1
|
Nuñez E, Muguruza-Montero A, Alicante SM, Villarroel A. Fluorometric Measurement of Calmodulin-Dependent Peptide-Protein Interactions Using Dansylated Calmodulin. Bio Protoc 2024; 14:e4963. [PMID: 38618173 PMCID: PMC11006803 DOI: 10.21769/bioprotoc.4963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 04/16/2024] Open
Abstract
The assessment of peptide-protein interactions is a pivotal aspect of studying the functionality and mechanisms of various bioactive peptides. In this context, it is essential to employ methods that meet specific criteria, including sensitivity, biocompatibility, versatility, simplicity, and the ability to offer real-time monitoring. In cellular contexts, only a few proteins naturally possess inherent fluorescence, specifically those containing aromatic amino acids, particularly tryptophan. Nonetheless, by covalently attaching fluorescent markers, almost all proteins can be modified for monitoring purposes. Among the early extrinsic fluorescent probes designed for this task, dansyl chloride (DNSC) is a notable option due to its versatile nature and reliable performance. DNSC has been the primary choice as a fluorogenic derivatizing reagent for analyzing amino acids in proteins and peptides for an extended period of time. In our work, we have effectively utilized the distinctive properties of dansylated-calmodulin (D-CaM) for monitoring the interaction dynamics between proteins and peptides, particularly in the context of their association with calmodulin (CaM), a calcium-dependent regulatory protein. This technique not only enables us to scrutinize the affinity of diverse ligands but also sheds light on the intricate role played by calcium in these interactions. Key features • Dynamic fluorescence and real-time monitoring: dansyl-modified CaM enables sensitive, real-time fluorescence, providing valuable insights into the dynamics of molecular interactions and ligand binding. • Selective interaction and stable fluorescent adducts: DNSC selectively interacts with primary amino groups, ensuring specific detection and forming stable fluorescent sulfonamide adducts. • Versatility in research and ease of identification: D-CaM is a versatile tool in biological research, facilitating identification, precise quantification, and drug assessment for therapeutic development. • Sensitivity to surrounding alterations: D-CaM exhibits sensitivity to its surroundings, particularly ligand-induced changes, offering subtle insights into molecular interactions and environmental influences.
Collapse
Affiliation(s)
- Eider Nuñez
- Instituto Biofisika, CSIC-UPV/EHU, Leioa, Spain
| | | | | | | |
Collapse
|
2
|
Gedeon A, Ayoub N, Brûlé S, Raynal B, Karimova G, Gelin M, Mechaly A, Haouz A, Labesse G, Munier‐Lehmann H. Insight into the role of the Bateman domain at the molecular and physiological levels through engineered IMP dehydrogenases. Protein Sci 2023; 32:e4703. [PMID: 37338125 PMCID: PMC10357500 DOI: 10.1002/pro.4703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Inosine 5'-monophosphate (IMP) dehydrogenase (IMPDH) is an ubiquitous enzyme that catalyzes the NAD+ -dependent oxidation of inosine 5'-monophosphate into xanthosine 5'-monophosphate. This enzyme is formed of two distinct domains, a core domain where the catalytic reaction occurs, and a less-conserved Bateman domain. Our previous studies gave rise to the classification of bacterial IMPDHs into two classes, according to their oligomeric and kinetic properties. MgATP is a common effector but cause to different effects when it binds within the Bateman domain: it is either an allosteric activator for Class I IMPDHs or a modulator of the oligomeric state for Class II IMPDHs. To get insight into the role of the Bateman domain in the dissimilar properties of the two classes, deleted variants of the Bateman domain and chimeras issued from the interchange of the Bateman domain between the three selected IMPDHs have been generated and characterized using an integrative structural biology approach. Biochemical, biophysical, structural, and physiological studies of these variants unveil the Bateman domain as being the carrier of the molecular behaviors of both classes.
Collapse
Affiliation(s)
- Antoine Gedeon
- Institut Pasteur, Université Paris Cité, Unité de Chimie et Biocatalyse, CNRS UMR3523ParisFrance
- Present address:
Institut Pasteur, Université Paris Cité, Unité de Microbiologie Structurale, CNRS UMR3525ParisFrance
| | - Nour Ayoub
- Institut Pasteur, Université Paris Cité, Unité de Chimie et Biocatalyse, CNRS UMR3523ParisFrance
- Present address:
Institut Pasteur, Université Paris Cité, Plate‐Forme de Criblage Chémogénomique et Biologique, CNRS UMR3523ParisFrance
| | - Sébastien Brûlé
- Institut Pasteur, Université Paris Cité, Plate‐Forme de Biophysique Moléculaire, C2RT, CNRS UMR3528ParisFrance
| | - Bertrand Raynal
- Institut Pasteur, Université Paris Cité, Plate‐Forme de Biophysique Moléculaire, C2RT, CNRS UMR3528ParisFrance
| | - Gouzel Karimova
- Institut Pasteur, Université Paris Cité, Unité de Biochimie des Interactions Macromoléculaires, CNRS UMR3528ParisFrance
| | - Muriel Gelin
- Centre de Biologie StructuraleUniversité Montpellier, INSERM, CNRSMontpellierFrance
| | - Ariel Mechaly
- Institut Pasteur, Université Paris Cité, Plate‐Forme de Cristallographie, C2RT, CNRS UMR3528ParisFrance
| | - Ahmed Haouz
- Institut Pasteur, Université Paris Cité, Plate‐Forme de Cristallographie, C2RT, CNRS UMR3528ParisFrance
| | - Gilles Labesse
- Centre de Biologie StructuraleUniversité Montpellier, INSERM, CNRSMontpellierFrance
| | - Hélène Munier‐Lehmann
- Institut Pasteur, Université Paris Cité, Unité de Chimie et Biocatalyse, CNRS UMR3523ParisFrance
- Present address:
Institut Pasteur, Université Paris Cité, Plate‐Forme de Criblage Chémogénomique et Biologique, CNRS UMR3523ParisFrance
| |
Collapse
|
3
|
Walter P, Mechaly A, Bous J, Haouz A, England P, Lai‐Kee‐Him J, Ancelin A, Hoos S, Baron B, Trapani S, Bron P, Labesse G, Munier‐Lehmann H. Structural basis for the allosteric inhibition of UMP kinase from Gram‐positive bacteria, a promising antibacterial target. FEBS J 2022; 289:4869-4887. [DOI: 10.1111/febs.16393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/18/2022] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick Walter
- Unité de Chimie et Biocatalyse Département de Biologie Structurale et Chimie Institut Pasteur CNRS UMR3523 Paris France
| | - Ariel Mechaly
- Plate‐Forme de Cristallographie C2RT Institut Pasteur CNRS UMR3528 Paris France
| | - Julien Bous
- Centre de Biologie Structurale (CBS) Univ Montpellier INSERM CNRS Montpellier France
| | - Ahmed Haouz
- Plate‐Forme de Cristallographie C2RT Institut Pasteur CNRS UMR3528 Paris France
| | - Patrick England
- Plate‐Forme de Biophysique Moléculaire C2RT Institut Pasteur CNRS UMR3528 Paris France
| | - Joséphine Lai‐Kee‐Him
- Centre de Biologie Structurale (CBS) Univ Montpellier INSERM CNRS Montpellier France
| | - Aurélie Ancelin
- Centre de Biologie Structurale (CBS) Univ Montpellier INSERM CNRS Montpellier France
| | - Sylviane Hoos
- Plate‐Forme de Biophysique Moléculaire C2RT Institut Pasteur CNRS UMR3528 Paris France
| | - Bruno Baron
- Plate‐Forme de Biophysique Moléculaire C2RT Institut Pasteur CNRS UMR3528 Paris France
| | - Stefano Trapani
- Centre de Biologie Structurale (CBS) Univ Montpellier INSERM CNRS Montpellier France
| | - Patrick Bron
- Centre de Biologie Structurale (CBS) Univ Montpellier INSERM CNRS Montpellier France
| | - Gilles Labesse
- Centre de Biologie Structurale (CBS) Univ Montpellier INSERM CNRS Montpellier France
| | - Hélène Munier‐Lehmann
- Unité de Chimie et Biocatalyse Département de Biologie Structurale et Chimie Institut Pasteur CNRS UMR3523 Paris France
| |
Collapse
|
4
|
Lavigne M, Helynck O, Rigolet P, Boudria-Souilah R, Nowakowski M, Baron B, Brülé S, Hoos S, Raynal B, Guittat L, Beauvineau C, Petres S, Granzhan A, Guillon J, Pratviel G, Teulade-Fichou MP, England P, Mergny JL, Munier-Lehmann H. SARS-CoV-2 Nsp3 unique domain SUD interacts with guanine quadruplexes and G4-ligands inhibit this interaction. Nucleic Acids Res 2021; 49:7695-7712. [PMID: 34232992 PMCID: PMC8287907 DOI: 10.1093/nar/gkab571] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 12/16/2022] Open
Abstract
The multidomain non-structural protein 3 (Nsp3) is the largest protein encoded by coronavirus (CoV) genomes and several regions of this protein are essential for viral replication. Of note, SARS-CoV Nsp3 contains a SARS-Unique Domain (SUD), which can bind Guanine-rich non-canonical nucleic acid structures called G-quadruplexes (G4) and is essential for SARS-CoV replication. We show herein that the SARS-CoV-2 Nsp3 protein also contains a SUD domain that interacts with G4s. Indeed, interactions between SUD proteins and both DNA and RNA G4s were evidenced by G4 pull-down, Surface Plasmon Resonance and Homogenous Time Resolved Fluorescence. These interactions can be disrupted by mutations that prevent oligonucleotides from folding into G4 structures and, interestingly, by molecules known as specific ligands of these G4s. Structural models for these interactions are proposed and reveal significant differences with the crystallographic and modeled 3D structures of the SARS-CoV SUD-NM/G4 interaction. Altogether, our results pave the way for further studies on the role of SUD/G4 interactions during SARS-CoV-2 replication and the use of inhibitors of these interactions as potential antiviral compounds.
