1
|
Song H, Karashima E, Hamlyn JM, Blaustein MP. Ouabain-digoxin antagonism in rat arteries and neurones. J Physiol 2013; 592:941-69. [PMID: 24344167 DOI: 10.1113/jphysiol.2013.266866] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
'Classic' cardiotonic steroids (CTSs) such as digoxin and ouabain selectively inhibit Na+, K+ -ATPase (the Na+ pump) and, via Na+ / Ca2+ exchange (NCX), exert cardiotonic and vasotonic effects. CTS action is more complex than previously thought: prolonged subcutaneous administration of ouabain, but not digoxin, induces hypertension, and digoxin antagonizes ouabain's hypertensinogenic effect. We studied the acute interactions between CTSs in two indirect assays of Na+ pump function: myogenic tone (MT) in isolated, pressurized rat mesenteric small arteries, and Ca2+ signalling in primary cultured rat hippocampal neurones. The 'classic' CTSs (0.3-10 nm) behaved as 'agonists': all increased MT70 (MT at 70 mmHg) and augmented glutamate-evoked Ca2+ (Fura-2) signals. We then tested one CTS in the presence of another. Most CTSs could be divided into ouabain-like (ouabagenin, dihydroouabain (DHO), strophanthidin) or digoxin-like CTS (digoxigenin, digitoxin, bufalin). Within each group, the CTSs were synergistic, but ouabain-like and digoxin-like CTSs antagonized one another in both assays: For example, the ouabain-evoked (3 nm) increases in MT70 and neuronal Ca2+ signals were both greatly attenuated by the addition of 10 nm digoxin or 10 nm bufalin, and vice versa. Rostafuroxin (PST2238), a digoxigenin derivative that displaces 3H-ouabain from Na+, K+ -ATPase, and attenuates some forms of hypertension, antagonized the effects of ouabain, but not digoxin. SEA0400, a Na+ / Ca2+ exchanger (NCX) blocker, antagonized the effects of both ouabain and digoxin. CTSs bind to the α subunit of pump αβ protomers. Analysis of potential models suggests that, in vivo, Na+ pumps function as tetraprotomers ((αβ)4) in which the binding of a single CTS to one protomer blocks all pumping activity. The paradoxical ability of digoxin-like CTSs to reactivate the ouabain-inhibited complex can be explained by de-oligomerization of the tetrameric state. The interactions between these common CTSs may be of considerable therapeutic relevance.
Collapse
Affiliation(s)
- Hong Song
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA. or
| | | | | | | |
Collapse
|
2
|
Mechanism of allosteric effects of ATP on the kinetics of P-type ATPases. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:3-17. [PMID: 19225774 DOI: 10.1007/s00249-009-0407-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/14/2008] [Accepted: 12/14/2008] [Indexed: 10/21/2022]
Abstract
The roles of allosteric effects of ATP and protein oligomerisation in the mechanisms of P-type ATPases belong to the most controversial and least well understood topics in the field. Recent crystal structural and kinetic data, however, now allow certain hypotheses to be definitely excluded and consistent hypotheses to be developed. The aim of this review is to critically discuss recent results and, in the light of them, to present a set of conclusions which could form the basis of future research. The major conclusions are: (1) at saturating ATP concentrations P-type ATPases function as monomeric enzymes, (2) the catalytic units of P-type ATPases only possess a single ATP binding site, (3) at non-saturating ATP concentrations P-type ATPases exist as diprotomeric (or higher oligomeric) complexes, (4) protein-protein interactions within a diprotomeric complex enhances the enzymes' ATP binding affinity, (5) ATP binding to both protomers within a diprotomeric complex causes it to dissociate into two separate monomers. The physiological role of protein-protein interactions within a diprotomer may be to enhance ATP binding affinity so as to scavenge ATP and maximize the ion pumping rate under hypoxic or anoxic conditions. For the first time a structural basis for the well-known ATP allosteric acceleration of the E2 --> E1 transition is presented. This is considered to be due to a minimization of steric hindrance between neighbouring protomers because of the ability of ATP to induce a compact conformation of the enzymes' cytoplasmic domains.
