1
|
Adame M, Vázquez H, Juárez-López D, Corzo G, Amezcua M, López D, González Z, Schcolnik-Cabrera A, Morales-Martínez A, Villegas E. Expression and characterization of scFv-6009FV in Pichia pastoris with improved ability to neutralize the neurotoxin Cn2 from Centruroides noxius. Int J Biol Macromol 2024; 275:133461. [PMID: 38945343 DOI: 10.1016/j.ijbiomac.2024.133461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Small single-chain variable fragments (scFv) are promising biomolecules to inhibit and neutralize toxins and to act as antivenoms. In this work, we aimed to produce a functional scFv-6009FV in the yeast Pichia pastoris, which inhibits the pure Cn2 neurotoxin and the whole venom of Centruroides noxius. We were able to achieve yields of up to 31.6 ± 2 mg/L in flasks. Furthermore, the protein showed a structure of 6.1 % α-helix, 49.1 % β-sheet, and 44.8 % of random coil by CD. Mass spectrometry confirmed the amino acid sequence and showed no glycosylation profile for this molecule. Purified scFv-6009FV allowed us to develop anti-scFvs in rabbits, which were then used in affinity columns to purify other scFvs. Determination of its half-maximal inhibitory concentration value (IC50) was 40 % better than the scFvs produced by E. coli as a control. Finally, we found that scFv-6009FV was able to inhibit ex vivo the pure Cn2 toxin and the whole venom from C. noxius in murine rescue experiments. These results demonstrated that under the conditions assayed here, P. pastoris is suited to produce scFv-6009FV that, compared to scFvs produced by E. coli, maintains the characteristics of an antibody and neutralizes the Cn2 toxin more effectively.
Collapse
Affiliation(s)
- Mariel Adame
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Hilda Vázquez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Daniel Juárez-López
- Instituto de Investigaciones Biomédicas, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mónica Amezcua
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Daniela López
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Zuriel González
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | - Adriana Morales-Martínez
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Elba Villegas
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.
| |
Collapse
|
2
|
García-Villalvazo PE, Jiménez-Vargas JM, Lino-López GJ, Meneses EP, Bermúdez-Guzmán MDJ, Barajas-Saucedo CE, Delgado Enciso I, Possani LD, Valdez-Velazquez LL. Unveiling the Protein Components of the Secretory-Venom Gland and Venom of the Scorpion Centruroides possanii (Buthidae) through Omic Technologies. Toxins (Basel) 2023; 15:498. [PMID: 37624255 PMCID: PMC10467079 DOI: 10.3390/toxins15080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Centruroides possanii is a recently discovered species of "striped scorpion" found in Mexico. Certain species of Centruroides are known to be toxic to mammals, leading to numerous cases of human intoxications in the country. Venom components are thought to possess therapeutic potential and/or biotechnological applications. Hence, obtaining and analyzing the secretory gland transcriptome and venom proteome of C. possanii is relevant, and that is what is described in this communication. Since this is a newly described species, first, its LD50 to mice was determined and estimated to be 659 ng/g mouse weight. Using RNA extracted from this species and preparing their corresponding cDNA fragments, a transcriptome analysis was obtained on a Genome Analyzer (Illumina) using the 76-base pair-end sequencing protocol. Via high-throughput sequencing, 19,158,736 reads were obtained and ensembled in 835,204 sequences. Of them, 28,399 transcripts were annotated with Pfam. A total of 244 complete transcripts were identified in the transcriptome of C. possanii. Of these, 109 sequences showed identity to toxins that act on ion channels, 47 enzymes, 17 protease inhibitors (PINs), 11 defense peptides (HDPs), and 60 in other components. In addition, a sample of the soluble venom obtained from this scorpion was analyzed using an Orbitrap Velos apparatus, which allowed for identification by liquid chromatography followed by mass spectrometry (LC-MS/MS) of 70 peptides and proteins: 23 toxins, 27 enzymes, 6 PINs, 3 HDPs, and 11 other components. Until now, this work has the highest number of scorpion venom components identified through omics technologies. The main novel findings described here were analyzed in comparison with the known data from the literature, and this process permitted some new insights in this field.
Collapse
Affiliation(s)
| | - Juana María Jiménez-Vargas
- Facultad de Ciencias Químicas, Universidad de Colima, Colima 28400, Mexico; (P.E.G.-V.); (J.M.J.-V.); (C.E.B.-S.)