Collapse
Affiliation(s)
- Marc Lavigne
- Institut Pasteur, Département de Virologie. CNRS UMR 3569, Paris, France
| | - Olivier Helynck
- Institut Pasteur, Unité de Chimie et Biocatalyse. CNRS UMR 3523, Paris, France
| | - Pascal Rigolet
- Institut Curie, Université Paris-Saclay, CNRS UMR 9187, Inserm U1196, Orsay, France
| | | | - Mireille Nowakowski
- Institut Pasteur, Plateforme de Production et Purification de Protéines Recombinantes, C2RT, CNRS UMR 3528, Paris, France
| | - Bruno Baron
- Institut Pasteur, Plateforme de Biophysique Moléculaire, C2RT, CNRS UMR 3528, Paris, France
| | - Sébastien Brülé
- Institut Pasteur, Plateforme de Biophysique Moléculaire, C2RT, CNRS UMR 3528, Paris, France
| | - Sylviane Hoos
- Institut Pasteur, Plateforme de Biophysique Moléculaire, C2RT, CNRS UMR 3528, Paris, France
| | - Bertrand Raynal
- Institut Pasteur, Plateforme de Biophysique Moléculaire, C2RT, CNRS UMR 3528, Paris, France
| | - Lionel Guittat
- Université Sorbonne Paris Nord, INSERM U978, Labex Inflamex, F-93017 Bobigny, France
- Laboratoire d’optique et Biosciences, Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France
| | - Claire Beauvineau
- Institut Curie, Université Paris-Saclay, CNRS UMR 9187, Inserm U1196, Orsay, France
| | - Stéphane Petres
- Institut Pasteur, Plateforme de Production et Purification de Protéines Recombinantes, C2RT, CNRS UMR 3528, Paris, France
| | - Anton Granzhan
- Institut Curie, Université Paris-Saclay, CNRS UMR 9187, Inserm U1196, Orsay, France
| | - Jean Guillon
- Inserm U1212, CNRS UMR 5320, Laboratoire ARNA, UFR des Sciences Pharmaceutiques, Université de Bordeaux, Bordeaux, France
| | - Geneviève Pratviel
- CNRS UPR 8241, Université Paul Sabatier, Laboratoire de Chimie de Coordination, Toulouse, France
| | | | - Patrick England
- Institut Pasteur, Plateforme de Biophysique Moléculaire, C2RT, CNRS UMR 3528, Paris, France
| | - Jean-Louis Mergny
- Laboratoire d’optique et Biosciences, Ecole Polytechnique, Inserm U1182, CNRS UMR7645, Institut Polytechnique de Paris, Palaiseau, France
| | | |
Collapse
|
5
|
(p)ppGpp/GTP and Malonyl-CoA Modulate Staphylococcus aureus Adaptation to FASII Antibiotics and Provide a Basis for Synergistic Bi-Therapy. mBio 2021; 12:mBio.03193-20. [PMID: 33531402 PMCID: PMC7858065 DOI: 10.1128/mbio.03193-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a major human bacterial pathogen for which new inhibitors are urgently needed. Antibiotic development has centered on the fatty acid synthesis (FASII) pathway, which provides the building blocks for bacterial membrane phospholipids. Fatty acid biosynthesis (FASII) enzymes are considered valid targets for antimicrobial drug development against the human pathogen Staphylococcus aureus. However, incorporation of host fatty acids confers FASII antibiotic adaptation that compromises prospective treatments. S. aureus adapts to FASII inhibitors by first entering a nonreplicative latency period, followed by outgrowth. Here, we used transcriptional fusions and direct metabolite measurements to investigate the factors that dictate the duration of latency prior to outgrowth. We show that stringent response induction leads to repression of FASII and phospholipid synthesis genes. (p)ppGpp induction inhibits synthesis of malonyl-CoA, a molecule that derepresses FapR, a key regulator of FASII and phospholipid synthesis. Anti-FASII treatment also triggers transient expression of (p)ppGpp-regulated genes during the anti-FASII latency phase, with concomitant repression of FapR regulon expression. These effects are reversed upon outgrowth. GTP depletion, a known consequence of the stringent response, also occurs during FASII latency, and is proposed as the common signal linking these responses. We next showed that anti-FASII treatment shifts malonyl-CoA distribution between its interactants FapR and FabD, toward FapR, increasing expression of the phospholipid synthesis genes plsX and plsC during outgrowth. We conclude that components of the stringent response dictate malonyl-CoA availability in S. aureus FASII regulation, and contribute to latency prior to anti-FASII-adapted outgrowth. A combinatory approach, coupling a (p)ppGpp inducer and an anti-FASII, blocks S. aureus outgrowth, opening perspectives for bi-therapy treatment.
Collapse
|
6
|
Dulac M, Melet A, Galardon E. Reversible Detection and Quantification of Hydrogen Sulfide by Fluorescence Using the Hemoglobin I from Lucina pectinata. ACS Sens 2018; 3:2138-2144. [PMID: 30204417 DOI: 10.1021/acssensors.8b00701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new detection system for the endogenous gaseous transmitter and environmental pollutant hydrogen sulfide is presented. It is based on the modulation of the fluorescence spectrum of a coumarin dye by the absorption spectrum of the recombinant hemoglobin I from clam Lucina pectinata upon coordination of the analyte. While we establish that the reported affinity of rHbI for H2S has been overestimated, the association of the protein with an appropriate fluorophore allows fast, easy, and reversible detection and quantification of hydrogen sulfide in buffer as well as biological fluids such as human plasma, with a quantification limit around 200 nM at pH 7.4.
Collapse
Affiliation(s)
- Martin Dulac
- UMR 8601, LCBPT, CNRS-Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Sts Pères, 75006 Paris, France
| | - Armelle Melet
- UMR 8601, LCBPT, CNRS-Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Sts Pères, 75006 Paris, France
| | - Erwan Galardon
- UMR 8601, LCBPT, CNRS-Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Sts Pères, 75006 Paris, France
| |
Collapse
|
7
|
Béguin P, Charpin N, Koonin EV, Forterre P, Krupovic M. Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems. Nucleic Acids Res 2016; 44:10367-10376. [PMID: 27655632 PMCID: PMC5137440 DOI: 10.1093/nar/gkw821] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022] Open
Abstract
Casposons are a recently discovered group of large DNA transposons present in diverse bacterial and archaeal genomes. For integration into the host chromosome, casposons employ an endonuclease that is homologous to the Cas1 protein involved in protospacer integration by the CRISPR-Cas adaptive immune system. Here we describe the site-preference of integration by the Cas1 integrase (casposase) encoded by the casposon of the archaeon Aciduliprofundum boonei. Oligonucleotide duplexes derived from the terminal inverted repeats (TIR) of the A. boonei casposon as well as mini-casposons flanked by the TIR inserted preferentially at a site reconstituting the original A. boonei target site. As in the A. boonei genome, the insertion was accompanied by a 15-bp direct target site duplication (TSD). The minimal functional target consisted of the 15-bp TSD segment and the adjacent 18-bp sequence which comprises the 3′ end of the tRNA-Pro gene corresponding to the TΨC loop. The functional casposase target site bears clear resemblance to the leader sequence-repeat junction which is the target for protospacer integration catalyzed by the Cas1–Cas2 adaptation module of CRISPR-Cas. These findings reinforce the mechanistic similarities and evolutionary connection between the casposons and the adaptation module of the prokaryotic adaptive immunity systems.
Collapse
Affiliation(s)
- Pierre Béguin
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris
| | - Nicole Charpin
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine Bethesda, MD 20894, USA
| | - Patrick Forterre
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris
| |
Collapse
|
8
|
Martinez-Sanz J, Assairi L. New insights into the interaction of centrin with Sfi1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:319-30. [PMID: 26779587 DOI: 10.1016/j.bbapap.2016.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/03/2015] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
Abstract
Centrin binds to Rad4(XPC) and Sfi1 through the hydrophobic motif W(1)xxL(4)xxxL(8) in the opposite orientation. Rad4 has one motif, but Sfi1 has approximately 20 repeats, each of which interacts with a centrin molecule. To investigate the parameters involved in centrin binding, we purified a ScSfi1 domain containing 6 repeats complexed with either yeast centrin Cdc31 or human centrin 1. The present study was performed using mutagenesis of centrin and of Sfi1 residues involved in centrin binding and the stability of the centrin-centrin complexes was assessed using thermal denaturation and CD. Calcium stabilized these complexes, as indicated by the Tm increases measured by circular dichroism. The complexes, which were composed of Sfi1 variants and yeast centrin, were analysed in the presence of EDTA. The replacement of W with F within the repeat region yielded a functional repeat (Tm 45°C). The replacement of W with A in two adjacent Sfi1 repeats reduced the thermal stability of the Sfi1-centrin complexes (40°C). We analysed three HsCen1 variants that were homologous to the yeast mutants and induced cell cycle arrest during the G2/M transition. The HsCen1 variants E105K and F113L reduced the thermal stability (50°C, 50°C) of the ScSfi1-HsCen1 complexes; in contrast, the A109T variant exhibited no change in thermal stability relative to the wild-type (60°C). Conversely to ScCdc31, there were no apparent centrin-centrin interactions with wild-type HsCen1, but they did occur for the S170D mutation that mimics PKA phosphorylation at the S170 residue.
Collapse
Affiliation(s)
- Juan Martinez-Sanz
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U759, F-91405 Orsay Cédex, France
| | - Liliane Assairi
- Institut Curie-Centre de Recherche, F-91405 Orsay Cédex, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U759, F-91405 Orsay Cédex, France.
| |
Collapse
|
9
|
Alexandre T, Rayna B, Munier-Lehmann H. Two classes of bacterial IMPDHs according to their quaternary structures and catalytic properties. PLoS One 2015; 10:e0116578. [PMID: 25706619 PMCID: PMC4338043 DOI: 10.1371/journal.pone.0116578] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/10/2014] [Indexed: 11/19/2022] Open
Abstract
Inosine-5'-monophosphate dehydrogenase (IMPDH) occupies a key position in purine nucleotide metabolism. In this study, we have performed the biochemical and physico-chemical characterization of eight bacterial IMPDHs, among which six were totally unexplored. This study led to a classification of bacterial IMPDHs according to the regulation of their catalytic properties and their quaternary structures. Class I IMPDHs are cooperative enzymes for IMP, which are activated by MgATP and are octameric in all tested conditions. On the other hand, class II IMPDHs behave as Michaelis-Menten enzymes for both substrates and are tetramers in their apo state or in the presence of IMP, which are shifted to octamers in the presence of NAD or MgATP. Our work provides new insights into the IMPDH functional regulation and a model for the quaternary structure modulation is proposed.
Collapse
Affiliation(s)
- Thomas Alexandre
- Institut Pasteur, Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, 28 rue du Dr Roux, F-75015, Paris, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3523, F-75015, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Bertrand Rayna
- Institut Pasteur, Proteopole, Plateforme de biophysique des macromolecules et de leurs interactions, 25 rue du Dr Roux, F-75015, Paris, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3528, F-75015, Paris, France
| | - Hélène Munier-Lehmann
- Institut Pasteur, Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, 28 rue du Dr Roux, F-75015, Paris, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 3523, F-75015, Paris, France
| |
Collapse
|
10
|
Munier-Lehmann H, Lucas-Hourani M, Guillou S, Helynck O, Zanghi G, Noel A, Tangy F, Vidalain PO, Janin YL. Original 2-(3-alkoxy-1H-pyrazol-1-yl)pyrimidine derivatives as inhibitors of human dihydroorotate dehydrogenase (DHODH). J Med Chem 2015; 58:860-77. [PMID: 25558988 DOI: 10.1021/jm501446r] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
From a research program aimed at the design of new chemical entities followed by extensive screening on various models of infectious diseases, an original series of 2-(3-alkoxy-1H-pyrazol-1-yl)pyrimidines endowed with notable antiviral properties were found. Using a whole cell measles virus replication assay, we describe here some aspects of the iterative process that, from 2-(4-benzyl-3-ethoxy-5-methyl-1H-pyrazol-1-yl)pyrimidine, led to 2-(4-(2,6-difluorophenoxy)-3-isopropoxy-5-methyl-1H-pyrazol-1-yl)-5-ethylpyrimidine and a 4000-fold improvement of antiviral activity with a subnanomolar level of inhibition. Moreover, recent precedents in the literature describing antiviral derivatives acting at the level of the de novo pyrimidine biosynthetic pathway led us to determine that the mode of action of this series is based on the inhibition of the cellular dihydroorotate dehydrogenase (DHODH), the fourth enzyme of this pathway. Biochemical studies with recombinant human DHODH led us to measure IC50 as low as 13 nM for the best example of this original series when using 2,3-dimethoxy-5-methyl-6-(3-methyl-2-butenyl)-1,4-benzoquinone (coenzyme Q1) as a surrogate for coenzyme Q10, the cofactor of this enzyme.