Collapse
|
3
|
Ward DG, Cavieres JD. Inactivation of Na,K-ATPase following Co(NH3)4ATP binding at a low affinity site in the protomeric enzyme unit. J Biol Chem 2003; 278:14688-97. [PMID: 12591931 DOI: 10.1074/jbc.m211128200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na(+)-dependent or E1 stages of the Na,K-ATPase reaction require a few micromolar ATP, but submillimolar concentrations are needed to accelerate the K(+)-dependent or E2 half of the cycle. Here we use Co(NH(3))(4)ATP as a tool to study ATP sites in Na,K-ATPase. The analogue inactivates the K(+) phosphatase activity (an E2 partial reaction) and the Na,K-ATPase activity in parallel, whereas ATP-[(3)H]ADP exchange (an E1 reaction) is affected less or not at all. Although the inactivation occurs as a consequence of low affinity Co(NH(3))(4)ATP binding (K(D) approximately 0.4-0.6 mm), we can also measure high affinity equilibrium binding of Co(NH(3))(4)[(3)H]ATP (K(D) = 0.1 micro m) to the native enzyme. Crucially, we find that covalent enzyme modification with fluorescein isothiocyanate (which blocks E1 reactions) causes little or no effect on the affinity of the binding step preceding Co(NH(3))(4)ATP inactivation and only a 20% decrease in maximal inactivation rate. This suggests that fluorescein isothiocyanate and Co(NH(3))(4)ATP bind within different enzyme pockets. The Co(NH(3))(4)ATP enzyme was solubilized with C(12)E(8) to a homogeneous population of alphabeta protomers, as verified by analytical ultracentrifugation; the solubilization did not increase the Na,K-ATPase activity of the Co(NH(3))(4)ATP enzyme with respect to parallel controls. This was contrary to the expectation for a hypothetical (alphabeta)(2) membrane dimer with a single ATP site per protomer, with or without fast dimer/protomer equilibrium in detergent solution. Besides, the solubilized alphabeta protomer could be directly inactivated by Co(NH(3))(4)ATP, to less than 10% of the control Na,K-ATPase activity. This suggests that the inactivation must follow Co(NH(3))(4)ATP binding at a low affinity site in every protomeric unit, thus still allowing ATP and ADP access to phosphorylation and high affinity ATP sites.
Collapse
Affiliation(s)
- Douglas G Ward
- Transport ATPase Laboratory, Department of Cell Physiology and Pharmacology, Faculty of Medicine and Biological Sciences, University of Leicester, Leicester LE1 9HN, United Kingdom
| | | |
Collapse
|
4
|
Abe K, Kaya S, Imagawa T, Taniguchi K. Gastric H/K-ATPase liberates two moles of Pi from one mole of phosphoenzyme formed from a high-affinity ATP binding site and one mole of enzyme-bound ATP at the low-affinity site during cross-talk between catalytic subunits. Biochemistry 2002; 41:2438-45. [PMID: 11841238 DOI: 10.1021/bi015622r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The maximum amount of acid-stable phosphoenzyme (E32P)/mol of alpha chain of pig gastric H/K-ATPase from [gamma-32P]ATP (K(1/2) = 0.5 microM) was found to be approximately 0.5, which was half of that formed from 32P(i) (K(1/2) = 0.22 mM). The maximum 32P binding for the enzyme during turnover in the presence of [gamma-32P]ATP or [alpha-32P]ATP was due to 0.5 mol of E32P + 0.5 mol of an acid-labile enzyme-bound [gamma-32P]ATP (EATP) or 0.5 mol of an acid-labile enzyme-bound [alpha-32P]ATP, respectively. The K(1/2) for EATP formation in both cases was 0.12 approximately 0.14 mM. The turnover number of the enzyme (i.e., the H+-ATPase activity/(EP + EATP)) was very close to the apparent rate constants for EP breakdown and P(i) liberation, both of which decreased with increasing concentrations of ATP. The ratio of the amount of P(i) liberated to that of EP that disappeared increased from 1 to approximately 2 with increasing concentrations of ATP (i.e., equal amounts of EP and EATP exist, both of which release phosphate in the presence of high concentrations of ATP). This represents the first direct evidence, for the case of a P-type ATPase, in which 2 mol of P(i) liberation occurs simultaneously from 1 mol of EP for half of the enzyme molecules and 1 mol of EATP for the other half during ATP hydrolysis. Each catalytic alpha chain is involved in cross-talk, thus maintaining half-site phosphorylation and half-site ATP binding which are induced by high- and low-affinity ATP binding, respectively, in the presence of Mg2+.
Collapse
Affiliation(s)
- Kazuhiro Abe
- Biological Chemistry, Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
5
|
Buxbaum E. Co-operating ATP sites in the multiple drug resistance transporter Mdr1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:54-63. [PMID: 10491157 DOI: 10.1046/j.1432-1327.1999.00643.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ATPase activity of the multiple drug resistance transporter Mdr1 (P-glycoprotein, gp170) depended on the concentration of ATP with both positive and negative co-operativity both in the absence and in the presence of verapamil. Four co-operating binding sites for ATP were required to adequately model the experimental findings. The activation energy for the ATPase activity increased from approximately 385 kJ x mol-1 at 10 microM ATP to 512 kJ x mol-1 at 1600 microM, while changes in verapamil concentration had little effect. This indicates that the reaction mechanism of ATP hydrolysis depends on ATP concentration and is further evidence for co-operation of ATP binding sites. Free ATP in higher concentration was inhibitory; however, this inhibition could be reduced by complexing the ATP with Mg2+. Free Mg2+ had little effect on Mdr1 apart from complexing ATP.
