versions of the erm(42), msr(E), and mph(E) genes within an isogenic Escherichia coli background to assess their individually contributions to resistance. Our findings indicate what types of compounds might have driven the selection for these resistance determinants.
Collapse
|
8
|
Desmolaize B, Rose S, Warrass R, Douthwaite S. A novel Erm monomethyltransferase in antibiotic-resistant isolates of Mannheimia haemolytica and Pasteurella multocida. Mol Microbiol 2011; 80:184-94. [PMID: 21371136 DOI: 10.1111/j.1365-2958.2011.07567.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mannheimia haemolytica and Pasteurella multocida are aetiological agents commonly associated with respiratory tract infections in cattle. Recent isolates of these pathogens have been shown to be resistant to macrolides and other ribosome-targeting antibiotics. Direct analysis of the 23S rRNAs by mass spectrometry revealed that nucleotide A2058 is monomethylated, consistent with a Type I erm phenotype conferring macrolide-lincosamide resistance. The erm resistance determinant was identified by full genome sequencing of isolates. The sequence of this resistance determinant, now termed erm(42), has diverged greatly from all previously characterized erm genes, explaining why it has remained undetected in PCR screening surveys. The sequence of erm(42) is, however, completely conserved in six independent M. haemolytica and P. multocida isolates, suggesting relatively recent gene transfer between these species. Furthermore, the composition of neighbouring chromosomal sequences indicates that erm(42) was acquired from other members of the Pasteurellaceae. Expression of recombinant erm(42) in Escherichia coli demonstrated that the enzyme retains its properties as a monomethyltransferase without any dimethyltransferase activity. Erm(42) is a novel addition to the Erm family: it is phylogenetically distant from the other Erm family members and it is unique in being a bona fide monomethyltransferase that is disseminated between bacterial pathogens.
Collapse
Affiliation(s)
- Benoit Desmolaize
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
9
|
Abstract
Bioactive natural products often possess uniquely functionalized structures with unusual modes of action; however, the natural product itself is not always the active species. We discuss molecules that draw on protecting group chemistry or else require activation to unmask reactive centers, illustrating that nature is not only a source of complex structures but also a guide for elegant chemical transformations which provides ingenious chemical solutions for drug delivery.
Collapse
Affiliation(s)
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Cundliffe E, Demain AL. Avoidance of suicide in antibiotic-producing microbes. J Ind Microbiol Biotechnol 2010; 37:643-72. [PMID: 20446033 DOI: 10.1007/s10295-010-0721-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/30/2010] [Indexed: 11/29/2022]
Abstract
Many microbes synthesize potentially autotoxic antibiotics, mainly as secondary metabolites, against which they need to protect themselves. This is done in various ways, ranging from target-based strategies (i.e. modification of normal drug receptors or de novo synthesis of the latter in drug-resistant form) to the adoption of metabolic shielding and/or efflux strategies that prevent drug-target interactions. These self-defence mechanisms have been studied most intensively in antibiotic-producing prokaryotes, of which the most prolific are the actinomycetes. Only a few documented examples pertain to lower eukaryotes while higher organisms have hardly been addressed in this context. Thus, many plant alkaloids, variously described as herbivore repellents or nitrogen excretion devices, are truly antibiotics-even if toxic to humans. As just one example, bulbs of Narcissus spp. (including the King Alfred daffodil) accumulate narciclasine that binds to the larger subunit of the eukaryotic ribosome and inhibits peptide bond formation. However, ribosomes in the Amaryllidaceae have not been tested for possible resistance to narciclasine and other alkaloids. Clearly, the prevalence of suicide avoidance is likely to extend well beyond the remit of the present article.
Collapse
Affiliation(s)
- Eric Cundliffe
- Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, UK.
| | | |
Collapse
|
11
|
Abstract
Abstract
The tripartite efflux system AcrA/AcrB/TolC is the main pump in Escherichia coli for the efflux of multiple antibiotics, dyes, bile salts and detergents. The inner membrane component AcrB is central to substrate recognition and energy transduction and acts as a proton/drug antiporter. Recent structural studies show that homotrimeric AcrB can adopt different monomer conformations representing consecutive states in an allosteric functional rotation transport cycle. The conformational changes create an alternate access drug transport tunnel including a hydrophobic substrate binding pocket in one of the cycle intermediates.