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Mexico City 03940, Mexico
| | - Gisela Jareth Lino-López
- Centro Nacional de Referencia de Control Biológico, Dirección General de Sanidad Vegetal SENASICASADER, Colima 28110, Mexico;
| | - Erika Patricia Meneses
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | | | | | | | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico;
| | | |
Collapse
|
3
|
Romero-Moreno JA, Serrano-Posada H, Olamendi-Portugal T, Possani LD, Becerril B, Riaño-Umbarila L. Development of a human antibody fragment cross-neutralizing scorpion toxins. Mol Immunol 2023; 155:165-174. [PMID: 36812764 DOI: 10.1016/j.molimm.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Previously, it was demonstrated that from the single chain fragment variable (scFv) 3F it is possible to generate variants capable of neutralizing the Cn2 and Css2 toxins, as well as their respective venoms (Centruroides noxius and Centruroides suffusus). Despite this success, it has not been easy to modify the recognition of this family of scFvs toward other dangerous scorpion toxins. The analysis of toxin-scFv interactions and in vitro maturation strategies allowed us to propose a new maturation pathway for scFv 3F to broaden recognition toward other Mexican scorpion toxins. From maturation processes against toxins CeII9 from C. elegans and Ct1a from C. tecomanus, the scFv RAS27 was developed. This scFv showed an increased affinity and cross-reactivity for at least 9 different toxins while maintaining recognition for its original target, the Cn2 toxin. In addition, it was confirmed that it can neutralize at least three different toxins. These results constitute an important advance since it was possible to improve the cross-reactivity and neutralizing capacity of the scFv 3F family of antibodies.
Collapse
Affiliation(s)
- José Alberto Romero-Moreno
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico
| | - Hugo Serrano-Posada
- Investigador por México, CONACyT-Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico.
| | - Lidia Riaño-Umbarila
- Investigadora por México, CONACyT-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico.
| |
Collapse
|
4
|
Meléndez-Zempoalteca A, Juárez-González VR, Rudiño-Piñera E, Pastor N, Vargas-Jaimes L, Valcarcel-Gamiño JA, Vázquez-Vuelvas OF, Quintero-Hernández V, Valdez-Velázquez LL. Antivenom Derived from the Ct1a and Ct17 Recombinant Toxins of the Scorpion Centruroides tecomanus. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Fernández-Taboada G, Riaño-Umbarila L, Olvera-Rodríguez A, Gómez-Ramírez IV, Losoya-Uribe LF, Becerril B. The venom of the scorpion Centruroides limpidus, which causes the highest number of stings in Mexico, is neutralized by two recombinant antibody fragments. Mol Immunol 2021; 137:247-255. [PMID: 34298407 DOI: 10.1016/j.molimm.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Phage display and directed evolution have made it possible to generate recombinant antibodies in the format of single chain variable fragments (scFvs) capable of neutralizing different toxins and venoms of Mexican scorpions. Despite having managed to neutralize a significant number of venoms, some others have not yet been completely neutralized, due to the diversity of the toxic components present in them. An example is the venom of the scorpion Centruroides limpidus, which contains three toxins of medical importance, called Cll1, Cll2 and Cl13. The first two are neutralized by scFv 10FG2, while Cl13, due to its sequence divergence, was not even recognized. For this reason, the aim of the present work was the generation of a new scFv capable of neutralizing Cl13 toxin and thereby helping to neutralize the whole venom of this scorpion. By hybridoma technology, a monoclonal antibody (mAb B7) was generated, which was able to recognize and partially neutralize Cl13 toxin. From mAb B7, its scFv format was obtained, named scFv B7 and subjected to three cycles of directed evolution. At the end of these processes, scFv 11F which neutralized Cl13 toxin was obtained. This scFv, administered in conjunction with scFv 10FG2, allowed to fully neutralize the whole venom of Centruroides limpidus scorpion.