Collapse
Affiliation(s)
- E Buxbaum
- Department of Cell Physiology and Pharmacology, University of Leicester, UK.
| |
Collapse
|
6
|
Antolovic R, Hamer E, Serpersu EH, Kost H, Linnertz H, Kovarik Z, Schoner W. Affinity labelling with MgATP analogues reveals coexisting Na+ and K+ forms of the alpha-subunits of Na+/K+-ATPase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:181-9. [PMID: 10103049 DOI: 10.1046/j.1432-1327.1999.00260.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To test the hypothesis that Na+/K+-ATPase works as an (alpha beta)2-diprotomer with interacting catalytic alpha-subunits, tryptic digestion of pig kidney enzyme, that had been inactivated with substitution-inert MgATP complex analogues, was performed. This led to the demonstration of coexisting C-terminal Na+-like 80-kDa as well as K+-like 60-kDa peptides and N-terminal 40-kDa peptides of the alpha-subunit. To localize the ATP binding sites on tryptic peptides, studies with radioactive MgATP complex analogues were performed: Co(NH3)4-8-N3-ATP specifically modified the E2ATP (low affinity) binding site of Na+/K+-ATPase with an inactivation rate constant (k2) of 12 x 10-3.min-1 at 37 degrees C and a dissociation constant (Kd) of 207 +/- 28 microm. Tryptic digestion of the [gamma32P]Co(NH3)4-8-N3-ATP-inactivated and photolabelled alpha-subunit (Mr = 100 kDa) led, in the absence of univalent cations, to a K+-like C-terminal 60-kDa fragment which was labelled in addition to an unlabelled Na+-like C-terminal 80-kDa fragment. Tryptic digestion of [alpha32P]-or [gamma32P]Cr(H2O)4ATP - bound to the E1ATP (high affinity) site - led to the labelling of a Na+-like 80-kDa fragment besides the immediate formation of an unlabelled K+-like N-terminal 40-kDa fragment and a C-terminal 60-kDa fragment. Because a labelled Na+-like 80-kDa fragment cannot result from an unlabelled K+-like 60-kDa fragment, and because unlabelled alpha-subunits did not show any catalytic activity, the findings are consistent with a situation in which Na+- and K+-like conformations are stabilized by tight binding of substitution-inert MgATP complex analogues to the E1ATP and E2ATP sites. Hence, all data are consistent with the hypothesis that ATP binding induces coexisting Na+ and K+ conformations within an (alphabeta)2-diprotomeric Na+/K+-ATPase.
Collapse
Affiliation(s)
- R Antolovic
- Institut für Biochemie und Endokrinologie, Facbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Linnertz H, Urbanova P, Obsil T, Herman P, Amler E, Schoner W. Molecular distance measurements reveal an (alpha beta)2 dimeric structure of Na+/K+-ATPase. High affinity ATP binding site and K+-activated phosphatase reside on different alpha-subunits. J Biol Chem 1998; 273:28813-21. [PMID: 9786881 DOI: 10.1074/jbc.273.44.28813] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP hydrolysis by Na+/K+-ATPase proceeds via the interaction of simultaneously existing and cooperating high (E1ATP) and low (E2ATP) substrate binding sites. It is unclear whether both ATP sites reside on the same or on different catalytic alpha-subunits. To answer this question, we looked for a fluorescent label for the E2ATP site that would be suitable for distance measurements by Förster energy transfer after affinity labeling of the E1ATP site by fluorescein 5'-isothiocyanate (FITC). Erythrosin 5'-isothiocyanate (ErITC) inactivated, in an E1ATP site-blocked enzyme (by FITC), the residual activity of the E2ATP site, namely K+-activated p-nitrophenylphosphatase in a concentration-dependent way that was ATP-protectable. The molar ratios of FITC/alpha-subunit of 0.6 and of ErITC/alpha-subunit of 0.48 indicate 2 ATP sites per (alpha beta)2 diprotomer. Measurements of Förster energy transfer between the FITC-labeled E1ATP and the ErITC-labeled or Co(NH3)4ATP-inactivated E2ATP sites gave a distance of 6.45 +/- 0.64 nm. This distance excludes 2 ATP sites per alpha-subunit since the diameter of alpha is 4-5 nm. Förster energy transfer between cardiac glycoside binding sites labeled with anthroylouabain and fluoresceinylethylenediamino ouabain gave a distance of 4.9 +/- 0.5 nm. Hence all data are consistent with the hypothesis that Na+/K+-ATPase in cellular membranes is an (alpha beta)2 diprotomer and works as a functional dimer (Thoenges, D., and Schoner, W. (1997) J. Biol. Chem. 272, 16315-16321).