Collapse
|
12
|
Abstract
Resistance to antibiotics that target the bacterial ribosome is often conferred by methylation at specific nucleotides in the rRNA. The nucleotides that become methylated are invariably key sites of antibiotic interaction. The addition of methyl groups to each of these nucleotides is catalyzed by a specific methyltransferase enzyme. The Erm methyltransferases are a clinically prevalent group of enzymes that confer resistance to the therapeutically important macrolide, lincosamide, and streptogramin B (MLS B) antibiotics. The target for Erm methyltransferases is at nucleotide A2058 in 23S rRNA, and methylation occurs before the rRNA has been assembled into 50S ribosomal particles. Erm methyltransferases occur in a phylogenetically wide range of bacteria and differ in whether they add one or two methyl groups to the A2058 target. The dimethylated rRNA confers a more extensive MLS B resistance phenotype. We describe here a method using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to determine the location and number of methyl groups added at any site in the rRNA. The method is particularly suited to studying in vitro methylation of RNA transcripts by resistance methyltransferases such as Erm.
Collapse
|
13
|
Madsen CT, Jakobsen L, Douthwaite S. Mycobacterium smegmatis Erm(38) is a reluctant dimethyltransferase. Antimicrob Agents Chemother 2005; 49:3803-9. [PMID: 16127056 PMCID: PMC1195420 DOI: 10.1128/aac.49.9.3803-3809.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The waxy cell walls of mycobacteria provide intrinsic tolerance to a broad range of antibiotics, and this effect is augmented by specific resistance determinants. The inducible determinant erm(38) in the nontuberculous species Mycobacterium smegmatis confers high resistance to lincosamides and some macrolides, without increasing resistance to streptogramin B antibiotics. This is an uncharacteristic resistance pattern falling between the type I and type II macrolide, lincosamide, and streptogramin B (MLS(B)) phenotypes that are conferred, respectively, by Erm monomethyltransferases and dimethyltransferases. Erm dimethyltransferases are typically found in pathogenic bacteria and confer resistance to all MLS(B) drugs by addition of two methyl groups to nucleotide A2058 in 23S rRNA. We show here by mass spectrometry analysis of the mycobacterial rRNA that Erm(38) is indeed an A2058-specific dimethyltransferase. The activity of Erm(38) is lethargic, however, and only a meager proportion of the rRNA molecules become dimethylated in M. smegmatis, while most of the rRNAs are either monomethylated or remain unmethylated. The methylation pattern produced by Erm(38) clarifies the phenotype of M. smegmatis, as it is adequate to confer resistance to lincosamides and 14-member ring macrolides such as erythromycin, but it is insufficient to raise the level of resistance to streptogramin B drugs above the already high intrinsic tolerance displayed by this species.
Collapse
Affiliation(s)
- Christian Toft Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
14
|
Madsen CT, Jakobsen L, Buriánková K, Doucet-Populaire F, Pernodet JL, Douthwaite S. Methyltransferase Erm(37) slips on rRNA to confer atypical resistance in Mycobacterium tuberculosis. J Biol Chem 2005; 280:38942-7. [PMID: 16174779 DOI: 10.1074/jbc.m505727200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Mycobacterium tuberculosis complex possess a resistance determinant, erm(37) (also termed ermMT), which is a truncated homologue of the erm genes found in a diverse range of drug-producing and pathogenic bacteria. All erm genes examined thus far encode N(6)-monomethyltransferases or N(6),N(6)-dimethyltransferases that show absolute specificity for nucleotide A2058 in 23 S rRNA. Monomethylation at A2058 confers resistance to a subset of the macrolide, lincosamide, and streptogramin B (MLS(B)) group of antibiotics and no resistance to the latest macrolide derivatives, the ketolides. Dimethylation at A2058 confers high resistance to all MLS(B) and ketolide drugs. The erm(37) phenotype fits into neither category. We show here by tandem mass spectrometry that Erm(37) initially adds a single methyl group to its primary target at A2058 but then proceeds to attach additional methyl groups to the neighboring nucleotides A2057 and A2059. Other methyltransferases, Erm(E) and Erm(O), maintain their specificity for A2058 on mycobacterial rRNA. Erm(E) and Erm(O) have a full-length C-terminal domain, which appears to be important for stabilizing the methyltransferases at their rRNA target, and this domain is truncated in Erm(37). The lax interaction of the M. tuberculosis Erm(37) with its rRNA produces a unique methylation pattern and confers resistance to the ketolide telithromycin.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Base Sequence
- Drug Resistance, Bacterial/genetics
- Gene Expression
- Genes, Bacterial