Collapse
Affiliation(s)
- Guillermo Fernández-Taboada
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Lidia Riaño-Umbarila
- Cátedra CONACYT, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Alejandro Olvera-Rodríguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Ilse Viridiana Gómez-Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Luis Fernando Losoya-Uribe
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62250, Mexico.
| |
Collapse
|
6
|
van Cann M, Kuzmenkov A, Isensee J, Andreev-Andrievskiy A, Peigneur S, Khusainov G, Berkut A, Tytgat J, Vassilevski A, Hucho T. Scorpion toxin MeuNaTxα-1 sensitizes primary nociceptors by selective modulation of voltage-gated sodium channels. FEBS J 2020; 288:2418-2435. [PMID: 33051988 DOI: 10.1111/febs.15593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/14/2020] [Accepted: 10/09/2020] [Indexed: 11/27/2022]
Abstract
Venoms are a rich source of highly specific toxins, which allow the identification of novel therapeutic targets. We have now applied high content screening (HCS) microscopy to identify toxins that modulate pain sensitization signaling in primary sensory neurons of rat and elucidated the underlying mechanism. A set of venoms and fractions thereof were analyzed for their ability to activate type II protein kinase A (PKA-II) and extracellular signal-regulated kinases (ERK1/2). We identified MeuNaTxα-1, a sodium channel-selective scorpion α-toxin from Mesobuthus eupeus, which affected both PKA-II and ERK1/2. Recombinant MeuNaTxα-1 showed identical activity to the native toxin on mammalian voltage-gated sodium channels expressed in Xenopus laevis oocytes and induced thermal hyperalgesia in adult mice. The effect of MeuNaTxα-1 on sensory neurons was dose-dependent and tetrodotoxin-sensitive. Application of inhibitors and toxin mutants with altered sodium channel selectivity demonstrated that signaling activation in sensory neurons depends on NaV 1.2 isoform. Accordingly, the toxin was more potent in neurons from newborn rats, where NaV 1.2 is expressed at a higher level. Our results demonstrate that HCS microscopy-based monitoring of intracellular signaling is a novel and powerful tool to identify and characterize venoms and their toxins affecting sensory neurons.
Collapse
Affiliation(s)
- Marianne van Cann
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, Germany
| | - Alexey Kuzmenkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, Germany
| | | | | | - Georgii Khusainov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Antonina Berkut
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, Belgium
| | - Alexander Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, Germany
| |
Collapse
|
7
|
Gómez-Ramírez IV, Riaño-Umbarila L, Olamendi-Portugal T, Restano-Cassulini R, Possani LD, Becerril B. Biochemical, electrophysiological and immunological characterization of the venom from Centruroides baergi, a new scorpion species of medical importance in Mexico. Toxicon 2020; 184:10-18. [DOI: 10.1016/j.toxicon.2020.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022]
|
8
|
Borges A, Lomonte B, Angulo Y, Acosta de Patiño H, Pascale JM, Otero R, Miranda RJ, De Sousa L, Graham MR, Gómez A, Pardal PP, Ishikawa E, Bonilla F, Castillo A, de Avila RAM, Gómez JP, Caro-López JA. Venom diversity in the Neotropical scorpion genus Tityus: Implications for antivenom design emerging from molecular and immunochemical analyses across endemic areas of scorpionism. Acta Trop 2020; 204:105346. [PMID: 31982434 DOI: 10.1016/j.actatropica.2020.105346] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 10/25/2022]
Abstract
Scorpions of the Neotropical genus Tityus are responsible for most severe envenomations in the Caribbean, South America, and Lower Central America (LCA). Although Tityus is taxonomically complex, contains high toxin polymorphism, and produces variable clinical manifestations, treatment is limited to antivenoms produced against species with restricted distributions. In this study, we explored the compositional and antigenic diversity of Tityus venoms to provide improved guidelines for the use of available antivenoms at a broader geographic scale. We used immunoblotting, competitive ELISA, and in vivo studies to compare reactivity against commercial antivenoms from Brazil, Venezuela, and Mexico, as well as MALDI-TOF mass spectrometry, cDNA sequencing, and phylogenetic analyses to assess venom sodium channel-active toxin (NaTx) content from medically important Tityus populations inhabiting Brazil, Colombia, Costa Rica, Ecuador, Panama, Trinidad and Tobago, and Venezuela. Additionally, we raised rabbit antibodies against Tityus venoms from LCA to test for cross-reactivity with congeneric species. The results suggest that Tityus spp. possess high venom antigenic diversity, underlying the existence of four toxinological regions in Tropical America, based on venom composition and immunochemical criteria: LCA/Colombia/Amazonia (Region I), Venezuela (Region II), southeast South America (Region III), and a fourth region encompassing species related to toxinologically divergent Tityus cerroazul. Importantly, our molecular and cross-reactivity results highlight the need for new antivenoms against species inhabiting Region I, where scorpions may produce venoms that are not significantly reactive against available antivenoms.