Collapse
Affiliation(s)
- H Linnertz
- Institute of Biochemistry and Endocrinology, Justus-Liebig-University Giessen, Frankfurter Str. 100, D-35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Ward DG, Cavieres JD. Photoinactivation of fluorescein isothiocyanate-modified Na,K-ATPase by 2'(3')-O-(2,4,6-trinitrophenyl)8-azidoadenosine 5'-diphosphate. Abolition of E1 and E2 partial reactions by sequential block of high and low affinity nucleotide sites. J Biol Chem 1998; 273:14277-84. [PMID: 9603934 DOI: 10.1074/jbc.273.23.14277] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na,K-ATPase activity of the sodium pump exhibits apparent multisite kinetics toward ATP, a feature that is inherent to the minimal enzyme unit, the alpha beta protomer. We have argued that this should arise from separate catalytic and noncatalytic sites on the alpha beta protomer as fluorescein isothiocyanate (FITC) blocks a high affinity ATP site on all alpha subunits and yet the modified Na, K-ATPase retains a low affinity response to nucleotides (Ward, D. G., and Cavieres, J. D. (1996) J. Biol. Chem. 271, 12317-12321). We now find that 2'(3')-O-(2,4,6-trinitrophenyl)8-azido-adenosine 5'-diphosphate (TNP-8N3-ADP), a high affinity photoactivatable analogue of ATP, can inhibit the K+-phosphatase activity of the FITC-modified enzyme during assays in dimmed light. The inhibition occurs with a Ki of 140 microM at 20 mM K+; it requires the adenine ring as 2'(3')-O-(2,4 6-trinitrophenyl) (TNP)-UDP or TNP-uridine are less potent and 2,4,6-trinitrobenzene-sulfonate is ineffective. Under irradiation with UV light, TNP-8N3-ADP inactivates the K+-phosphatase activity of the fluorescein-enzyme and also its phosphorylation by [32P]Pi. The photoinactivation process is stimulated by Na+ or Mg2+, and is inhibited by K+ or excess TNP-ADP. In the presence of 50 mM Na+ and 1 mM Mg2+, TNP-8N3-ADP photoinactivates with a K0.5 of 15 microM. Furthermore, TNP-8N3-ADP photoinactivates the FITC-modified, solubilized alpha beta protomers, even more effectively than the membrane-bound fluorescein-enzyme. These results strongly suggest that catalytic and allosteric ATP sites coexist on the alpha beta protomer of Na,K-ATPase.
Collapse
Affiliation(s)
- D G Ward
- Transport ATPase Laboratory, Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 9HN, United Kingdom
| | | |
Collapse
|
9
|
Imagawa T, Shida M, Matsuzawa K, Kaya S, Taniguchi K. Does binding of ouabain to human alpha1-subunit of Na+, K+-ATPase affect the ATPase activity of adjacent rat alpha1-subunit? JAPANESE JOURNAL OF PHARMACOLOGY 1998; 76:415-23. [PMID: 9623720 DOI: 10.1254/jjp.76.415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To ascertain whether ouabain binding to human alpha1-subunit influences coexpression of rat alpha1-subunit, the ouabain-sensitive profiles of Na+,K+-ATPase activity and 86Rb+ uptake activity and ouabain binding capacity were measured in HeLa cells stably expressing rat alpha1-subunit. The ouabain-sensitive profile of ATPase and 86Rb+ uptake activity seemed to be the sum of two components, one with high and one with low apparent affinity to ouabain, which were similar to that observed in HeLa and NRK-52E cells derived from human and rat, respectively. The ATPase activity with low sensitivity to ouabain increased in simple proportion to the amount of the rat alpha1 mRNA derived from transfected cDNA, which was determined by the reverse transcription-polymerase chain reaction method. The turnover number of the human Na+,K+-ATPase activity obtained from the ratio of the Na+,K+-ATPase activity to the ouabain binding capacity is about 150/sec. The expression of the rat alpha1-subunit had no effect on the turnover numbers of the Na+,K+-ATPase activity with high affinity to ouabain estimated from the ouabain binding capacity as the active site concentration. These results suggested that the ouabain bound to human alpha1-subunit did not inhibit the ATPase activity of the coexpressing rat alpha1 in these cells.
Collapse
Affiliation(s)
- T Imagawa
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
10
|
Linnertz H, Urbanova P, Amler E. Quenching of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole-modified Na+/K+-ATPase reveals a higher accessibility of the low-affinity ATP-binding site. FEBS Lett 1997; 419:227-30. [PMID: 9428639 DOI: 10.1016/s0014-5793(97)01460-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
7-Chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) labeled Na+/K+-ATPase covalently with two different inactivation constants (Ki = 2.5 microM; Ki' = 10 microM). It apparently modified the two different ATP-binding sites of the enzyme since it decreased the activity of the E2ATP site, i.e. the K+-activated para-nitrophenylphosphatase activity, in an enzyme whose high-affinity E1ATP site had been blocked by fluorescein 5'isothiocyanate (FITC). It also reduced the activity of the E1ATP site, i.e. the Na+-activated protein phosphorylation, in an enzyme whose low-affinity E2ATP site had been blocked by Co(NH3)4PO4. Fluorescence quenching experiments with KI, CsCl and MnCl2 of the NBD-Cl-labeled Na+/K+-ATPase revealed two differently accessible types of fluorophores depending on the ATP site: The E2ATP site apparently differs from the E1ATP site in that it is more open because the fluorophore labeling in the E2ATP site was sterically better accessible for quenchers.