- Ketolides/pharmacology
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Molecular Sequence Data
- Mycobacterium smegmatis/genetics
- Mycobacterium smegmatis/metabolism
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/metabolism
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Christian Toft Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|
15
|
Douthwaite S, Jalava J, Jakobsen L. Ketolide resistance inStreptococcus pyogenescorrelates with the degree of rRNA dimethylation by Erm. Mol Microbiol 2005; 58:613-22. [PMID: 16194243 DOI: 10.1111/j.1365-2958.2005.04863.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macrolide and ketolide antibiotics inhibit protein synthesis on the bacterial ribosome. Resistance to these antibiotics is conferred by dimethylation at 23S rRNA nucleotide A2058 within the ribosomal binding site. This form of resistance is encoded by erm dimethyltransferase genes, and is found in many pathogenic bacteria. Clinical isolates of Streptococcus pneumoniae with constitutive erm(B) and Streptococcus pyogenes with constitutive erm(A) subtype (TR) are resistant to macrolides, but remain susceptible to ketolides such as telithromycin. Paradoxically, some strains of S. pyogenes that possess an identical erm(B) gene are clinically resistant to ketolides as well as macrolides. Here we explore the molecular basis for the differences in these streptococcal strains using mass spectrometry to determine the methylation status of their rRNAs. We find a correlation between the levels of A2058-dimethylation and ketolide resistance, and dimethylation is greatest in S. pyogenes strains expressing erm(B). In constitutive erm strains that are ketolide-sensitive, appreciable proportions of the rRNA remain monomethylated. Incubation of these strains with subinhibitory amounts of the macrolide erythromycin increases the proportion of dimethylated A2058 (in a manner comparable with inducible erm strains) and reduces ketolide susceptibility. The designation 'constitutive' should thus be applied with some reservation for most streptococcal erm strains. One strain worthy of the constitutive designation is S. pyogenes isolate KuoR21, which has lost part of the regulatory region upstream of erm(B). In S. pyogenes KuoR21, nucleotide A2058 is fully dimethylated under all growth conditions, and this strain displays the highest resistance to telithromycin (MIC > 64 microg ml-1).
Collapse
Affiliation(s)
- Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | |
Collapse
|
16
|
Zhao L, Beyer NJ, Borisova SA, Liu HW. β-Glucosylation as a Part of Self-Resistance Mechanism in Methymycin/Pikromycin Producing Strain Streptomyces venezuelae. Biochemistry 2003; 42:14794-804. [PMID: 14674753 DOI: 10.1021/bi035501m] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In our study of the biosynthesis of D-desosamine in Streptomyces venezuelae, we have cloned and sequenced the entire desosamine biosynthetic cluster. The deduced product of one of the genes, desR, in this cluster shows high sequence homology to beta-glucosidases, which catalyze the hydrolysis of the glycosidic linkages, a function not required for the biosynthesis of desosamine. Disruption of the desR gene led to the accumulation of glucosylated methymycin/neomethymycin products, all of which are biologically inactive. It is thus conceivable that methymycin/neomethymycin may be produced as inert diglycosides, and the DesR protein is responsible for transforming these antibiotics from their dormant to their active forms. This hypothesis is supported by the fact that the translated desR gene has a leader sequence characteristic of secretory proteins, allowing it to be transported through the cell membrane and hydrolyze the modified antibiotics extracellularly to activate them. Expression of desR and biochemical characterization of the purified protein confirmed the catalytic function of this enzyme as a beta-glycosidase capable of catalyzing the hydrolysis of glucosylated methymycin/neomethymycin produced by S. venezuelae. These results provide strong evidence substantiating glycosylation/deglycosylation as a likely self-resistance mechanism of S. venezuelae. However, further experiments have suggested that such a glycosylation/deglycosylation is only a secondary self-defense mechanism in S. venezuelae, whereas modification of 23S rRNA, which is the target site for methymycin and its derivatives, by PikR1 and PikR2 is a primary self-resistance mechanism. Considering that postsynthetic glycosylation is an effective means to control the biological activity of macrolide antibiotics, the availability of macrolide glycosidases, which can be used for the activation of newly formed antibiotics that have been deliberately deactivated by engineered glycosyltransferases, may be a valuable part of an overall strategy for the development of novel antibiotics using the combinatorial biosynthetic approach.