Collapse
Affiliation(s)
- Hélène Munier-Lehmann
- Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Institut Pasteur , 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Grecu D, Blouquit Y, Assairi L. The E144 residue of Scherffelia dubia centrin discriminates between the DNA repair protein XPC and the centrosomal protein Sfi1. FEBS Open Bio 2013; 4:33-42. [PMID: 24371720 PMCID: PMC3871271 DOI: 10.1016/j.fob.2013.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 11/27/2022] Open
Abstract
Centrins are members of the EF-hand family of calcium-binding proteins, which are highly conserved among eukaryotes. Centrins bind to several cellular targets, through a hydrophobic triad. However, the W(1)xxL(4)xxxL(8) triad in XPC (Xeroderma Pigmentosum Group C protein) is found in the reverse orientation, as in the L(8)xxxL(4)xxW(1) triad in Sfi1 (Suppressor of Fermentation-Induced loss of stress resistance protein 1). As shown by previous NMR studies of human centrin 2 in complex with XPC or Sfi1, the E148 residue of human centrin 2 is in contact with XPC but is pushed away from the triad of Sfi1. We corroborated these findings using site-directed mutagenesis to generate mutations in Scherffelia dubia centrin (SdCen) and by using isothermal titration calorimetry to analyze the binding affinity of these mutants to XPC and Sfi1. We mutated the F109 residue, which is the main residue involved in target binding regardless of triad orientation, and the E144 residue, which was thought to be involved only in XPC binding. The F109L mutation reduced the binding of SdCen to XPC and Sfi1 and the negative effect was greater upon temperature increase. By contrast, the E144A mutation reduced the binding to XPC but had no effect on Sfi1 binding. The F109L-E144A mutation enhanced the negative effect of the two single mutations on XPC binding. Sfi1 proteins from Ostreococcus lucimarinus and Ostreococcus tauri, which belong to the same clade as S. dubia, were also investigated. A comparative analysis shows that the triad residues are more conserved than those in human Sfi1.
Collapse
Affiliation(s)
- Dora Grecu
- Institut Curie, Centre de Recherche, Orsay Cédex F-91405, France
| | - Yves Blouquit
- Institut Curie, Centre de Recherche, Orsay Cédex F-91405, France
| | - Liliane Assairi
- Institut Curie, Centre de Recherche, Orsay Cédex F-91405, France
| |
Collapse
|
12
|
Shepard W, Soutourina O, Courtois E, England P, Haouz A, Martin-Verstraete I. Insights into the Rrf2 repressor family--the structure of CymR, the global cysteine regulator of Bacillus subtilis. FEBS J 2011; 278:2689-701. [PMID: 21624051 DOI: 10.1111/j.1742-4658.2011.08195.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The global regulator CymR represses the transcription of a large set of genes involved in cystine uptake and cysteine biosynthesis in Bacillus subtilis and Staphylococcus aureus. This repressor belongs to the widespread and poorly characterized Rrf2 family of regulators. The crystal structure of CymR from B. subtilis reveals a biologically active dimer, where each monomer folds into two tightly packed domains: a DNA-binding domain, which houses a winged helix-turn-helix (wHTH) motif; and a long dimerization domain, which places the wHTH motifs at the extremes. This architecture explains how these small regulators can span 23-27-bp DNA targets. The wHTH motif of CymR resembles those of the GntR superfamily of regulators, such as FadR and HutC. Superimposing the FadR wHTH motifs bound to their DNA fragments onto the wHTH motifs of the CymR dimer structure suggests that the DNA target and/or the protein must undergo some conformational changes upon binding. The CymR structure also hints at a possible location of the Fe-S centre associated with several Rrf2-type regulators.
Collapse
Affiliation(s)
- William Shepard
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
13
|
Labesse G, Benkali K, Salard-Arnaud I, Gilles AM, Munier-Lehmann H. Structural and functional characterization of the Mycobacterium tuberculosis uridine monophosphate kinase: insights into the allosteric regulation. Nucleic Acids Res 2010; 39:3458-72. [PMID: 21149268 PMCID: PMC3082897 DOI: 10.1093/nar/gkq1250] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nucleoside Monophosphate Kinases (NMPKs) family are key enzymes in nucleotide metabolism. Bacterial UMPKs depart from the main superfamily of NMPKs. Having no eukaryotic counterparts they represent attractive therapeutic targets. They are regulated by GTP and UTP, while showing different mechanisms in Gram(+), Gram(–) and archaeal bacteria. In this work, we have characterized the mycobacterial UMPK (UMPKmt) combining enzymatic and structural investigations with site-directed mutagenesis. UMPKmt exhibits cooperativity toward ATP and an allosteric regulation by GTP and UTP. The crystal structure of the complex of UMPKmt with GTP solved at 2.5 Å, was merely identical to the modelled apo-form, in agreement with SAXS experiments. Only a small stretch of residues was affected upon nucleotide binding, pointing out the role of macromolecular dynamics rather than major structural changes in the allosteric regulation of bacterial UMPKs. We further probe allosteric regulation by site-directed mutagenesis. In particular, a key residue involved in the allosteric regulation of this enzyme was identified.
Collapse
Affiliation(s)
- Gilles Labesse
- Atelier de Bio- et Chimie Informatique Structurale, CNRS, UMR5048, Centre de Biochimie Structurale, 29 rue de Navacelles, F-34090 Montpellier, France
| | | | | | | | | |
Collapse
|
14
|
The minor pilin subunit Sgp2 is necessary for assembly of the pilus encoded by the srtG cluster of Streptococcus suis. J Bacteriol 2010; 193:822-31. [PMID: 21148736 DOI: 10.1128/jb.01555-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-positive pili are composed of covalently bound pilin subunits whose assembly is mediated via a pilus-specific sortase(s). Major subunits constitute the pilus backbone and are therefore essential for pilus formation. Minor subunits are also incorporated into the pilus, but they are considered to be dispensable for backbone formation. The srtG cluster is one of the putative pilus gene clusters identified in the major swine pathogen Streptococcus suis. It consists of one sortase gene (srtG) and two putative pilin subunit genes (sgp1 and sgp2). In this study, by constructing mutants for each of the genes in the cluster and by both immunoblotting and immunogold electron microscopic analysis with antibodies against Sgp1 and Sgp2, we found that the srtG cluster mediates the expression of pilus-like structures in S. suis strain 89/1591. In this pilus, Sgp1 forms the backbone, whereas Sgp2 is incorporated as the minor subunit. In accordance with the current model of pilus assembly by Gram-positive organisms, the major subunit Sgp1 was indispensable for backbone formation and the cognate sortase SrtG mediated the polymerization of both subunits. However, unlike other well-characterized Gram-positive bacterial pili, the minor subunit Sgp2 was required for polymerization of the major subunit Sgp1. Because Sgp2 homologues are encoded in several other Gram-positive bacterial pilus gene clusters, in some types of pili, minor pilin subunits may contribute to backbone formation by a novel mechanism.
Collapse
|
15
|
Fittipaldi N, Takamatsu D, Domínguez-Punaro MDLC, Lecours MP, Montpetit D, Osaki M, Sekizaki T, Gottschalk M. Mutations in the gene encoding the ancillary pilin subunit of the Streptococcus suis srtF cluster result in pili formed by the major subunit only. PLoS One 2010; 5:e8426. [PMID: 20052283 PMCID: PMC2797073 DOI: 10.1371/journal.pone.0008426] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 12/01/2009] [Indexed: 01/03/2023] Open
Abstract
Pili have been shown to contribute to the virulence of different Gram-positive pathogenic species. Among other critical steps of bacterial pathogenesis, these structures participate in adherence to host cells, colonization and systemic virulence. Recently, the presence of at least four discrete gene clusters encoding putative pili has been revealed in the major swine pathogen and emerging zoonotic agent Streptococcus suis. However, pili production by this species has not yet been demonstrated. In this study, we investigated the functionality of one of these pili clusters, known as the srtF pilus cluster, by the construction of mutant strains for each of the four genes of the cluster as well as by the generation of antibodies against the putative pilin subunits. Results revealed that the S. suis serotype 2 strain P1/7, as well as several other highly virulent invasive S. suis serotype 2 isolates express pili from this cluster. However, in most cases tested, and as a result of nonsense mutations at the 5′ end of the gene encoding the minor pilin subunit (a putative adhesin), pili were formed by the major pilin subunit only. We then evaluated the role these pili play in S. suis virulence. Abolishment of the expression of srtF cluster-encoded pili did not result in impaired interactions of S. suis with porcine brain microvascular endothelial cells. Furthermore, non-piliated mutants were as virulent as the wild type strain when evaluated in a murine model of S. suis sepsis. Our results show that srtF cluster-encoded, S. suis pili are atypical compared to other Gram-positive pili. In addition, since the highly virulent strains under investigation are unlikely to produce other pili, our results suggest that pili might be dispensable for critical steps of the S. suis pathogenesis of infection.
Collapse
Affiliation(s)
- Nahuel Fittipaldi
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - Daisuke Takamatsu
- Research Team for Bacterial/Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - María de la Cruz Domínguez-Punaro
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - Marie-Pier Lecours
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - Diane Montpetit
- Centre de Recherche et de Développement sur les Aliments, Agriculture et Agroalimentaire Canada, St-Hyacinthe, Canada
| | - Makoto Osaki
- Research Team for Bacterial/Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Tsutomu Sekizaki
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc and Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Canada
- * E-mail:
| |
Collapse
|
16
|
Tanous C, Soutourina O, Raynal B, Hullo MF, Mervelet P, Gilles AM, Noirot P, Danchin A, England P, Martin-Verstraete I. The CymR regulator in complex with the enzyme CysK controls cysteine metabolism in Bacillus subtilis. J Biol Chem 2008; 283:35551-60. [PMID: 18974048 DOI: 10.1074/jbc.m805951200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Several enzymes have evolved as sensors in signal transduction pathways to control gene expression, thereby allowing bacteria to adapt efficiently to environmental changes. We recently identified the master regulator of cysteine metabolism in Bacillus subtilis, CymR, which belongs to the poorly characterized Rrf2 family of regulators. We now report that the signal transduction mechanism controlling CymR activity in response to cysteine availability involves the formation of a stable complex with CysK, a key enzyme for cysteine biosynthesis. We carried out a comprehensive quantitative characterization of this regulator-enzyme interaction by surface plasmon resonance and analytical ultracentrifugation. We also showed that O-acetylserine plays a dual role as a substrate of CysK and as an effector modulating the CymR-CysK complex formation. The ability of B. subtilis CysK to bind to CymR appears to be correlated to the loss of its capacity to form a cysteine synthase complex with CysE. We propose an original model, supported by the determination of the intracellular concentrations of the different partners, by which CysK positively regulates CymR in sensing the bacterial cysteine pool.