Collapse
Affiliation(s)
- H Linnertz
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague
| | | | | |
Collapse
|
11
|
Tsuda T, Kaya S, Yokoyama T, Taniguchi K. Are pyridoxal and fluorescein probes in lysine residues of alpha-chain in Na+,K(+)-ATPase sensing ATP binding? Ann N Y Acad Sci 1997; 834:186-93. [PMID: 9405807 DOI: 10.1111/j.1749-6632.1997.tb52250.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Na+,K(+)-ATPase preparations from pig kidneys were treated with 50 microM pyridoxal 5'-diphospho-5'-adenosine (AP2PL) in the presence of NaCl. The resulting preparations contained 0.5 mol of the AP2PL probe at the Lys-480/mol alpha-chain. This modification reduced both Na+,K(+)-ATPase activity and the amount of Na(+)-dependent phosphoenzyme from ATP to around 50% but not that from acetyl phosphate (AcP). The addition of 1 mM AcP to the modified enzyme in the presence of Mg2+ and Na+ induced phosphorylation (3.0/s) followed by an AP2PL fluorescence increase (1.2/s). The addition of 10 microM ATP instead of AcP induced rapid phosphorylation (28/s) followed by a slow increase in fluorescence (1.0/s). When modified enzyme preparations were treated with fluorescein 5'-isothiocyanate (FITC), the phosphorylation capacity from ATP was reduced to around 5% with little influence on either the AP2PL fluorescence change by ATP or phosphorylation from AcP. The addition of increasing concentrations of ATP with 160 mM NaCl to the K(+)-bound AP2PL-FITC-labeled enzyme showed different rates for each fluorescence change and different affinities for ATP of the changes. These data and others indicate that the AP2PL probe at Lys-480 can monitor ATP binding to high- and low-affinity sites and suggest the simultaneous presence of two different low-affinity sites for ATP detected by an AP2PL probe at Lys-480 and an FITC probe at Lys-501.
Collapse
Affiliation(s)
- T Tsuda
- Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
12
|
Plesner IW. Two unexplained kinetic features of NA,K-ATPase may be understood as indicating K(+)-induced cooperativity between subunits in a dimeric enzyme. Ann N Y Acad Sci 1997; 834:412-5. [PMID: 9432916 DOI: 10.1111/j.1749-6632.1997.tb52286.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- I W Plesner
- Department of Chemistry, University of Aarhus, Denmark.
| |
Collapse
|
13
|
Thoenges D, Schoner W. 2'-O-Dansyl analogs of ATP bind with high affinity to the low affinity ATP site of Na+/K+-ATPase and reveal the interaction of two ATP sites during catalysis. J Biol Chem 1997; 272:16315-21. [PMID: 9195936 DOI: 10.1074/jbc.272.26.16315] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Na+/K+-transport through mammalian cell membranes by Na+/K+-ATPase (EC 3.6.1.37) needs the interaction of ATP sites with different binding affinities during catalysis: one with catalytic (high affinity site) and one with regulatory properties (low affinity site). To find affinity labels for the latter one, the effects of 2'-O-dansylated ATP analogs on Na+/K+-ATPase and its partial activities were analyzed. DANS-ATP (2'-O-(6-dimethylaminonaphthalenesulfonyl)adenosine 5'-triphosphate) inhibited noncompetitively at low ATP concentrations and competitively at high ATP concentrations the Na+/K+-activated hydrolysis of ATP under turnover conditions. It interacted preferentially with the low affinity ATP site as shown by its protective effect against the inactivation of Na+/K+-ATPase by Co(NH3)4ATP and Cr(H2O)4ATP. DANS-N3-ATP, however, inactivated Na+/K+-ATPase. The initial velocity of inactivation shows a sigmoid concentration dependence that was converted to a hyperbola in the presence of ATP. DANS-N3-ATP inhibited competitively the K+-activated hydrolysis of p-nitrophenyl phosphate in a fluorescein isothiocyanate-blocked enzyme but did not effect Na+-dependent phosphoenzyme formation from [gamma-32P]ATP in a Co(NH3)4PO4-blocked enzyme. These effects could be described by a Koshland-Némethy-Filmer model assuming two nucleotide binding sites in strong cooperation. Fitting all data to this model revealed that ATP was bound in a negative cooperative way with a Kd = 0.3-1 microM to the first site and a Kd = 100-120 microM to the second site of the enzyme containing already one ATP bound. The hydrolysis of ATP through a pathway with two ATP bound was 30 times faster than hydrolysis with one ATP bound. DANS-N3-ATP bound in a positive cooperative way with a Kd = 500 +/- 100 microM to the first site and a Kd = 2.5 +/- 0.5 microM to the second site containing already one DANS-N3-ATP bound. Therefore, DANS-N3-ATP may be an useful affinity marker of the low affinity, regulatory ATP site.