Collapse
Affiliation(s)
- Lishan Zhao
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
17
|
Villsen ID, Vester B, Douthwaite S. ErmE methyltransferase recognizes features of the primary and secondary structure in a motif within domain V of 23 S rRNA. J Mol Biol 1999; 286:365-74. [PMID: 9973557 DOI: 10.1006/jmbi.1998.2504] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Erm methyltransferases confer resistance to macrolide, lincosamide and streptogramin B (MLS) antibiotics by methylation of a single adenosine base within bacterial 23 S ribosomal RNA. The ErmE methyltransferase, from the macrolide-producing bacterium Saccharopolyspora erythraea, recognizes a motif within domain V of the rRNA that specifically targets adenosine 2058 (A2058) for methylation. Here, we define the structure of the RNA motif by a combination of molecular genetics and biochemical probing. The core of the motif has the primary sequence 2056-GGAHA-2060, where H is any nucleotide except guanosine, and ErmE methylates at the adenosine in bold. For efficient recognition by ErmE, this sequence must be displayed within a particular secondary structure. An irregular stem (helix 73) is required immediately 5' to A2058, with an unpaired nucleotide, preferably a cytidine residue, at position 2055. Nucleotides 2611 to 2616 are collectively required to form part of the 3'-side of helix 73, but there is little or no restriction on the identities of individual nucleotides here. There are minor preferences in the identities of nucleotides 2051 to 2055 that are adjacent to the motif core, although their main role is in maintaining the irregular secondary structure. The essential elements of the ErmE motif are conserved in bacterial 23 S rRNAs, and thus presumably also form the recognition motif for other Erm methyltransferases.
Collapse
MESH Headings
- Adenosine/chemistry
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/metabolism
- Drug Resistance, Microbial
- Escherichia coli/chemistry
- Macrolides
- Methylation
- Methyltransferases/metabolism
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational/drug effects
- Point Mutation
- RNA, Bacterial/chemistry
- RNA, Bacterial/drug effects
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/drug effects
- RNA, Ribosomal, 23S/metabolism
- Ribosomes/drug effects
- Substrate Specificity
Collapse
Affiliation(s)
- I D Villsen
- Department of Molecular Biology, Odense University, Campusvej 55, Odense M, DK-5230, Denmark
| | | | | |
Collapse
|
18
|
Vester B, Nielsen AK, Hansen LH, Douthwaite S. ErmE methyltransferase recognition elements in RNA substrates. J Mol Biol 1998; 282:255-64. [PMID: 9735285 DOI: 10.1006/jmbi.1998.2024] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dimethylation by Erm methyltransferases at the N-6 position of adenine 2058 (A2058, Escherichia coli numbering) in domain V of bacterial 23 S rRNA confers resistance to the macrolide-lincosamide-streptogramin B (MLS) group of antibiotics. The ErmE methyltransferase from Saccharopolyspora erythraea methylates a 625 nucleotide transcript of domain V as efficiently as it methylates intact 23 S rRNA. By progressively truncating domain V, the motif required for specific recognition by the enzyme has been localized to a helix and single-stranded region adjacent to A2058. The smallest RNA transcript that shows methyl-accepting activity is a 27-nucleotide stem-loop, corresponding to the 23 S rRNA sequences 2048 to 2063 and 2610 to 2620 (helix 73), with A2058 situated within the hairpin loop. Methylation of A2058 in the truncated RNAs is optimal in the absence of magnesium, and the efficiency of methylation is halved by the presence of 2 to 3 mM magnesium. Magnesium serves to stabilize a conformation in the truncated RNA that prevents efficient methylation. This contrasts to the intact domain V RNA, where 2 mM magnesium ions support a conformation at A2058 that is most readily recognized by ErmE. Methylation of domain V RNA is generally far less susceptible to ionic conditions than the truncated RNAs. The effects of monovalent cations on the methylation of truncated transcripts suggest that RNA structures outside helix 73 support the ErmE interaction. However, interaction with these structures is not essential for specific ErmE recognition of A2058.
Collapse
Affiliation(s)
- B Vester
- RNA Regulation Centre Department of Molecular Biology, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
19
|
Quirós LM, Aguirrezabalaga I, Olano C, Méndez C, Salas JA. Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus. Mol Microbiol 1998; 28:1177-85. [PMID: 9680207 DOI: 10.1046/j.1365-2958.1998.00880.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A 5.2 kb region from the oleandomycin gene cluster in Streptomyces antibioticus located between the oleandomycin polyketide synthase gene and sugar biosynthetic genes was cloned. Sequence analysis revealed the presence of three open reading frames (designated oleI, oleN2 and oleR). The oleI gene product resembled glycosyltransferases involved in macrolide inactivation including the oleD product, a previously described glycosyltransferase from S. antibioticus. The oleN2 gene product showed similarities with different aminotransferases involved in the biosynthesis of 6-deoxyhexoses. The oleR gene product was similar to several glucosidases from different origins. The oleI, oleR and oleD genes were expressed in Streptomyces lividans. OleI and OleD intracellular proteins were partially purified by affinity chromatography in an UDP-glucuronic acid agarose column and OleR was detected as a major band from the culture supernatant. OleI and OleD showed oleandomycin glycosylating activity but they differ in the pattern of substrate specificity: OleI being much more specific for oleandomycin. OleR showed glycosidase activity converting glycosylated oleandomycin into active oleandomycin. A model is proposed integrating these and previously reported results for intracellular inactivation, secretion and extracellular reactivation of oleandomycin.