Collapse
|
9
|
Gurrola GB, Guijarro JI, Delepierre M, Mendoza RLL, Cid-Uribe JI, Coronas FV, Possani LD. Cn29, a novel orphan peptide found in the venom of the scorpion Centruroides noxius: Structure and function. Toxicon 2019; 167:184-191. [PMID: 31226259 DOI: 10.1016/j.toxicon.2019.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
A peptide (Cn29) from the venom of the scorpion Centruroides noxius (about 2% of the soluble venom) was purified and its primary and three-dimensional structures were determined. The peptide contains 27 amino acids with primary sequence: LCLSCRGGDYDCRVKGTCENGKCVCGS. The peptide is tightly packed by three disulfide linkages formed between C2-C23, C5-C18 and C12-C25. Since the native peptide was obtained in limited amounts, the full synthetic peptide was prepared using the standard F-moc-based solid phase synthesis method of Merrifield. The native and synthetic peptides were shown to be identical by sequencing, HPLC separation and mass spectrometry. The solution structure of the peptide solved from NMR data shows that it consists of a well-defined N-terminal region without regular secondary structure extending from Leu 1 to Asp 9, followed by a short helical fragment from Tyr10 to Val14 and two short β strands (Thr17-Glu19 and Lys22-Val24). The primary and tertiary structures of Cn29 are different from all other scorpion peptides described in the literature. Transcriptome analysis of RNA obtained from C. noxius confirmed the expression of a gene coding for Cn29 in its venom gland. Initial experiments were conducted to identify its possible function: lethality tests in mice and insects as well as ion-channel binding using in vitro electrophysiological assays. None of the physiological or biological tests displayed any activity for this peptide, which at present is considered to be another orphan peptide found in scorpion venoms. The peptide is thus the first example of a novel structural component present in scorpion venoms.
Collapse
Affiliation(s)
- G B Gurrola
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Av, Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - J I Guijarro
- Biological NMR Technological Platform, Institut Pasteur, CNRS UMR3528, Paris, France
| | | | - R L L Mendoza
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Av, Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - J I Cid-Uribe
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Av, Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - F V Coronas
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Av, Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - L D Possani
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Av, Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
10
|
Dissecting Toxicity: The Venom Gland Transcriptome and the Venom Proteome of the Highly Venomous Scorpion Centruroides limpidus (Karsch, 1879). Toxins (Basel) 2019; 11:toxins11050247. [PMID: 31052267 PMCID: PMC6563264 DOI: 10.3390/toxins11050247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023] Open
Abstract
Venom glands and soluble venom from the Mexican scorpion Centruroides limpidus (Karsch, 1879) were used for transcriptomic and proteomic analyses, respectively. An RNA-seq was performed by high-throughput sequencing with the Illumina platform. Approximately 80 million reads were obtained and assembled into 198,662 putative transcripts, of which 11,058 were annotated by similarity to sequences from available databases. A total of 192 venom-related sequences were identified, including Na+ and K+ channel-acting toxins, enzymes, host defense peptides, and other venom components. The most diverse transcripts were those potentially coding for ion channel-acting toxins, mainly those active on Na+ channels (NaScTx). Sequences corresponding to β- scorpion toxins active of K+ channels (KScTx) and λ-KScTx are here reported for the first time for a scorpion of the genus Centruroides. Mass fingerprint corroborated that NaScTx are the most abundant components in this venom. Liquid chromatography coupled to mass spectometry (LC-MS/MS) allowed the identification of 46 peptides matching sequences encoded in the transcriptome, confirming their expression in the venom. This study corroborates that, in the venom of toxic buthid scorpions, the more abundant and diverse components are ion channel-acting toxins, mainly NaScTx, while they lack the HDP diversity previously demonstrated for the non-buthid scorpions. The highly abundant and diverse antareases explain the pancreatitis observed after envenomation by this species.