Collapse
Affiliation(s)
- D Thoenges
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen; Frankfurter Strasse 100, D-35392 Giessen, Germany
| | | |
Collapse
|
14
|
The ATP Binding Sites of P-Type ION Transport ATPases: Properties, Structure, Conformations, and Mechanism of Energy Coupling. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s1569-2558(08)60152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Matejovicová M, Machác S, Lehotský J, Jakus J, Mézesová V. Synaptosomal Na, K-ATPase during forebrain ischemia in Mongolian gerbils. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1996; 29:67-78. [PMID: 8887941 DOI: 10.1007/bf02815194] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We studied the activity and kinetic parameters of synaptosomal Na, K-ATPase during 15 min of forebrain ischemia and following 60 min of reperfusion produced by reversible common carotid occlusion in Mongolian gerbils. A synaptosomal fraction was obtained by both differential centrifugation of brain tissue homogenate and centrifugation of crude mitochondrial fraction at a discontinual sucrose density gradient. We found two components of ATP concentration dependence of ATP hydrolysis that represent two types of ATP-binding sites: high affinity and low affinity. Neither ischemia nor reperfusion affected kinetic parameters of a high-affinity site. However, low-affinity site parameters were affected by both ischemia and ischemia followed by reperfusion. Maximal velocity (Vmax) decreased by 43 and 42% after ischemia and after ischemia/reperfusion, respectively. The apparent Km for ATP decreased by 52% after ischemia and by 47% after ischemia/reperfusion. The apparent affinities for K+ and Na+ were determined from the ATP hydrolysis rate as a function of Na+ and K+ concentrations. We found the half-maximal activation constant for K+ (KaK+) increased by 60% after ischemia and by 146% after ischemia/reperfusion. On the other hand, we found that KaNa+ decreased significantly after ischemia/reperfusion (16%). We concluded that it is the dephosphorylation step of the ATPase reaction cycle that is primarily affected by both ischemia and ischemia/reperfusion. This might be caused by alteration of the protein molecule and/or its surroundings subsequent to ischemia.
Collapse
Affiliation(s)
- M Matejovicová
- Department of Biochemistry, Jessenius Medical Faculty, Comenius University, Martin, Slovak Republic
| | | | | | | | | |
Collapse
|
16
|
Ward DG, Cavieres JD. Binding of 2'(3')-O-(2,4-6-trinitrophenyl) ADP to soluble alpha beta protomers of Na, K-ATPase modified with fluorescein isothiocyanate. Evidence for two distinct nucleotide sites. J Biol Chem 1996; 271:12317-21. [PMID: 8647832 DOI: 10.1074/jbc.271.21.12317] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The overall reaction of well-defined solubilized protomers of Na,K-ATPase (one alpha plus one beta subunit) retains the dual ATP dependence observed with the membrane-bound enzyme, with distinctive ATP effects in the submicromolar and submillimolar ranges (Ward, D. G., and Cavieres, J. D. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 5332-5336). We have now found that the K+/-phosphatase activity of the alpha beta protomers is still inhibited by 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-diphosphate (TNP-ADP). What is most significant is that the TNP-ADP effect can be observed clearly with protomeric enzyme whose high affinity ATP site has been blocked covalently with fluorescein isothiocyanate. We conclude that nucleotides can bind at two discrete sites in each protomeric unit of Na,K-ATPase.
Collapse
Affiliation(s)
- D G Ward
- Department of Cell Physiology and Pharmacology, Leicester University, United Kingdom
| | | |
Collapse
|
17
|
Linnertz H, Thönges D, Schoner W. Na+/K(+)-ATPase with a blocked E1ATP site still allows backdoor phosphorylation of the E2ATP site. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 232:420-4. [PMID: 7556190 DOI: 10.1111/j.1432-1033.1995.tb20827.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The role of simultaneously existing ATP-binding sites in the catalytic process of Na+/K(+)-ATPase is unclear. In order to learn whether blocking the E1ATP site affects the properties of the E2ATP site, the E1ATP site was inactivated by either fluorescein 5'-isothiocyanate, the non-phosphorylating Cr(H2O)4AdoPP[CH2]P or the phosphorylating Cr(H2O)4ATP. The properties of the remaining E2ATP site were studied by measuring 'backdoor phosphorylation' in the presence of ouabain, or K(+)-activated hydrolysis of p-nitrophenyl phosphate. The involvement of the E2ATP site was further tested by the effects of Co(NH3)4ATP, a specific inactivator of this site. When the E1ATP site was inactivated by fluorescein 5'-isothiocyanate or the non-phosphorylating Cr(H2O)4AdoPP[CH2]P, backdoor phosphorylation and the activity of K(+)-activated p-nitrophenylphosphatase remained unchanged. Both processes were lost, however, when the E2ATP site was additionally inactivated by Co(NH3)4ATP. Inactivation of the E1ATP site by fluorescein 5'-isothiocyanate or Cr(H2O)4AdoPP[CH2]P decreased the affinity of the p-nitrophenylphosphatase activity of the E2ATP site for the substrate p-nitrophenyl phosphate by four times. This is consistent with a former report showing that dephosphorylation in a fluorescein 5'-isothiocyanate-inactivated Na+/K(+)-ATPase has a lowered sensitivity for ATP [Scheiner-Bobis, G., Antonipillai, J. & Farley, R. A. (1993) Biochemistry 32, 9592-9599]. Inactivation of the E1ATP site by the phosphorylating Cr(H2O)4ATP, however, led to a loss of the property of the E2ATP site to hydrolyse K(+)-dependent p-nitrophenyl phosphate and to achieve backdoor phosphorylation. Evidently, ATP sites coexist in Na+/K(+)-ATPase, and binding of ATP to one site affects the property of the other site [Scheiner-Bobis, G., Esmann, M. & Schoner, W. (1989) Eur. J. Biochem. 183, 173-178]. Although the enzyme can be phosphorylated from both ATP sites, phosphorylation of the E1ATP site excludes the phosphorylation of the E2ATP site.