Collapse
Affiliation(s)
- L M Quirós
- Departamento de Biología Funcional e Instituto Universitario de Biotecnología de Asturias (IUBA-CSIC), Universidad de Oviedo, Spain
| | | | | | | | | |
Collapse
|
20
|
Kamimiya S, Weisblum B. Induction of ermSV by 16-membered-ring macrolide antibiotics. Antimicrob Agents Chemother 1997; 41:530-4. [PMID: 9055987 PMCID: PMC163745 DOI: 10.1128/aac.41.3.530] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The erm family of 23S rRNA adenine-N6-methyltransferases confers resistance to all macrolide-lincosamide-streptograminB (MLS) antibiotics, but not all MLS antibiotics induce synthesis of Erm methyltransferase with equal efficiency in a given organism. The induction efficiency of a test panel of MLS antibiotics was studied by using two translational attenuator-lac reporter gene fusion constructs, one based on ermSV from Streptomyces viridochromogenes NRRL 2860 and the other based on ermC from Staphylococcus aureus RN2442. Four types of responses which were correlated with the macrolide ring size were seen, as follows: group 1, both ermSV and ermC were induced by the 14-membered-ring macrolides erythromycin, lankamycin, and matromycin, as well as by the lincosamide celesticetin; group 2, neither ermSV nor ermC was induced by the 12-membered-ring macrolide methymycin or by the lincosamide lincomycin or the streptogramin type B antibiotic ostreogrycin B; group 3, ermSV was selectively induced over ermC by the 16-membered-ring macrolides carbomycin, chalcomycin, cirramycin, kitasamycin, maridomycin, and tylosin; and group 4, ermC was selectively induced over ermSV by the 14-membered-ring macrolide megalomicin. These data suggest that the leader peptide determines the specificity of induction by different classes of MLS antibiotics and that for a given attenuator, a major factor which determines whether a given macrolide induces resistance is its size.
Collapse
Affiliation(s)
- S Kamimiya
- Pharmacology Department, University of Wisconsin Medical School, Madison 53706, USA
| | | |
Collapse
|
21
|
Pernodet JL, Fish S, Blondelet-Rouault MH, Cundliffe E. The macrolide-lincosamide-streptogramin B resistance phenotypes characterized by using a specifically deleted, antibiotic-sensitive strain of Streptomyces lividans. Antimicrob Agents Chemother 1996; 40:581-5. [PMID: 8851574 PMCID: PMC163161 DOI: 10.1128/aac.40.3.581] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Genes conferring resistance to macrolide, lincosamide, and streptogramin B (MLS) antibiotics via ribosomal modification are widespread in bacteria, including clinical isolates and MLS-producing actinomycetes. Such erm-type genes encode enzymes that mono- or dimethylate residue A-2058 of 23S rRNA. The different phenotypes resulting from monomethylation (MLS-I phenotype, conferred by erm type I genes) or dimethylation (MLS-II phenotype due to erm type II genes) have been characterized by introducing tlrD or ermE, respectively, into an MLS-sensitive derivative of Streptomyces lividans TK21. This strain (designated OS456) was generated by specific replacement of the endogenous resistance genes lrm and mgt. The MLS-I phenotype is characterized by high-level resistance to lincomycin with only marginal resistance to macrolides such as chalcomycin or tylosin, whereas the MLS-II phenotype involves high-level resistance to all MLS drugs. Mono- and dimethylated ribosomes were introduced into a cell-free protein-synthesizing system prepared from S. lividans and compared with unmodified particles in their response to antibiotics. There was no simple correlation between the relative potencies of MLS drugs at the level of the target site (i.e., the ribosome) and their antibacterial activities expressed as MICs.
Collapse
Affiliation(s)
- J L Pernodet
- Laboratoire de Biologie et Génétique Moléculaire, Université Paris-Sud XI, Orsay, France
| | | | | | | |
Collapse
|
22
|
Quirós LM, Salas JA. Biosynthesis of the macrolide oleandomycin by Streptomyces antibioticus. Purification and kinetic characterization of an oleandomycin glucosyltransferase. J Biol Chem 1995; 270:18234-9. [PMID: 7629141 DOI: 10.1074/jbc.270.31.18234] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The oleandomycin (OM) producer, Streptomyces antibioticus, possesses a mechanism involving two enzymes for the intracellular inactivation and extracellular reactivation of the antibiotic. Inactivation takes place by transfer of a glucose molecule from a donor (UDP-glucose) to OM, a process catalyzed by an intracellular glucosyltransferase. Glucosyltransferase activity is detectable in cell-free extracts concurrent with biosynthesis of OM. The enzyme has been purified 1,097-fold as a monomer, with a molecular mass of 57.1 kDa by a four-step procedure using three chromatographic columns. The reaction operates via a compulsory-order mechanism. This has been shown by steady-state kinetic studies using either OM or an alternative substrate (rosaramycin) and dead-end inhibitors, and isotopic exchange reactions at equilibrium. OM binds first to the enzyme, followed by UDP-glucose. A ternary complex is thus formed prior to transfer of glucose. UDP is then released, followed by the glycosylated oleandomycin (GS-OM).