Collapse
|
11
|
Riaño-Umbarila L, Gómez-Ramírez IV, Ledezma-Candanoza LM, Olamendi-Portugal T, Rodríguez-Rodríguez ER, Fernández-Taboada G, Possani LD, Becerril B. Generation of a Broadly Cross-Neutralizing Antibody Fragment against Several Mexican Scorpion Venoms. Toxins (Basel) 2019; 11:toxins11010032. [PMID: 30634620 PMCID: PMC6356842 DOI: 10.3390/toxins11010032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/19/2022] Open
Abstract
The recombinant antibody fragments generated against the toxic components of scorpion venoms are considered a promising alternative for obtaining new antivenoms for therapy. Using directed evolution and site-directed mutagenesis, it was possible to generate a human single-chain antibody fragment with a broad cross-reactivity that retained recognition for its original antigen. This variant is the first antibody fragment that neutralizes the effect of an estimated 13 neurotoxins present in the venom of nine species of Mexican scorpions. This single antibody fragment showed the properties of a polyvalent antivenom. These results represent a significant advance in the development of new antivenoms against scorpion stings, since the number of components would be minimized due to their broad cross-neutralization capacity, while at the same time bypassing animal immunization.
Collapse
Affiliation(s)
- Lidia Riaño-Umbarila
- CONACYT, Instituto de Biotecnología-Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Ilse V Gómez-Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Luis M Ledezma-Candanoza
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Everardo Remi Rodríguez-Rodríguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Guillermo Fernández-Taboada
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico.
| |
Collapse
|
12
|
|
13
|
Updating knowledge on new medically important scorpion species in Mexico. Toxicon 2017; 138:130-137. [DOI: 10.1016/j.toxicon.2017.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
|
14
|
Venom gland transcriptomic and venom proteomic analyses of the scorpion Megacormus gertschi Díaz-Najera, 1966 (Scorpiones: Euscorpiidae: Megacorminae). Toxicon 2017; 133:95-109. [DOI: 10.1016/j.toxicon.2017.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/20/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
|
15
|
Jiménez-Vargas JM, Quintero-Hernández V, González-Morales L, Ortiz E, Possani LD. Design and expression of recombinant toxins from Mexican scorpions of the genus Centruroides for production of antivenoms. Toxicon 2017; 128:5-14. [PMID: 28126552 DOI: 10.1016/j.toxicon.2017.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/30/2022]
Abstract
This manuscript describes the design of plasmids containing the genes coding for four main mammalian toxins of scorpions from the genus Centruroides (C.) of Mexico. The genes that code for toxin 2 of C. noxius (Cn2), toxin 2 from C. suffusus (Css2) and toxins 1 and 2 from C. limpidus (Cll1 and Cll2) were included into individual plasmids carrying the genetic construction for expression of fusion proteins containing a leader peptide (pelB) that directs the expressed protein to the bacterial periplasm, a carrier protein (thioredoxin), the cleavage site for enterokinase, the chosen toxin and a poly-histidine tag (6xHis-tag) for purification of the hybrid protein by immobilized metal ion affinity chromatography after expression in Escherichia coli strain BL21 (DE3). The purified hybrid proteins containing the recombinant toxins (abbreviated Thio-EK-Toxin) were used for immunization of three independent groups of ten mice and four rabbits. Challenging the first group of mice, immunized with recombinant Thio-EK-Css2, with three median lethal doses (LD50) of C. suffusus soluble venom resulted in the survival of all the test animals without showing intoxication symptoms. All control mice (none immunized) died. Similar results were obtained with mice previously immunized with Thio-EK-Cn2 and challenged with C. noxius venom. The third group of mice immunized with both Thio-EK-Cll1 and Thio-EK-Cll2 showed an 80% survival ratio when challenged with only one LD50 of C. limpidus venom, all showing symptoms of intoxication. The sera from rabbits immunized with a combination of the four recombinant toxins were collected separately and used to assess their neutralization capacity in vitro (pre-incubating the serum with the respective scorpion venom and injecting the mixture into mice), using six mice for each serum/venom combination tested. The venoms from the six most dangerous scorpion species of Mexico were assayed: C. noxius, C. suffusus, C. limpidus, C. elegans, C. tecomanus and C. sculpturatus. Two hundred and 50 μL of serum from any of the immunized rabbits were enough to neutralize three LD50 of any of the tested venoms, with mice showing no symptoms of intoxication. These results confirm that the recombinant forms of the main toxins from the most dangerous scorpions of Mexico are excellent immunogens for the production of antivenoms to treat scorpion intoxications.