Collapse
Affiliation(s)
- H Linnertz
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, Germany
| | | | | |
Collapse
|
18
|
Boldyrev AA, Quinn PJ. E1/E2 type cation transport ATPases: evidence for transient associations between protomers. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:1323-31. [PMID: 7890111 DOI: 10.1016/0020-711x(94)90174-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
E1/E2 type cation transport ATPases are known to exist in different conformeric states. Recent evidence characterizing these conformers in membrane is reviewed. A consensus view is proposed in which E2 conformers tend to form oligomeric complexes by lateral association between monomeric protomers and E1 conformers exhibit the opposite behaviour. It is suggested that transient associations between monomers during cation pump cycles may be a common feature of the ion translocation mechanism under physiological conditions.
Collapse
Affiliation(s)
- A A Boldyrev
- Biotechnological Center of M. V. Lomonosov Moscow State University, Russia
| | | |
Collapse
|
19
|
Blanco G, Koster JC, Mercer RW. The alpha subunit of the Na,K-ATPase specifically and stably associates into oligomers. Proc Natl Acad Sci U S A 1994; 91:8542-6. [PMID: 8078919 PMCID: PMC44642 DOI: 10.1073/pnas.91.18.8542] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Na,K-ATPase is a heterodimer consisting of an alpha and a beta subunit. Both Na,K-ATPase subunits are encoded by multigene families. Several isoforms for the alpha (alpha 1, alpha 2, and alpha 3) and beta (beta 1, beta 2, and beta 3) subunits have been identified. All these isoforms are capable of forming functionally active enzyme. Although there is general agreement that the Na,K-ATPase consists of alpha and beta subunits in equimolar amounts, the quaternary structure of the Na,K-ATPase and its functional significance is unknown. Several studies have demonstrated that the enzyme exists within the plasma membrane as an oligomer of alpha beta dimers. However, because the alpha beta protomer seems to be catalytically competent, the possibility exists that higher oligomers are irrelevant to function. The ability to express different alpha isoforms in insect cells and the availability of isoform-specific antibodies has provided the opportunity to test for the existence of stable and specific associations among alpha subunits. By coexpressing different alpha-subunit isoforms in cultured cells, we demonstrate that the Na,K-ATPase alpha subunits specifically and stably associate into oligomeric complexes. This same association among alpha-subunit isoforms was demonstrated in the native enzyme from rat brain. The interaction between Na,K-ATPase alpha subunits is highly specific. When the Na,K-ATPase alpha subunit is coexpressed with the alpha subunit from the H,K-ATPase, the H,K subunit does not associate with the Na,K subunit. Moreover, expression of the truncated alpha 1T isoform with the full-length alpha subunit demonstrates that the C-terminal portion of the polypeptide is important in the alpha-subunit association. Although these results do not clarify the functional role of alpha alpha associations, they do establish their highly specific nature and suggest that oligomerization of alpha beta protomers may be important to the stability and physiological regulation of the enzyme.
Collapse
Affiliation(s)
- G Blanco
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | |
Collapse
|
20
|
Different biochemical modes of action of two irreversible H+,K(+)-ATPase inhibitors, omeprazole and E3810. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80577-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Scheiner-Bobis G, Antonipillai J, Farley RA. Simultaneous binding of phosphate and TNP-ADP to FITC-modified NA+,K(+)-ATPase. Biochemistry 1993; 32:9592-9. [PMID: 8396968 DOI: 10.1021/bi00088a011] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Double-reciprocal plots of the rate of ATP hydrolysis by Na+,K(+)-ATPase versus ATP concentration are not linear, and may reflect either two distinct binding sites for ATP or a single ATP binding site whose affinity for the nucleotide alternates between high-affinity and low-affinity states. In order to determine whether multiple nucleotides or nucleotide analogs can bind simultaneously to Na,+,K(+)-ATPase, the effects of nucleotides on the hydrolysis of p-nitrophenyl phosphate and on the dephosphorylation rate of Na+,K(+)-ATPase modified by fluorescein 5'-isothiocyanate (FITC) were measured. FITC blocks the high-affinity binding site for ATP on the Na+K(+)-ATPase and inhibits ATP hydrolysis at ATP concentrations as high as 8.3 mM. The hydrolysis of p-nitrophenyl phosphate and phosphoenzyme formation from inorganic phosphate and Mg2+ were not affected by FITC modification. The p-nitrophenylphosphatase activity of unmodified Na+,K(+)-ATPase was stimulated by low concentrations of ATP (10-100 microM) and other nucleotides, and was inhibited at higher nucleotide concentrations. In contrast, there was no effect on p-nitrophenyl phosphate hydrolysis by FITC-modified Na,K(+)-ATPase at ATP concentrations less than 100 microM. The hydrolysis of p-nitrophenyl phosphate by FITC-modified Na+,K(+)-ATPase was inhibited at ATP concentrations greater than 100 microM. These observations demonstrate that the effects of ATP acting at high-affinity sites are absent in FITC-modified Na+,K(+)-ATPase but the effects of ATP acting at low-affinity sites are still observed. In unmodified Na+,K(+)-ATPase, the rate of dephosphorylation of the phosphoenzyme formed from inorganic phosphate and Mg2+ was inhibited by ATP.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Scheiner-Bobis
- Department of Physiology and Biophysics, University of Southern California, School of Medicine, Los Angeles 90033
| | | | | |
Collapse
|
22
|
Ward DG, Cavieres JD. Solubilized alpha beta Na,K-ATPase remains protomeric during turnover yet shows apparent negative cooperativity toward ATP. Proc Natl Acad Sci U S A 1993; 90:5332-6. [PMID: 8389481 PMCID: PMC46710 DOI: 10.1073/pnas.90.11.5332] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A prominent feature of the Na,K-ATPase reaction is an ATP dependence that suggests high- and low-affinity ATP requirements during the enzymic cycle. As only one ATP-binding domain has been identified in the alpha subunit and none has been identified in the beta subunit, it has seemed likely that the apparent negative cooperativity results from subunit interactions in an (alpha beta)2 diprotomer. To test this possibility, we have examined the behavior of solubilized alpha beta protomers of Na,K-ATPase down to 50 nM [gamma-32P]ATP. Active-enzyme analytical ultracentrifugation shows that the protomer is the active species and that no oligomerization occurs during turnover. However, we find that dual ATP effects can be clearly demonstrated and that nonhydrolyzable ATP analogs can stimulate the Na,K-ATPase activity of the soluble protomer. We conclude that the apparent negative cooperativity is inherent to the alpha beta protomer and that this should explain some of the complexities found with membrane-bound Na,K-ATPase and, perhaps, other P-type cation pumps.