Collapse
Affiliation(s)
- Catherine Tanous
- Institut Pasteur, UnitédeGénétique des Génomes Bactériens, Plate-forme de Biophysique des Macromolécules et de leurs Interactions, 75724 Paris cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Meyer P, Evrin C, Briozzo P, Joly N, Bârzu O, Gilles AM. Structural and functional characterization of Escherichia coli UMP kinase in complex with its allosteric regulator GTP. J Biol Chem 2008; 283:36011-8. [PMID: 18945668 DOI: 10.1074/jbc.m802614200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial UMP kinases are essential enzymes involved in the multistep synthesis of UTP. They are hexamers regulated by GTP (allosteric activator) and UTP (inhibitor). We describe here the 2.8 angstroms crystal structure of Escherichia coli UMP kinase bound to GTP. The GTP-binding site, situated at 15 angstroms from the UMP-binding site and at 24 angstroms from the ATP-binding site, is delineated by two contiguous dimers. The overall structure, as compared with those bound to UMP, UDP, or UTP, shows a rearrangement of its quaternary structure: GTP induces an 11 degrees opening of the UMP kinase dimer, resulting in a tighter dimer-dimer interaction. A nucleotide-free UMP kinase dimer has an intermediate opening. Superposition of our structure with that of archaeal UMP kinases, which are also hexamers, shows that a loop appears to hamper any GTP binding in archeal enzymes. This would explain the absence of activating effect of GTP on this group of UMP kinases. Among GTP-binding residues, the Asp-93 is the most conserved in bacterial UMP kinases. In the previously published structures of E. coli UMP kinase, this residue was shown to be involved in hydrogen bonds between the subunits of a dimer. Its substitution by an alanine decreases the cooperativity for UTP binding and suppresses the reversal by GTP of UTP inhibition. This demonstrates that the previously described mutual exclusion of these two nucleotides is mediated by Asp-93.
Collapse
Affiliation(s)
- Philippe Meyer
- Laboratoire d'Enzymologie et de Biochimie Structurales, CNRS, UPR 3082, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
18
|
Guilvout I, Chami M, Berrier C, Ghazi A, Engel A, Pugsley AP, Bayan N. In Vitro Multimerization and Membrane Insertion of Bacterial Outer Membrane Secretin PulD. J Mol Biol 2008; 382:13-23. [DOI: 10.1016/j.jmb.2008.06.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 06/19/2008] [Accepted: 06/23/2008] [Indexed: 11/26/2022]
|
19
|
Topalis D, Alvarez K, Barral K, Munier-Lehmann H, Schneider B, Véron M, Guerreiro C, Mulard L, El-Amri C, Canard B, Deville-Bonne D. Acyclic phosphonate nucleotides and human adenylate kinases: impact of a borano group on alpha-P position. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:319-31. [PMID: 18404568 DOI: 10.1080/15257770801941952] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Adenylate kinases are involved in the activation of antiviral drugs such as the acyclic phosphonates analogs PMEA and (R)PMPA. We examine the in vitro phosphorylation of PMEA and PMPA bearing a borano- or a H- group on the phosphorus atom. The alpha-borano or alpha-H on PMEA and PMPA were detrimental to the activity of recombinant human AMP kinases 1 and 2. Docking PMEA to the active site of AMP kinase 1 indicated that the borano group may prevent two conserved critical Arg interactions with the alpha-phosphate, resulting in substrate bad positioning.
Collapse
Affiliation(s)
- D Topalis
- Laboratoire d'Enzymologie, Université Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ofiteru A, Bucurenci N, Alexov E, Bertrand T, Briozzo P, Munier-Lehmann H, Gilles AM. Structural and functional consequences of single amino acid substitutions in the pyrimidine base binding pocket of Escherichia coli CMP kinase. FEBS J 2007; 274:3363-73. [PMID: 17542990 DOI: 10.1111/j.1742-4658.2007.05870.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial CMP kinases are specific for CMP and dCMP, whereas the related eukaryotic NMP kinase phosphorylates CMP and UMP with similar efficiency. To explain these differences in structural terms, we investigated the contribution of four key amino acids interacting with the pyrimidine ring of CMP (Ser36, Asp132, Arg110 and Arg188) to the stability, catalysis and substrate specificity of Escherichia coli CMP kinase. In contrast to eukaryotic UMP/CMP kinases, which interact with the nucleobase via one or two water molecules, bacterial CMP kinase has a narrower NMP-binding pocket and a hydrogen-bonding network involving the pyrimidine moiety specific for the cytosine nucleobase. The side chains of Arg110 and Ser36 cannot establish hydrogen bonds with UMP, and their substitution by hydrophobic amino acids simultaneously affects the K(m) of CMP/dCMP and the k(cat) value. Substitution of Ser for Asp132 results in a moderate decrease in stability without significant changes in K(m) value for CMP and dCMP. Replacement of Arg188 with Met does not affect enzyme stability but dramatically decreases the k(cat)/K(m) ratio compared with wild-type enzyme. This effect might be explained by opening of the enzyme/nucleotide complex, so that the sugar no longer interacts with Asp185. The reaction rate for different modified CMP kinases with ATP as a variable substrate indicated that none of changes induced by these amino acid substitutions was 'propagated' to the ATP subsite. This 'modular' behavior of E. coli CMP kinase is unique in comparison with other NMP kinases.
Collapse
Affiliation(s)
- Augustin Ofiteru
- Laboratory of Enzymology and Applied Microbiology, Cantacuzino Institute, Bucharest, Romania
| | | | | | | | | | | | | |
Collapse
|
21
|
d'Alayer J, Expert-Bezançon N, Béguin P. Time- and temperature-dependent acetylation of the chemokine RANTES produced in recombinant Escherichia coli. Protein Expr Purif 2007; 55:9-16. [PMID: 17574862 DOI: 10.1016/j.pep.2007.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 04/27/2007] [Accepted: 04/29/2007] [Indexed: 11/30/2022]
Abstract
The S24F mutant of the chemokine RANTES was found to be partly acetylated when produced in recombinant Escherichia coli BL21(DE3)(pDIA17)(CCL5-S24F-pET-26b). Mass spectrometry and Edman sequencing of peptides generated by lys-C endopeptidase indicated that Lys-26, Lys-34, Lys-46, and Lys-57 were susceptible to acetylation. The extent of acetylation of the RANTES S24F polypeptide increased with temperature and with the time during which the culture was incubated after adding the inducer isopropyl-beta-D-thiogalactoside (IPTG). These findings suggest that induction at low temperature and for a short period of time should be preferred when spurious acetylation is a problem for the production of genuine recombinant polypeptides. Acetylation of the polypeptide was not affected by deleting acs, yfiQ, or speG, which encode acetyl-CoA synthetase, acetyl-CoA synthetase acetylase, and spermidine acetyl transferase, respectively, nor by the presence or absence of the pDIA17 plasmid, which harbours the cat gene encoding chloramphenicol acetyl transferase. By contrast, spontaneous acetylation of RANTES could be demonstrated by incubating either the purified polypeptide or inclusion bodies derived from an induced culture in the presence of acetyl-CoA.
Collapse
Affiliation(s)
- Jacques d'Alayer
- Plate-forme d'Analyse et de Microséquençage des Protéines, Institut Pasteur, 25-28, rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
22
|
Evrin C, Straut M, Slavova-Azmanova N, Bucurenci N, Onu A, Assairi L, Ionescu M, Palibroda N, Bârzu O, Gilles AM. Regulatory mechanisms differ in UMP kinases from gram-negative and gram-positive bacteria. J Biol Chem 2007; 282:7242-53. [PMID: 17210578 DOI: 10.1074/jbc.m606963200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this work, we examined the regulation by GTP and UTP of the UMP kinases from eight bacterial species. The enzyme from Gram-positive organisms exhibited cooperative kinetics with ATP as substrate. GTP decreased this cooperativity and increased the affinity for ATP. UTP had the opposite effect, as it decreased the enzyme affinity for ATP. The nucleotide analogs 5-bromo-UTP and 5-iodo-UTP were 5-10 times stronger inhibitors than the parent compound. On the other hand, UMP kinases from the Gram-negative organisms did not show cooperativity in substrate binding and catalysis. Activation by GTP resulted mainly from the reversal of inhibition caused by excess UMP, and inhibition by UTP was accompanied by a strong increase in the apparent K(m) for UMP. Altogether, these results indicate that, depending on the bacteria considered, GTP and UTP interact with different enzyme recognition sites. In Gram-positive bacteria, GTP and UTP bind to a single site or largely overlapping sites, shifting the T R equilibrium to either the R or T form, a scenario corresponding to almost all regulatory proteins, commonly called K systems. In Gram-negative organisms, the GTP-binding site corresponds to the unique allosteric site of the Gram-positive bacteria. In contrast, UTP interacts cooperatively with a site that overlaps the catalytic center, i.e. the UMP-binding site and part of the ATP-binding site. These characteristics make UTP an original regulator of UMP kinases from Gram-negative organisms, beyond the common scheme of allosteric control.
Collapse
Affiliation(s)
- Cécile Evrin
- UnitédeGénétique des Génomes Bactériens, Institut Pasteur, 75724 Paris Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Krin E, Chakroun N, Turlin E, Givaudan A, Gaboriau F, Bonne I, Rousselle JC, Frangeul L, Lacroix C, Hullo MF, Marisa L, Danchin A, Derzelle S. Pleiotropic role of quorum-sensing autoinducer 2 in Photorhabdus luminescens. Appl Environ Microbiol 2006; 72:6439-51. [PMID: 17021191 PMCID: PMC1610301 DOI: 10.1128/aem.00398-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial virulence is an integrative process that may involve quorum sensing. In this work, we compared by global expression profiling the wild-type entomopathogenic Photorhabdus luminescens subsp. laumondii TT01 to a luxS-deficient mutant unable to synthesize the type 2 quorum-sensing inducer AI-2. AI-2 was shown to regulate more than 300 targets involved in most compartments and metabolic pathways of the cell. AI-2 is located high in the hierarchy, as it controls the expression of several transcriptional regulators. The regulatory effect of AI-2 appeared to be dose dependent. The luxS-deficient strain exhibited decreased biofilm formation and increased type IV/V pilus-dependent twitching motility. AI-2 activated its own synthesis and transport. It also modulated bioluminescence by regulating the synthesis of spermidine. AI-2 was further shown to increase oxidative stress resistance, which is necessary to overcome part of the innate immune response of the host insect involving reactive oxygen species. Finally, we showed that the luxS-deficient strain had attenuated virulence against the lepidopteran Spodoptera littoralis. We concluded that AI-2 is involved mainly in early steps of insect invasion in P. luminescens.