Collapse
Affiliation(s)
- L M Quirós
- Departamento de Biología Funcional, Universidad de Oviedo, Spain
| | | |
Collapse
|
23
|
Olano C, Rodríguez AM, Méndez C, Salas JA. A second ABC transporter is involved in oleandomycin resistance and its secretion by Streptomyces antibioticus. Mol Microbiol 1995; 16:333-43. [PMID: 7565095 DOI: 10.1111/j.1365-2958.1995.tb02305.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A 3.2 kb Sstl-Sphl DNA fragment of Streptomyces antibioticus, an oleandomycin producer, conferring resistance to oleandomycin was sequenced and found to contain an open reading frame of 1710 bp (oleB). Its deduced gene product (OleB) showed a high degree of similarity with other proteins belonging to the ABC-transporter superfamily including the gene product of another oleandomycin-resistance gene (OleC). The OleB protein contains two ATP-binding domains, each of approximately 200 amino acids in length, and no hydrophobic transmembrane regions. Functional analysis of the oleB gene was carried out by deleting specific regions of the gene and assaying for oleandomycin resistance. These experiments showed that either the first or the second half of the gene containing only one ATP-binding domain was sufficient to confer resistance to oleandomycin. The gene oleB was expressed in Escherichia coli fused to a maltose-binding protein (MBP) using the pMal-c2 vector. The MBP-OleB hybrid protein was purified by affinity chromatography on an amylose resin and polyclonal antibodies were raised against the fusion protein. These were used to monitor the biosynthesis and physical location of OleB during growth. By Western analysis, the OleB protein was detected both in the soluble and in the membrane fraction and its synthesis paralleled oleandomycin biosynthesis. It was also shown that a Streptomyces albus strain, containing both a glycosyltransferase (OleD) able to inactivate oleandomycin and the OleB protein, was capable of glycosylating oleandomycin and secreting the inactive glycosylated molecule. It is proposed that OleB constitutes the secretion system by which oleandomycin or its inactive glycosylated form could be secreted by S. antibioticus.
Collapse
Affiliation(s)
- C Olano
- Departamento de Biología Funcional e Instituto Universitario de Biotecnologia (I.U.B.A.), Universidad de Oviedo, Spain
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- L Katz
- Abbott Laboratories Department 93D, Abbott Park, IL 60064-3500, USA
| | | |
Collapse
|
25
|
Allen NE. Biochemical mechanisms of resistance to non-cell wall antibacterial agents. PROGRESS IN MEDICINAL CHEMISTRY 1995; 32:157-238. [PMID: 8577918 DOI: 10.1016/s0079-6468(08)70454-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- N E Allen
- Infectious Disease Research, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
26
|
Iglesias M, Ballesta JP. Mechanism of resistance to the antibiotic trichothecin in the producing fungi. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:447-53. [PMID: 8055913 DOI: 10.1111/j.1432-1033.1994.tb19012.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Trichothecium roseum, an imperfecti fungus producer of the translation inhibitor trichothecin, is constitutively resistant to its product. Fusarium oxysporum, a fungi not described as a toxin producer, is sensitive to trichothecin but becomes resistant when grown in the presence of the drug. In both cases, the resistance occurs at the level of the ribosomes. In cell-free polypeptide polymerization systems, trichothecin resistance is associated with the presence of 60S subunits from the resistant organisms. Resistant ribosomes can be prepared in vitro by incubating sensitive ribosomes, from either non-induced F. oxysporum or Saccharomyces cerevisiae, with cell extracts from the resistant cells in the presence of S-adenosylmethionine. An in-vitro specific differential methylation is detected in the sensitive ribosomes but not in resistant particles using radioactive S-adenosylmethionine. The results indicate for the first time the existence in eukaryotic organisms of an antibiotic-resistance mechanism involving a ribosomal methylation similar to that described previously in prokaryotic systems.