Collapse
Affiliation(s)
- D G Ward
- Department of Physiology, Leicester University, United Kingdom
| | | |
Collapse
|
23
|
Hamer E, Schoner W. Modification of the E1ATP binding site of Na+/K(+)-ATPase by the chromium complex of adenosine 5'-[beta,gamma-methylene]triphosphate blocks the overall reaction but not the partial activities of the E2 conformation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:743-8. [PMID: 8386635 DOI: 10.1111/j.1432-1033.1993.tb17815.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The chromium complex of adenosine 5'-[beta,gamma-methylene]triphosphate, Cr(H2O)4AdoPP[CH2]P, inactivates Na+/K(+)-ATPase from pig kidney at 37 degrees C with an inactivation velocity constant of 7.1 x 10(-3) min-1 by binding to the high-affinity ATP site (E1ATP site). The dissociation constant (Kd) of the analogue at this site is 26 microM, and of ATP 0.8 microM. Inactivation of the overall reaction of Na+/K(+)-ATPase by Cr(H2O)4AdoPP[CH2]P did not alter the activities of the E2 conformational state such as K(+)-activated p-nitrophenylphosphatase, 86Rb+ occlusion and [3H]ouabain binding by the 'backdoor' phosphorylation. However, [3H]ouabain binding via the forwards reaction from E1ATP in the presence of Na+ + Mg2+ is inhibited. K(+)-activated p-nitrophenylphosphatase activity of the Cr(H2O)4AdoPP[CH2]P-inactivated enzyme decreases when an MgATP analogue, the tetraammine cobalt complex of ATP, Co(NH3)4ATP, is used additionally to inactivate the E2ATP site. The enzyme activity of K(+)-activated phosphatase is also lost if the beta,gamma-bidentate chromium(III) complex of ATP, Cr(H2O)4ATP, which may form a stable E1-chromo-phosphointermediate, is used for the inactivation of Na+/K(+)-ATPase. We conclude that the phenomenon of a blockade of the overall reaction of Na+/K(+)-ATPase by the formation of a stable E1.CrAdoPP[CH2]P complex, leading thereby to a loss of the partial activities of the E1 conformation, but not of the E2 conformation, is consistent with the postulate of an (alpha beta)2 diprotomeric nature of the sodium pump. The observation, moreover, that treatment of the sodium pump with Cr(H2O)4ATP but not with Cr(H2O)4AdoPP[CH2]P leads to an inactivation of K(+)-activated phosphatase seems to indicate that the formation of a E1-phosphointermediate affects the E2ATP site.
Collapse
Affiliation(s)
- E Hamer
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, Germany
| | | |
Collapse
|
24
|
Hasenauer J, Huang W, Askari A. Allosteric regulation of the access channels to the Rb+ occlusion sites of (Na+ + K+)-ATPase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53692-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
|
26
|
Buxbaum E, Schoner W. Investigation of subunit interactions by radiation inactivation: the case of Na+/K+-ATPase. J Theor Biol 1992; 155:21-31. [PMID: 1320174 DOI: 10.1016/s0022-5193(05)80546-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The target size of Na+/K+-ATPase has been determined by radiation inactivation. To interpret the results, we have performed Monte Carlo simulations of the inactivation process. This seems to be a general method for the interpretation of such studies. The simulation revealed that radiation inactivation can distinguish between monoprotomeric and multiprotomeric models of enzyme action only if the measured reaction requires the actual co-operation of, rather than the mere co-existence of, different protomeres.
Collapse
Affiliation(s)
- E Buxbaum
- Institut für Biochemie und Endokrinologie, Justus-Liebig-Universität Giessen, Germany
| | | |
Collapse
|