Collapse
Affiliation(s)
- Evelyne Krin
- Unité de Génétique des Génomes Bactériens (URA2171), Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hullo MF, Auger S, Soutourina O, Barzu O, Yvon M, Danchin A, Martin-Verstraete I. Conversion of methionine to cysteine in Bacillus subtilis and its regulation. J Bacteriol 2006; 189:187-97. [PMID: 17056751 PMCID: PMC1797209 DOI: 10.1128/jb.01273-06] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacillus subtilis can use methionine as the sole sulfur source, indicating an efficient conversion of methionine to cysteine. To characterize this pathway, the enzymatic activities of CysK, YrhA and YrhB purified in Escherichia coli were tested. Both CysK and YrhA have an O-acetylserine-thiol-lyase activity, but YrhA was 75-fold less active than CysK. An atypical cystathionine beta-synthase activity using O-acetylserine and homocysteine as substrates was observed for YrhA but not for CysK. The YrhB protein had both cystathionine lyase and homocysteine gamma-lyase activities in vitro. Due to their activity, we propose that YrhA and YrhB should be renamed MccA and MccB for methionine-to-cysteine conversion. Mutants inactivated for cysK or yrhB grew similarly to the wild-type strain in the presence of methionine. In contrast, the growth of an DeltayrhA mutant or a luxS mutant, inactivated for the S-ribosyl-homocysteinase step of the S-adenosylmethionine recycling pathway, was strongly reduced with methionine, whereas a DeltayrhA DeltacysK or cysE mutant did not grow at all under the same conditions. The yrhB and yrhA genes form an operon together with yrrT, mtnN, and yrhC. The expression of the yrrT operon was repressed in the presence of sulfate or cysteine. Both purified CysK and CymR, the global repressor of cysteine metabolism, were required to observe the formation of a protein-DNA complex with the yrrT promoter region in gel-shift experiments. The addition of O-acetyl-serine prevented the formation of this protein-DNA complex.
Collapse
Affiliation(s)
- Marie-Françoise Hullo
- Unité de Génétique des Génomes Bactériens, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Frachon E, Bondet V, Munier-Lehmann H, Bellalou J. Multiple microfermentor battery: a versatile tool for use with automated parallel cultures of microorganisms producing recombinant proteins and for optimization of cultivation protocols. Appl Environ Microbiol 2006; 72:5225-31. [PMID: 16885269 PMCID: PMC1538699 DOI: 10.1128/aem.00239-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A multiple microfermentor battery was designed for high-throughput recombinant protein production in Escherichia coli. This novel system comprises eight aerated glass reactors with a working volume of 80 ml and a moving external optical sensor for measuring optical densities at 600 nm (OD600) ranging from 0.05 to 100 online. Each reactor can be fitted with miniature probes to monitor temperature, dissolved oxygen (DO), and pH. Independent temperature regulation for each vessel is obtained with heating/cooling Peltier devices. Data from pH, DO, and turbidity sensors are collected on a FieldPoint (National Instruments) I/O interface and are processed and recorded by a LabVIEW program on a personal computer, which enables feedback control of the culture parameters. A high-density medium formulation was designed, which enabled us to grow E. coli to OD600 up to 100 in batch cultures with oxygen-enriched aeration. Accordingly, the biomass and the amount of recombinant protein produced in a 70-ml culture were at least equivalent to the biomass and the amount of recombinant protein obtained in a Fernbach flask with 1 liter of conventional medium. Thus, the microfermentor battery appears to be well suited for automated parallel cultures and process optimization, such as that needed for structural genomics projects.
Collapse
Affiliation(s)
- Emmanuel Frachon
- Plate-forme 5 Production de Protéines Recombinantes et d'Anticorps, Institut Pasteur, 25-28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | | | | | | |
Collapse
|
26
|
Dramsi S, Caliot E, Bonne I, Guadagnini S, Prévost MC, Kojadinovic M, Lalioui L, Poyart C, Trieu-Cuot P. Assembly and role of pili in group B streptococci. Mol Microbiol 2006; 60:1401-13. [PMID: 16796677 DOI: 10.1111/j.1365-2958.2006.05190.x] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Streptococcus agalactiae[group B streptococcus (GBS)] is the leading cause of neonatal pneumonia, sepsis and meningitis. An in silico genome analysis indicated that GBS strain NEM316 encodes five putative sortases, including the major class A sortase enzyme and four class C sortases. The genes encoding the class C sortases are tandemly arranged in two different loci, srtC1-C2 and srtC3-C4, with a similar genetic organization and are thought to be involved in pilus biosynthesis. Each pair of sortase genes is flanked by LPXTG protein encoding genes, two upstream and one downstream, and a divergently transcribed regulatory gene located upstream from this locus. We demonstrated that strain NEM316 expresses only the srtC3-C4 locus, which encodes three surface proteins (Gbs1474, Gbs1477 and Gbs1478) that polymerize to form appendages resembling pili. Structural and functional analysis of this locus revealed that: (i) the transcriptional activator RogB is required for expression of the srtC3-C4 operon; (ii) Gbs1477, and either SrtC3 or SrtC4 are absolutely required for pilus biogenesis; and (iii) GBS NEM316 pili are composed of three surface proteins, Gbs1477, the bona fide pilin which is the major component, Gbs1474, a minor associated component, and Gbs1478, a pilus-associated adhesin. Surprisingly, pilus-like structures can be formed in the absence of the two minor components, i.e. the putative anchor Gbs1474 or the adhesin Gbs1478. Adherence assays showed that Gbs1478 confers adhesive capacity to the pilus. This study provides the first evidence that adhesive pili are also present in Gram-positive pathogens.
Collapse
Affiliation(s)
- Shaynoor Dramsi
- Unité de Biologie des Bactéries Pathogènes à Gram-Positif Institut Pasteur, URA CNRS 2172, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Burguière P, Fert J, Guillouard I, Auger S, Danchin A, Martin-Verstraete I. Regulation of the Bacillus subtilis ytmI operon, involved in sulfur metabolism. J Bacteriol 2005; 187:6019-30. [PMID: 16109943 PMCID: PMC1196162 DOI: 10.1128/jb.187.17.6019-6030.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The YtlI regulator of Bacillus subtilis activates the transcription of the ytmI operon encoding an l-cystine ABC transporter, a riboflavin kinase, and proteins of unknown function. The expression of the ytlI gene and the ytmI operon was high with methionine and reduced with sulfate. Using deletions and site-directed mutagenesis, a cis-acting DNA sequence important for YtlI-dependent regulation was identified upstream from the -35 box of ytmI. Gel mobility shift assays confirmed that YtlI specifically interacted with this sequence. The replacement of the sulfur-regulated ytlI promoter by the xylA promoter led to constitutive expression of a ytmI'-lacZ fusion in a ytlI mutant, suggesting that the repression of ytmI expression by sulfate was mainly at the level of YtlI synthesis. We further showed that the YrzC regulator negatively controlled ytlI expression while this repressor also acted on ytmI expression via YtlI. The cascade of regulation observed in B. subtilis is conserved in Listeria spp. Both a YtlI-like regulator and a ytmI-type operon are present in Listeria spp. Indeed, the Lmo2352 protein from Listeria monocytogenes was able to replace YtlI for the activation of ytmI expression and a lmo2352'-lacZ fusion was repressed in the presence of sulfate via YrzC in B. subtilis. A common motif, AT(A/T)ATTCCTAT, was found in the promoter region of the ytlI and lmo2352 genes. Deletion of part of this motif or the introduction of point mutations in this sequence confirmed its involvement in ytlI regulation.
Collapse
Affiliation(s)
- Pierre Burguière
- Unité de Génétique des Génomes Bactériens, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
28
|
Rogé J, Betton JM. Use of pIVEX plasmids for protein overproduction in Escherichia coli. Microb Cell Fact 2005; 4:18. [PMID: 15932643 PMCID: PMC1180468 DOI: 10.1186/1475-2859-4-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 06/02/2005] [Indexed: 11/30/2022] Open
Abstract
Background The pIVEX plasmids are vectors optimized for expression in the Rapid Translation System (RTS) cell-free system under control of bacteriophage T7 transcription elements. Even if these plasmids are intended for use in vitro, it is usually worthwhile to compare both cell-free and bacterial expression from the same genetic construct. However, some RTS users encountered problems when they introcuded these plasmids into Escherichia coli host strains producing the T7 RNA polymerase. Results We verified that difficulties in transforming the commonly used BL21(λDE3) strain with pIVEX arose from the presence of a strong T7 promoter combined with a high-copy number plasmid, independent of gene expression. When these vectors were introduced into this strain harboring a compatible plasmid carrying the lactose repressor (lacI), we improved the transformation efficiency by 4 orders of magnitude. Moreover, we designed a transformation protocol that allows, after induction, the overproduction of pIVEX-encoded proteins in the BL21(λDE3) strain. Conclusion Using the correct plasmid/host combination and transformation-expression protocol, we could directly compare overproduction of the same pIVEX-encoded proteins from both in vivo and in vitro expression systems.
Collapse
Affiliation(s)
- Julie Rogé
- Unité de Repliement et Modélisation des Protéines Institut Pasteur CNRS-URA2185 28, rue du Docteur Roux 75724 Paris Cedex 15, France
| | - Jean-Michel Betton
- Unité de Repliement et Modélisation des Protéines Institut Pasteur CNRS-URA2185 28, rue du Docteur Roux 75724 Paris Cedex 15, France
| |
Collapse
|
29
|
Briozzo P, Evrin C, Meyer P, Assairi L, Joly N, Barzu O, Gilles AM. PTEN, but not SHIP2, suppresses insulin signaling through the phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 adipocytes. J Biol Chem 2005; 280:25533-40. [PMID: 15857829 DOI: 10.1074/jbc.m501849200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose homeostasis is controlled by insulin in part through the stimulation of glucose transport in muscle and fat cells. This insulin signaling pathway requires phosphatidylinositol (PI) 3-kinase-mediated 3'-polyphosphoinositide generation and activation of Akt/protein kinase B. Previous experiments using dominant negative constructs and gene ablation in mice suggested that two phosphoinositide phosphatases, SH2 domain-containing inositol 5'-phosphatase 2 (SHIP2) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulate this insulin signaling pathway. Here we directly tested this hypothesis by selectively inhibiting the expression of SHIP2 or PTEN in intact cultured 3T3-L1 adipocytes through the use of short interfering RNA (siRNA). Attenuation of PTEN expression by RNAi markedly enhanced insulin-stimulated Akt and glycogen synthase kinase 3alpha (GSK-3alpha) phosphorylation, as well as deoxyglucose transport in 3T3-L1 adipocytes. In contrast, depletion of SHIP2 protein by about 90% surprisingly failed to modulate these insulin-regulated events under identical assay conditions. In control studies, no diminution of insulin signaling to the mitogen-activated protein kinases Erk1 and Erk2 was observed when either PTEN or SHIP2 were depleted. Taken together, these results demonstrate that endogenous PTEN functions as a suppressor of insulin signaling to glucose transport through the PI 3-kinase pathway in cultured 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Pierre Briozzo
- Unité de Chimie Biologique, UMR 206 Institut National de la Recherche Agronomique, Institut National Agronomique Paris-Grignon, 78850 Thiverval-Grignon, URA 2171 CNRS, Institut Pasteur, 75724 Paris Cedex 15.
| | | | | | | | | | | | | |
Collapse
|
30
|
León RG, Munier-Lehmann H, Barzu O, Baudin-Creuza V, Pietri R, López-Garriga J, Cadilla CL. High-level production of recombinant sulfide-reactive hemoglobin I from Lucina pectinata in Escherichia coli. High yields of fully functional holoprotein synthesis in the BLi5 E. coli strain. Protein Expr Purif 2005; 38:184-95. [PMID: 15555934 DOI: 10.1016/j.pep.2004.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 08/22/2004] [Indexed: 11/16/2022]
Abstract
Hemoglobin I (HbI) from Lucina pectinata is a monomeric protein composed of 143 amino acids with high sulfide affinity. Its unique heme pocket contains three residues not commonly found in vertebrate globins: Phe 29 (B10), Gln 64 (E7), and Phe 68 (E11), which are thought to be important for high affinity for hydrogen sulfide. Recombinant HbI (rHbI) and several site-directed mutants were cloned and expressed in Escherichia coli yielding high amounts of protein. The highest rHbI protein yield was obtained when the HbI cDNA was cloned into the pET28 (a+) expression vector, transformed into BLi5 cells, the induction performed with 1 mM IPTG at 30 degrees C and TB medium was supplemented with 30 microg/mL hemin chloride and 1% glucose. The highest yield obtained of HbI was 32 mg/L of culture using Fernbach flasks. UV/Visible spectral analysis showed that rHbI binds heme and ESI-MS shows that its molecular weight corresponds to the expected size. Kinetic studies with H2S confirmed that rHbI and HbI have identical binding properties, where the kON for the clam's Hb is 2.73x10(4)M-1s-1 and for rHbI is 2.43x10(4)M-1s-1.