Collapse
Affiliation(s)
- M Iglesias
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | |
Collapse
|
27
|
Zhang HZ, Schmidt H, Piepersberg W. Molecular cloning and characterization of two lincomycin-resistance genes, lmrA and lmrB, from Streptomyces lincolnensis 78-11. Mol Microbiol 1992; 6:2147-57. [PMID: 1328813 DOI: 10.1111/j.1365-2958.1992.tb01388.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two different lincomycin-resistance determinants (lmrA and lmrB) from Streptomyces lincolnensis 78-11 were cloned in Streptomyces lividans 66 TK23. The gene lmrA was localized on a 2.16 kb fragment, the determined nucleotide sequence of which encoded a single open reading frame 1446 bp long. Analysis of the deduced amino acid sequence suggested the presence of 12 membrane-spanning domains and showed significant similarities to the methylenomycin-resistance protein (Mmr) from Streptomyces coelicolor, the QacA protein from Staphylococcus aureus, and several tetracycline-resistance proteins from both Gram-positive and Gram-negative bacteria, as well as to some sugar-transport proteins from Escherichia coli. The lmrB gene was actively expressed from a 2.7 kb fragment. An open reading frame of 837 bp could be localized which encoded a protein that was significantly similar to 23S rRNA adenine(2058)-N-methyltransferases conferring macrolide-lincosamide-streptogramin resistance. LmrB also had putative rRNA methyltransferase activity since lincomycin resistance of ribosomes was induced in lmrB-containing strains. Surprisingly, both enzymes, LmrA and LmrB, had a substrate specificity restricted to lincomycin and did not cause resistance to other lincosamides such as celesticetin and clindamycin, or to macrolides.
Collapse
Affiliation(s)
- H Z Zhang
- Bergische Universität GH Wuppertal, Germany
| | | | | |
Collapse
|
28
|
Schoner B, Geistlich M, Rosteck P, Rao RN, Seno E, Reynolds P, Cox K, Burgett S, Hershberger C. Sequence similarity between macrolide-resistance determinants and ATP-binding transport proteins. Gene 1992; 115:93-6. [PMID: 1612454 DOI: 10.1016/0378-1119(92)90545-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The three macrolide-resistance-encoding genes, tlrC from Streptomyces fradiae, srmB from Streptomyces ambofaciens, and carA from Streptomyces thermotolerans, encode proteins that possess significant sequence similarity to ATP-dependent transport proteins. The N-terminal and C-terminal halves of these proteins are very similar to each other and contain highly conserved regions that resemble ATP-binding domains typically present within the superfamily of ATP-dependent transport proteins. These observations suggest that the mechanism by which these genes confer resistance to macrolides is due to export of the antibiotics, a process that is driven by energy derived from ATP hydrolysis.
Collapse
Affiliation(s)
- B Schoner
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN 46285
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cundliffe E. Resistance to macrolides and lincosamides in Streptomyces lividans and to aminoglycosides in Micromonospora purpurea. Gene X 1992; 115:75-84. [PMID: 1612452 DOI: 10.1016/0378-1119(92)90543-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ribosomal (r) resistance to gentamicin in clones containing DNA from the producing organism Micromonospora purpurea is determined by grmA, and not by kgmA as originally reported. The kgmA gene originated in Streptomyces tenebrarius and is identical to kgmB. Both grmA and kgm encode enzymes that methylate single specific sites within 16S rRNA, although the site of action of the grmA product has not yet been determined. In either case, the methylated nucleoside is 7-methyl G. Inducible resistance to lincomycin (Ln) and macrolides in Streptomyces lividans TK21 results from expression of two genes: lrm, encoding an rRNA methyltransferase and mgt, encoding a glycosyl transferase (MGT), that specifically inactivates macrolides. The lrm product monomethylates residue A2058 within 23S rRNA (Escherichia coli numbering scheme) and confers high-level resistance to Ln with much lower levels of resistance to macrolides. Substrates for MGT, which utilises UDP-glucose as cofactor, include macrolides with 12-, 14-, 15- or 16-atom cyclic polyketide lactones (as in methymycin, erythromycin, azithromycin or tylosin, respectively) although spiramycin and carbomycin are not apparently modified. The enzyme is specific for the 2'-OH group of saccharide moieties attached to C5 of the 16-atom lactone ring (corresponding to C5 or C3 in 14- or 12-atom lactones, respectively). The lrm and mgt genes have been cloned and sequenced. The deduced lrm product is a 26-kDa protein, similar to other rRNA methyltransferases, such as the carB, tlrA and ermE products, whereas the mgt product (deduced to be 42 kDa) resembles a glycosyl transferase from barley.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E Cundliffe
- Department of Biochemistry, University of Leicester, UK
| |
Collapse
|
30
|
Cundliffe E. Glycosylation of macrolide antibiotics in extracts of Streptomyces lividans. Antimicrob Agents Chemother 1992; 36:348-52. [PMID: 1605601 PMCID: PMC188440 DOI: 10.1128/aac.36.2.348] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inducible resistance to macrolide antibiotics in Streptomyces lividans involves MGT, a macrolide glycosyl transferase that utilizes UDP-glucose as cofactor. Substrates for MGT include macrolides with 12-, 14-, 15-, or 16-atom cyclic polyketide lactones (as in methymycin, erythromycin, azithromycin, or tylosin, respectively), although spiramycin and carbomycin are not apparently modified. The enzyme is specific for the 2'-OH group of saccharidic moieties attached to C-5 of the 16-atom lactone ring (corresponding to C-5 or C-3 in 14- or 12-atom lactones, respectively).