Collapse
Affiliation(s)
- Ruth Gretchen León
- Department of Chemistry, University of Puerto Rico Río Piedras Campus, San Juan, PR
| | | | | | | | | | | | | |
Collapse
|
31
|
Dame RT, Luijsterburg MS, Krin E, Bertin PN, Wagner R, Wuite GJL. DNA bridging: a property shared among H-NS-like proteins. J Bacteriol 2005; 187:1845-8. [PMID: 15716456 PMCID: PMC1064010 DOI: 10.1128/jb.187.5.1845-1848.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleoid-associated protein H-NS is thought to play an essential role in the organization of bacterial chromatin in Escherichia coli. Homologues, often with very low sequence identity, are found in most gram-negative bacteria. Microscopic analysis reveals that, despite limited sequence identity, their structural organization results in similar DNA binding properties.
Collapse
Affiliation(s)
- Remus T Dame
- Physics of Complex Systems, Department of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, NL-1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Assairi L, Bertrand T, Ferdinand J, Slavova-Azmanova N, Christensen M, Briozzo P, Schaeffer F, Craescu CT, Neuhard J, Bârzu O, Gilles AM. Deciphering the function of an ORF: Salmonella enterica DeoM protein is a new mutarotase specific for deoxyribose. Protein Sci 2004; 13:1295-303. [PMID: 15075407 PMCID: PMC2286760 DOI: 10.1110/ps.03566004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We identified in Salmonella enterica serovar Typhi a cluster of four genes encoding a deoxyribokinase (DeoK), a putative permease (DeoP), a repressor (DeoQ), and an open reading frame encoding a 337 amino acid residues protein of unknown function. We show that the latter protein, called DeoM, is a hexamer whose synthesis is increased by a factor over 5 after induction with deoxyribose. The CD spectrum of the purified recombinant protein indicated a dominant contribution of betatype secondary structure and a small content of alpha-helix. Temperature and guanidinium hydrochloride induced denaturation of DeoM indicated that the hexamer dissociation and monomer unfolding are coupled processes. DeoM exhibits 12.5% and 15% sequence identity with galactose mutarotase from Lactococcus lactis and respectively Escherichia coli, which suggested that these three proteins share similar functions. Polarimetric experiments demonstrated that DeoM is a mutarotase with high specificity for deoxyribose. Site-directed mutagenesis of His183 in DeoM, corresponding to a catalytically active residue in GalM, yielded an almost inactive deoxyribose mutarotase. DeoM was crystallized and diffraction data collected for two crystal systems, confirmed its hexameric state. The possible role of the protein and of the entire gene cluster is discussed in connection with the energy metabolism of S. enterica under particular growth conditions.
Collapse
Affiliation(s)
- Liliane Assairi
- Laboratoire de Chimie Structurale des Macromolécules, Unité de Recherche Associeé 2185 du Cantre National de la Recherche Scientifique, Institut Pasteur, 75724 Paris 15, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gallay J, Vincent M, Li de la Sierra IM, Munier-Lehmann H, Renouard M, Sakamoto H, Bârzu O, Gilles AM. Insight into the activation mechanism of Bordetella pertussis adenylate cyclase by calmodulin using fluorescence spectroscopy. ACTA ACUST UNITED AC 2004; 271:821-33. [PMID: 14764099 DOI: 10.1111/j.1432-1033.2004.03987.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The interaction of the adenylate cyclase catalytic domain (AC) of the Bordetella pertussis major exotoxin with its activator calmodulin (CaM) was studied by time-resolved fluorescence spectroscopy using three fluorescent groups located in different regions of AC: tryptophan residues (W69 and W242), a nucleotide analogue (3'-anthraniloyl-2'-deoxyadenosine 5'-triphosphate, Ant-dATP) and a cysteine-specific probe (acrylodan). CaM binding elicited large changes in the dynamics of W242, which dominates the fluorescence emission of both AC and AC-CaM, similar to that observed for isolated CaM-binding sequences of different lengths [Bouhss, A., Vincent, M., Munier, H., Gilles, A.M., Takahashi, M., Bârzu, O., Danchin, A. & Gallay, J. (1996) Eur. J. Biochem.237, 619-628]. In contrast, Ant-dATP remains completely immobile and inaccessible to the solvent in both the AC and AC-CaM nucleotide-binding sites. As AC contains no cysteine residue, a single-Cys mutant at position 75 was constructed which allowed labeling of the catalytic domain with acrylodan. Its environment is strongly apolar and rigid, and only slightly affected by CaM. The protein's hydrodynamic properties were also studied by fluorescence anisotropy decay measurements. The average Brownian rotational correlation times of AC differed significantly according to the probe used (19 ns for W242, 25 ns for Ant-dATP, and 35 ns for acrylodan), suggesting an elongated protein shape (axial ratio of approximately 1.9). These values increased greatly with the addition of CaM (39 ns for W242, 60-70 ns for Ant-dATP and 56 ns for acrylodan). This suggests that (a) the orientation of the probes is altered with respect to the protein axes and (b) the protein becomes more elongated with an axial ratio of approximately 2.4. For comparison, the hydrodynamic properties of the anthrax AC exotoxin were computed by a mathematical approach (hydropro), which uses the 3D structure [Drum, C.L., Yan, S.-Z., Bard, J., Shen, Y.-Q., Lu, D., Soelalman, S., Grabarek, Z., Bohm, A. & Tang, W.-J. (2002) Nature (London)415, 396-402]. A change in axial ratio is also observed on CaM binding, but in the reverse direction from that for AC: from 1.7 to 1.3. The mechanisms of activation of the two proteins by CaM may therefore be different.
Collapse
Affiliation(s)
- Jacques Gallay
- Laboratoire pour l'Utilisation du Rayonnement Electromagnétique, UMR 130 du CNRS, Université Paris-Sud, Orsay, France.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sillen A, Verheyden S, Delfosse L, Braem T, Robben J, Volckaert G, Engelborghs Y. Mechanism of fluorescence and conformational changes of the sarcoplasmic calcium binding protein of the sand worm Nereis diversicolor upon Ca2+ or Mg2+ binding. Biophys J 2003; 85:1882-93. [PMID: 12944301 PMCID: PMC1303360 DOI: 10.1016/s0006-3495(03)74616-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 05/22/2003] [Indexed: 10/21/2022] Open
Abstract
The calcium-binding protein isolated from the sarcoplasm of the muscles of the sand worm Nereis diversicolor has four EF-hands and three active binding sites for Ca(2+) or Mg(2+). Nereis diversicolor sarcoplasmic calcium-binding protein contains three tryptophan residues at positions 4, 57, and 170, respectively. The Wt protein shows a very limited fluorescence increase upon binding of Ca(2+) or Mg(2+). Single-tryptophan-containing mutants were produced and purified. The fluorescence titrations of these mutants show a limited decrease of the affinity for calcium, but no alterations of the cooperativity. Upon adding calcium, Trp170 shows a strong fluorescence increase, Trp57 an extensive fluorescence decrease, and Trp4 shows no fluorescence change. Therefore mutant W4F/W170F is ideally suited to analyze the fluorescence titrations and to study the binding mechanism. Mutations of the calcium ligands at the z-position in the three binding sites show no effect at site I and a total loss of cooperativity at sites III and IV. The quenching of Trp57 upon calcium binding is dependent on the presence of arginine R25, but this residue is not just a simple dynamic quencher. The role of the salt bridge R25-D58 is also investigated.
Collapse
Affiliation(s)
- Alain Sillen
- Laboratory of Biomolecular Dynamics, Catholic University of Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
35
|
Gagyi C, Bucurenci N, Sîrbu O, Labesse G, Ionescu M, Ofiteru A, Assairi L, Landais S, Danchin A, Bârzu O, Gilles AM. UMP kinase from the Gram-positive bacterium Bacillus subtilis is strongly dependent on GTP for optimal activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3196-204. [PMID: 12869195 DOI: 10.1046/j.1432-1033.2003.03702.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene encoding Bacillus subtilis UMP kinase (pyrH/smbA) is transcribed in vivo into a functional enzyme, which represents approximately 0.1% of total soluble proteins. The specific activity of the purified enzyme under optimal conditions is 25 units.mg-1 of protein. In the absence of GTP, the activity of B. subtilis enzyme is less than 10% of its maximum activity. Only dGTP and 3'-anthraniloyl-2'-deoxyguanosine-5'-triphosphate (Ant-dGTP) can increase catalysis significantly. Binding of Ant-dGTP to B. subtilis UMP kinase increased the quantum yield of the fluorescent analogue by a factor of more than three. UTP and GTP completely displaced Ant-dGTP, whereas GMP and UMP were ineffective. UTP inhibits UMP kinase of B. subtilis with a lower affinity than that shown towards the Escherichia coli enzyme. Among nucleoside monophosphates, 5-fluoro-UMP (5F-UMP) and 6-aza-UMP were actively phosphorylated by B. subtilis UMP kinase, explaining the cytotoxicity of the corresponding nucleosides towards this bacterium. A structural model of UMP kinase, based on the conservation of the fold of carbamate kinase and N-acetylglutamate kinase (whose crystals were recently resolved), was analysed in the light of physicochemical and kinetic differences between B. subtilis and E. coli enzymes.
Collapse
Affiliation(s)
- Cristina Gagyi
- Laboratoire de Chimie Structurale des Macromolécules, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Munier-Lehmann H, Chenal-Francisque V, Ionescu M, Chrisova P, Foulon J, Carniel E, Bârzu O. Relationship between bacterial virulence and nucleotide metabolism: a mutation in the adenylate kinase gene renders Yersinia pestis avirulent. Biochem J 2003; 373:515-22. [PMID: 12879903 PMCID: PMC1223521 DOI: 10.1042/bj20030284] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nucleoside monophosphate kinases (NMPKs) are essential catalysts for bacterial growth and multiplication. These enzymes display high primary sequence identities among members of the family Enterobacteriaceae. Yersinia pestis, the causative agent of plague, belongs to this family. However, it was previously shown that its thymidylate kinase (TMPKyp) exhibits biochemical properties significantly different from those of its Escherichia coli counterpart [Chenal-Francisque, Tourneux, Carniel, Christova, Li de la Sierra, Barzu and Gilles (1999) Eur. J. Biochem. 265, 112-119]. In this work, the adenylate kinase (AK) of Y. pestis (AKyp) was characterized. As with TMPKyp, AKyp displayed a lower thermodynamic stability than other studied AKs. Two mutations in AK (Ser129Phe and Pro87Ser), previously shown to induce a thermosensitive growth defect in E. coli, were introduced into AKyp. The recombinant variants had a lower stability than wild-type AKyp and a higher susceptibility to proteolytic digestion. When the Pro87Ser substitution was introduced into the chromosomal adk gene of Y. pestis, growth of the mutant strain was altered at the non-permissive temperature of 37 degree C. In virulence testings, less than 50 colony forming units (CFU) of wild-type Y. pestis killed 100% of the mice upon subcutaneous infection, whereas bacterial loads as high as 1.5 x 10(4) CFU of the adk mutant were unable to kill any animals.
Collapse
Affiliation(s)
- Hélène Munier-Lehmann
- Laboatoire de Chimie Structurale des Macromolécules, Institut Pasteur, Cedex 15, France.
| | | | | | | | | | | | | |
Collapse
|
37
|
Pasti C, Gallois-Montbrun S, Munier-Lehmann H, Veron M, Gilles AM, Deville-Bonne D. Reaction of human UMP-CMP kinase with natural and analog substrates. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1784-90. [PMID: 12694191 DOI: 10.1046/j.1432-1033.2003.03537.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UMP-CMP kinase catalyses an important step in the phosphorylation of UTP, CTP and dCTP. It is also involved in the necessary phosphorylation by cellular kinases of nucleoside analogs used in antiviral therapies. The reactivity of human UMP-CMP kinase towards natural substrates and nucleotide analogs was reexamined. The expression of the recombinant enzyme and conditions for stability of the enzyme were improved. Substrate inhibition was observed for UMP and CMP at concentrations higher than 0.2 mm, but not for dCMP. The antiviral analog l-3TCMP was found to be an efficient substrate phosphorylated into l-3TCDP by human UMP-CMP kinase. However, in the reverse reaction, the enzyme did not catalyse the addition of the third phosphate to l-3TCDP, which was rather an inhibitor. By molecular modelling, l-3TCMP was built in the active site of the enzyme from Dictyostelium. Human UMP-CMP kinase has a relaxed enantiospecificity for the nucleoside monophosphate acceptor site, but it is restricted to d-nucleotides at the donor site.
Collapse
Affiliation(s)
- Claudia Pasti
- Unité de Régulation Enzymatique des Activités Cellulaires, CNRS URA 2185, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
38
|
Saveanu C, Miron S, Borza T, Craescu CT, Labesse G, Gagyi C, Popescu A, Schaeffer F, Namane A, Laurent-Winter C, Bârzu O, Gilles AM. Structural and nucleotide-binding properties of YajQ and YnaF, two Escherichia coli proteins of unknown function. Protein Sci 2002; 11:2551-60. [PMID: 12381839 PMCID: PMC2373726 DOI: 10.1110/ps.0217502] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Structural genomics is a new approach in functional assignment of proteins identified via whole-genome sequencing programs. Its rationale is that nonhomologous proteins performing similar or related biological functions might have similar tertiary structure. We used dye pseudoaffinity chromatography, two-dimensional gel electrophoresis, and mass spectrometry to identify two novel Escherichia coli nucleotide-binding proteins, YnaF and YajQ. YnaF exhibited significant sequence identity with MJ0577, an ATP-binding protein from a hyperthermophile (Methanococcus jannaschii), and with UspA, a protein from Haemophilus influenzae that belongs to the Universal Stress Protein family. YnaF conserves the ATP-binding site and the dimeric structure observed in the crystal of MJ0577. The protein YajQ, present in many bacterial genomes, is missing in eukaryotes. In the absence of significant similarities of YajQ to any solved structure, we determined its structural and ligand-binding properties by NMR and isothermal titration calorimetry. We demonstrate that YajQ is composed of two domains, each centered on a beta-sheet, that are connected by two helical segments. NMR studies, corroborated with local sequence conservation among YajQ homologs in various bacteria, indicate that one of the beta-sheets is mostly involved in biological activity.
Collapse
Affiliation(s)
- Cosmin Saveanu
- Laboratoire de Chimie Structurale des Macromolécules, (CNRS URA 2185) Institut Pasteur, 75724 Paris Cédex 15, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Guillouard I, Auger S, Hullo MF, Chetouani F, Danchin A, Martin-Verstraete I. Identification of Bacillus subtilis CysL, a regulator of the cysJI operon, which encodes sulfite reductase. J Bacteriol 2002; 184:4681-9. [PMID: 12169591 PMCID: PMC135269 DOI: 10.1128/jb.184.17.4681-4689.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The way in which the genes involved in cysteine biosynthesis are regulated is poorly characterized in Bacillus subtilis. We showed that CysL (formerly YwfK), a LysR-type transcriptional regulator, activates the transcription of the cysJI operon, which encodes sulfite reductase. We demonstrated that a cysL mutant and a cysJI mutant have similar phenotypes. Both are unable to grow using sulfate or sulfite as the sulfur source. The level of expression of the cysJI operon is higher in the presence of sulfate, sulfite, or thiosulfate than in the presence of cysteine. Conversely, the transcription of the cysH and cysK genes is not regulated by these sulfur sources. In the presence of thiosulfate, the expression of the cysJI operon was reduced 11-fold, whereas the expression of the cysH and cysK genes was increased, in a cysL mutant. A cis-acting DNA sequence located upstream of the transcriptional start site of the cysJI operon (positions -76 to -70) was shown to be necessary for sulfur source- and CysL-dependent regulation. CysL also negatively regulates its own transcription, a common characteristic of the LysR-type regulators. Gel mobility shift assays and DNase I footprint experiments showed that the CysL protein specifically binds to cysJ and cysL promoter regions. This is the first report of a regulator of some of the genes involved in cysteine biosynthesis in B. subtilis.
Collapse
Affiliation(s)
- Isabelle Guillouard
- Unité de Génétique des Génomes Bactériens, URA CNRS 2171, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
40
|
Labesse G, Bucurenci N, Douguet D, Sakamoto H, Landais S, Gagyi C, Gilles AM, Bârzu O. Comparative modelling and immunochemical reactivity of Escherichia coli UMP kinase. Biochem Biophys Res Commun 2002; 294:173-9. [PMID: 12054759 DOI: 10.1016/s0006-291x(02)00450-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacterial UMP kinases do not exhibit any sequence homology with other nucleoside monophosphate kinases described so far, and appear under oligomeric forms, submitted to complex regulation by nucleotides. We propose here a structural model of UMP kinase from Escherichia coli based on the conservation of the fold of carbamate kinase whose crystal structure was recently solved. Despite sequence identity of only 18% over 203 amino acids, alignment of UMP kinase from E. coli with carbamate kinase from Enterococcus faecalis by hydrophobic cluster analysis and threading suggested the conservation of the overall structure, except for a small subdomain (absent in UMP kinase). The modelled dimer suggested conservation of the dimer interface observed in carbamate kinase while interaction of UMP kinase with a monoclonal antibody (Mab 44-2) suggests a three in-plane dimer subunit arrangement. The model was analyzed in light of various modified forms of UMP kinase obtained by site-directed mutagenesis.
Collapse
Affiliation(s)
- Gilles Labesse
- Centre de Biochimie Structurale, Faculté de Pharmacie, Université de Montpellier I, 34000 Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Auger S, Yuen WH, Danchin A, Martin-Verstraete I. The metIC operon involved in methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination. MICROBIOLOGY (READING, ENGLAND) 2002; 148:507-518. [PMID: 11832514 DOI: 10.1099/00221287-148-2-507] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There are two major pathways for methionine biosynthesis in micro-organisms. Little is known about these pathways in Bacillus subtilis. The authors assigned a function to the metI (formerly yjcI) and metC (formerly yjcJ) genes of B. subtilis by complementing Escherichia coli metB and metC mutants, analysing the phenotype of B. subtilis metI and metC mutants, and carrying out enzyme activity assays. These genes encode polypeptides belonging to the cystathionine gamma-synthase family of proteins. Interestingly, the MetI protein has both cystathionine gamma-synthase and O-acetylhomoserine thiolyase activities, whereas the MetC protein is a cystathionine beta-lyase. In B. subtilis, the transsulfuration and the thiolation pathways are functional in vivo. Due to its dual activity, the MetI protein participates in both pathways. The metI and metC genes form an operon, the expression of which is subject to sulfur-dependent regulation. When the sulfur source is sulfate or cysteine the transcription of this operon is high. Conversely, when the sulfur source is methionine its transcription is low. An S-box sequence, which is located upstream of the metI gene, is involved in the regulation of the metIC operon. Northern blot experiments demonstrated the existence of two transcripts: a small transcript corresponding to the premature transcription termination at the terminator present in the S-box and a large one corresponding to transcription of the complete metIC operon. When methionine levels were limiting, the amount of the full-length transcript increased. These results substantiate a model of regulation by transcription antitermination.
Collapse
Affiliation(s)
- Sandrine Auger
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, URA CNRS 2171, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - W H Yuen
- Department of Chemistry, Hong Kong University, Pokfulam Road, Hong Kong2
| | - Antoine Danchin
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, URA CNRS 2171, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| | - Isabelle Martin-Verstraete
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, URA CNRS 2171, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France1
| |
Collapse
|
42
|
Bertrand T, Briozzo P, Assairi L, Ofiteru A, Bucurenci N, Munier-Lehmann H, Golinelli-Pimpaneau B, Bârzu O, Gilles AM. Sugar specificity of bacterial CMP kinases as revealed by crystal structures and mutagenesis of Escherichia coli enzyme. J Mol Biol 2002; 315:1099-110. [PMID: 11827479 DOI: 10.1006/jmbi.2001.5286] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacterial cytidine monophosphate (CMP) kinases are characterised by an insert enlarging their CMP binding domain, and by their particular substrate specificity. Thus, both CMP and 2'-deoxy-CMP (dCMP) are good phosphate acceptors for the CMP kinase from Escherichia coli (E. coli CMPK), whereas eukaryotic UMP/CMP kinases phosphorylate the deoxynucleotides with very low efficiency. Four crystal structures of E. coli CMPK complexed with nucleoside monophosphates differing in their sugar moiety were solved. Both structures with CMP or dCMP show interactions with the pentose that were not described so far. These interactions are lost with the poorer substrates AraCMP and 2',3'-dideoxy-CMP. Comparison of all four structures shows that the pentose hydroxyls are involved in ligand-induced movements of enzyme domains. It also gives a structural basis of the mechanism by which either ribose or deoxyribose can be accommodated. In parallel, for the four nucleotides the kinetic results of the wild-type enzyme and of three structure-based variants are presented. The phosphorylation rate is significantly decreased when either of the two pentose interacting residues is mutated. One of these is an arginine that is highly conserved in all known nucleoside monophosphate kinases. In contrast, the other residue, Asp185, is typical of bacterial CMP kinases. It interacts with Ser101, the only residue conserved in all CMP binding domain inserts. Mutating Ser101 reduces CMP phosphorylation only moderately, but dramatically reduces dCMP phosphorylation. This is the first experimental evidence of a catalytic role involving the characteristic insert of bacterial CMP kinases. Furthermore, this role concerns only dCMP phosphorylation, a feature of this family of enzymes.