Collapse
Affiliation(s)
- E Cundliffe
- Department of Biochemistry, University of Leicester, England
| |
Collapse
|
31
|
Vilches C, Hernandez C, Mendez C, Salas JA. Role of glycosylation and deglycosylation in biosynthesis of and resistance to oleandomycin in the producer organism, Streptomyces antibioticus. J Bacteriol 1992; 174:161-5. [PMID: 1530845 PMCID: PMC205690 DOI: 10.1128/jb.174.1.161-165.1992] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell extracts of Streptomyces antibioticus, an oleandomycin producer, can inactivate oleandomycin in the presence of UDP-glucose. The inactivation can be detected through the loss of biological activity or by alteration in the chromatographic mobility of the antibiotic. This enzyme activity also inactivates other macrolides (rosaramicin, methymycin, and lankamycin) which contain a free 2'-OH group in a monosaccharide linked to the lactone ring (with the exception of erythromycin), but not those which contain a disaccharide (tylosin, spiramycin, carbomycin, josamycin, niddamycin, and relomycin). Interestingly, the culture supernatant contains another enzyme activity capable of reactivating the glycosylated oleandomycin and regenerating the biological activity through the release of a glucose molecule. It is proposed that these two enzyme activities could be an integral part of the oleandomycin biosynthetic pathway.
Collapse
Affiliation(s)
- C Vilches
- Departamento de Biología Funcional, Universidad de Oviedo, Spain
| | | | | | | |
Collapse
|
32
|
Jenkins G, Cundliffe E. Cloning and characterization of two genes from Streptomyces lividans that confer inducible resistance to lincomycin and macrolide antibiotics. Gene 1991; 108:55-62. [PMID: 1761231 DOI: 10.1016/0378-1119(91)90487-v] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inducible resistance to lincomycin and macrolides in Streptomyces lividans TK21 results from expression of two linked genes: lrm, encoding a ribosomal RNA methyltransferase that confers high-level resistance to lincomycin with lower levels of resistance to macrolides, and mgt, encoding a glycosyl transferase that specifically inactivates macrolides using UDP-glucose as cofactor. The lrm and mgt genes have been cloned and sequenced. The deduced lrm product is a 26-kDa protein with much similarity to other ribosomal RNA methyltransferases, such as the carB, tlrA and ermE products, whereas the mgt product (predicted to be 42 kDa) resembles a eukaryotic glycosyl transferase. Macrolides that induce the lrm-mgt gene pair are substrates for inactivation by the mgt product, and the lrm product confers ribosomal resistance to such inducers.
Collapse
Affiliation(s)
- G Jenkins
- Department of Biochemistry, University of Leicester, U.K
| | | |
Collapse
|
33
|
Cloning of tlrD, a fourth resistance gene, from the tylosin producer, Streptomyces fradiae. Gene X 1991; 97:137-42. [PMID: 1995426 DOI: 10.1016/0378-1119(91)90021-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In addition to tlrA, tlrB and tlrC, which were previously cloned by others, a fourth antibiotic-resistance gene (tlrD) has been isolated from Streptomyces fradiae, a producer of tylosin (Ty), and cloned in Streptomyces lividans. Like tlrA, tlrD encodes an enzyme that methylates the N6-amino group of the A2058 nucleoside within 23S ribosomal RNA. However, whereas the tlrA protein dimethylates that nucleoside, the tlrD product generates N6-monomethyladenosine. The genes also differ in their mode of expression: tlrA is inducible, whereas tlrD is apparently expressed constitutively, and it has been confirmed that the tlrA-encoded enzyme can add a second methyl group to 23S rRNA that has already been monomethylated by the tlrD-encoded enzyme. Presumably, that is what happens in S. fradiae.
Collapse
|