Collapse
Affiliation(s)
- Thomas Bertrand
- Laboratoire d'Enzymologie et de Biochimie Structurales, UPR 9063 du CNRS, Gif-sur-Yvette Cedex, 91198, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Karimova G, Ullmann A, Ladant D. A bacterial two-hybrid system that exploits a cAMP signaling cascade in Escherichia coli. Methods Enzymol 2001; 328:59-73. [PMID: 11075338 DOI: 10.1016/s0076-6879(00)28390-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- G Karimova
- Unité de Biochimie Cellulaire, CNRS URA 2185, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
44
|
Tourneux L, Bucurenci N, Saveanu C, Kaminski PA, Bouzon M, Pistotnik E, Namane A, Marlière P, Bârzu O, Li De La Sierra I, Neuhard J, Gilles AM. Genetic and biochemical characterization of Salmonella enterica serovar typhi deoxyribokinase. J Bacteriol 2000; 182:869-73. [PMID: 10648508 PMCID: PMC94358 DOI: 10.1128/jb.182.4.869-873.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified in the genome of Salmonella enterica serovar Typhi the gene encoding deoxyribokinase, deoK. Two other genes, vicinal to deoK, were determined to encode the putative deoxyribose transporter (deoP) and a repressor protein (deoQ). This locus, located between the uhpA and ilvN genes, is absent in Escherichia coli. The deoK gene inserted on a plasmid provides a selectable marker in E. coli for growth on deoxyribose-containing medium. Deoxyribokinase is a 306-amino-acid protein which exhibits about 35% identity with ribokinase from serovar Typhi, S. enterica serovar Typhimurium, or E. coli. The catalytic properties of the recombinant deoxyribokinase overproduced in E. coli correspond to those previously described for the enzyme isolated from serovar Typhimurium. From a sequence comparison between serovar Typhi deoxyribokinase and E. coli ribokinase, whose crystal structure was recently solved, we deduced that a key residue differentiating ribose and deoxyribose is Met10, which in ribokinase is replaced by Asn14. Replacement by site-directed mutagenesis of Met10 with Asn decreased the V(max) of deoxyribokinase by a factor of 2.5 and increased the K(m) for deoxyribose by a factor of 70, compared to the parent enzyme.
Collapse
Affiliation(s)
- L Tourneux
- Laboratoire de Chimie Structurale des Macromolécules, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sillen A, Díaz JF, Engelborghs Y. A step toward the prediction of the fluorescence lifetimes of tryptophan residues in proteins based on structural and spectral data. Protein Sci 2000; 9:158-69. [PMID: 10739258 PMCID: PMC2144451 DOI: 10.1110/ps.9.1.158] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A method is presented that allows the calculation of the lifetimes of tryptophan residues on the basis of spectral and structural data. It is applied to two different proteins. The calcium binding protein from the sarcoplasm of the muscles of the sand worm Nereis diversicolor (NSCP) changes its conformation upon binding of Ca2+ or Mg2+. NSCP contains three tryptophan residues at position 4, 57, and 170, respectively. The fluorescence lifetimes of W57 are investigated in a mutant in which W4 and W170 have been replaced. The time resolved fluorescence properties of W57 are linked to its different microconformations, which were determined by a molecular dynamics simulation map. Together with the determination of the radiative rate constant from the wavelength of maximum intensity of the decay associated spectra, it was possible to determine an exponential relation between the nonradiative rate constant and the distance between the indole CE3 atom and the carbonyl carbon of the peptide bond reflecting a mechanism of electron transfer as the main determinant of the value for the nonradiative rate constant. This result allows the calculation of the fluorescence lifetimes from the protein structure and the spectra. This method was further tested for the tryptophan of Ha-ras p21 (W32) and for W43 of the Tet repressor, which resulted in acceptable values for the predicted lifetimes.
Collapse
Affiliation(s)
- A Sillen
- Laboratory of Biomolecular Dynamics, University of Leuven, Belgium
| | | | | |
Collapse
|
46
|
Chenal-Francisque V, Tourneux L, Carniel E, Christova P, Li de la Sierra I, Bârzu O, Gilles AM. The highly similar TMP kinases of Yersinia pestis and Escherichia coli differ markedly in their AZTMP phosphorylating activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:112-9. [PMID: 10491164 DOI: 10.1046/j.1432-1327.1999.00691.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thymidine monophosphate (TMP) kinases are key enzymes in nucleotide synthesis for all living organisms. Although eukaryotic and viral TMP kinases have been studied extensively, little is known about their bacterial counterparts. To characterize the TMP kinase of Yersinia pestis, a chromosomal region encompassing its gene (tmk) was cloned and sequenced; a high degree of conservation with the corresponding region of Escherichia coli was found. The Y. pestis tmk gene was overexpressed in E. coli, where the enzyme represented over 20% of total soluble proteins. The CD spectrum of the purified TMP kinase from Y. pestis was characteristic for proteins rich in alpha-helical structures. Its thermodynamic stability was significantly lower than that of E. coli TMP kinase. However, the most striking difference between the two enzymes was related to their ability to phosphorylate 3'-deoxy-3'-azidothymidine monophosphate (AZTMP). Although the enzymes of both species had comparable Km values for this analogue, they differed significantly in their Vmax for AZTMP. Whereas E. coli used AZTMP as a relatively good substrate, the Y. pestis enzyme had a Vmax 100 times lower with AZTMP than with TMP. This fact explains why AZT, a potent bactericidal agent against E. coli, is only moderately active on Y. enterocolitica. Sequence comparisons between E. coli and Y. pestis TMP kinases along with the three-dimensional structure of the E. coli enzyme suggest that segments lying outside the main regions involved in nucleotide binding and catalysis are responsible for the different rates of AZTMP phosphorylation.
Collapse
|
47
|
Pistotnik E, Sakamoto H, Pochet S, Namane A, Bârzu O. Assay of nucleoside 2-deoxyribosyltransferase activity with pyruvate kinase/lactate dehydrogenase coupling system. Anal Biochem 1999; 271:192-3. [PMID: 10419637 DOI: 10.1006/abio.1999.4136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- E Pistotnik
- Laboratoire de Chimie Structurale des Macromolécules, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
48
|
Landais S, Gounon P, Laurent-Winter C, Mazié JC, Danchin A, Bârzu O, Sakamoto H. Immunochemical analysis of UMP kinase from Escherichia coli. J Bacteriol 1999; 181:833-40. [PMID: 9922246 PMCID: PMC93449 DOI: 10.1128/jb.181.3.833-840.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mono- and polyclonal antibodies directed against UMP kinase from Escherichia coli were tested with the intact protein or with fragments obtained by deletion mutagenesis. As detected in enzyme-linked immunosorbent assay tests, the carboxy-terminal quarter of UMP kinase is immunodominant. Polyclonal antibodies inhibited the enzyme activity with partial or total loss of allosteric effects exerted by UTP and GTP, respectively. These data indicate that the UTP and GTP binding sites in UMP kinase are only partially overlapping. One monoclonal antibody (44-2) recognized a linear epitope in UMP kinase between residues 171 and 180. A single substitution (D174N) in this segment of the enzyme abolished its interaction with the monoclonal antibody (44-2). Polyclonal antisera were used to identify UMP kinase in the bacterial proteome. The enzyme appears as a single spot on two-dimensional electrophoresis at a pI of 7.24 and an apparent molecular mass of 26 kDa. Immunogold labeling of UMP kinase in whole E. coli cells shows a localization of the protein near the bacterial membranes. Because the protein does not contain sequences usually required for compartmentalization, the aggregation properties of UMP kinase observed in vitro might play a role in this phenomenon. The specific localization of UMP kinase might also be related to its putative role in cell division.
Collapse
Affiliation(s)
- S Landais
- Laboratoire de Chimie Structurale des Macromolécules, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Bertin P, Benhabiles N, Krin E, Laurent-Winter C, Tendeng C, Turlin E, Thomas A, Danchin A, Brasseur R. The structural and functional organization of H-NS-like proteins is evolutionarily conserved in gram-negative bacteria. Mol Microbiol 1999; 31:319-29. [PMID: 9987132 DOI: 10.1046/j.1365-2958.1999.01176.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The structural gene of the H-NS protein, a global regulator of bacterial metabolism, has been identified in the group of enterobacteria as well as in closely related bacteria, such as Erwinia chrysanthemi and Haemophilus influenzae. Isolated outside these groups, the BpH3 protein of Bordetella pertussis exhibits a low amino acid conservation with H-NS, particularly in the N-terminal domain. To obtain information on the structure, function and/or evolution of H-NS, we searched for other H-NS-related proteins in the latest databases. We found that HvrA, a trans-activator protein in Rhodobacter capsulatus, has a low but significant similarity with H-NS and H-NS-like proteins. This Gram-negative bacterium is phylogenetically distant from Escherichia coli. Using theoretical analysis (e.g. secondary structure prediction and DNA binding domain modelling) of the amino acid sequence of H-NS, StpA (an H-NS-like protein in E. coli), BpH3 and HvrA and by in vivo and in vitro experiments (e.g. complementation of various H-NS-related phenotypes and competitive gel shift assay), we present evidence that these proteins belong to the same class of DNA binding proteins. In silico analysis suggests that this family also includes SPB in R. sphaeroides, XrvA in Xanthomonas oryzae and VicH in Vibrio cholerae. These results demonstrate that proteins structurally and functionally related to H-NS are widespread in Gram-negative bacteria.
Collapse
Affiliation(s)
- P Bertin
- Unité de Régulation de l'Expression Génétique, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tourneux L, Bucurenci N, Lascu I, Sakamoto H, Briand G, Gilles AM. Substitution of an alanine residue for glycine 146 in TMP kinase from Escherichia coli is responsible for bacterial hypersensitivity to bromodeoxyuridine. J Bacteriol 1998; 180:4291-3. [PMID: 9696781 PMCID: PMC107429 DOI: 10.1128/jb.180.16.4291-4293.1998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The wild-type TMP kinases from Escherichia coli and from a strain hypersensitive to 5-bromo-2'-deoxyuridine were characterized comparatively. The mutation at codon 146 causes the substitution of an alanine residue for glycine in the enzyme, which is accompanied by changes in the relative affinities for 5-Br-UMP and TMP compared to those of the wild-type TMP kinase. Plasmids carrying the wild-type tmk gene from Escherichia coli or Bacillus subtilis, but not the defective tmk gene, restored the resistance to bromodeoxyuridine of an E. coli mutant strain.
Collapse
Affiliation(s)
- L Tourneux
- Laboratoire de Chimie Structurale des Macromolécules, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|