Collapse
Affiliation(s)
- J M Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Cuernavaca, Morelos, 62210, Mexico
| | - V Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Cuernavaca, Morelos, 62210, Mexico
| | - L González-Morales
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Cuernavaca, Morelos, 62210, Mexico
| | - E Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Cuernavaca, Morelos, 62210, Mexico
| | - L D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Avenida Universidad, 2001, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
16
|
Corzo G, Espino-Solis GP. Selected scorpion toxin exposures induce cytokine release in human peripheral blood mononuclear cells. Toxicon 2017; 127:56-62. [PMID: 28088477 DOI: 10.1016/j.toxicon.2017.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/01/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023]
Abstract
A cytokine screening on human peripheral blood mononuclear cells (PBMCs) stimulated with selected scorpion toxins (ScTx's) was performed in order to evaluate their effect on human immune cells. The ScTx's chosen for this report were three typical buthid scorpion venom peptides, one with lethal effects on mammals Centruroides suffussus suffusus toxin II (CssII), another, with lethal effects on insects and crustaceans Centruroides noxius toxin 5 (Cn5), and one more without lethal effects Tityus discrepans toxin (Discrepin). A Luminex multiplex analysis was performed in order to determine the amounts chemokines and cytokines IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12-p40, IL-13, interferon alpha (IFN-α), interferon gamma (IFN-γ), tumor necrosis factor alpha TNF-α, and interferon-inducible protein-10 (IP-10) secreted from human PBMCs exposed to these toxins. Although, the ScTx Cn5 is not lethal for mammals, it was able to induce the secretion of cytokines IL-1β, IL-6, and TNF-α, IL-10 and IP-10 in comparison to the lethal CssII, which was able to induce only IP-10 secretion. Discrepin also was able to induce only IP-10. Interestingly, only low amounts of interferons α and β were induced in the presence of the ScTx's assayed. In a synergic experiment, the combination of Discrepin and Cn5 displayed considerable reverse effects on induction of IL-1β, IL-6, IL-10 and TNF-α, but they had a slight synergic effect on IP-10 cytokine production in comparison with the single effect obtained with the Cn5 alone. Thus, the results obtained suggest that the profile of secreted cytokines promoted by ScTx Cn5 is highly related with a cytokine storm event, and also it suggests that the mammalian lethal neurotoxins are not solely responsible of the scorpion envenomation symptomatology.
Collapse
Affiliation(s)
- Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico
| | | |
Collapse
|
17
|
An integrated system for synchronous culture of animal cells under controlled conditions. Biotechniques 2016; 61:129-36. [PMID: 27625207 DOI: 10.2144/000114451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/14/2016] [Indexed: 11/23/2022] Open
Abstract
The cell cycle has fundamental effects on cell cultures and their products. Tools to synchronize cultured cells allow the study of cellular physiology and metabolism at particular cell cycle phases. However, cells are most often arrested by methods that alter their homeostasis and are then cultivated in poorly controlled environments. Cell behavior could then be affected by the synchronization method and culture conditions used, and not just by the particular cell cycle phase under study. Moreover, only a few viable cells are recovered. Here, we designed an integrated system where a large number of cells from a controlled bioreactor culture is separated by centrifugal elutriation at high viabilities. In contrast to current elutriation methods, cells are injected directly from a bioreactor into an injection loop, allowing the introduction of a large number of cells into the separation chamber without stressful centrifugation. A low pulsation peristaltic pump increases the stability of the elutriation chamber. Using this approach, a large number of healthy cells at each cell cycle phase were obtained, allowing their direct inoculation into fully instrumented bioreactors. Hybridoma cells synchronized and cultured in this system behaved as expected for a synchronous culture.
Collapse
|
18
|
Rodríguez-Rodríguez ER, Olamendi-Portugal T, Serrano-Posada H, Arredondo-López JN, Gómez-Ramírez I, Fernández-Taboada G, Possani LD, Anguiano-Vega GA, Riaño-Umbarila L, Becerril B. Broadening the neutralizing capacity of a family of antibody fragments against different toxins from Mexican scorpions. Toxicon 2016; 119:52-63. [DOI: 10.1016/j.toxicon.2016.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/12/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
|
19
|
Laustsen AH, Solà M, Jappe EC, Oscoz S, Lauridsen LP, Engmark M. Biotechnological Trends in Spider and Scorpion Antivenom Development. Toxins (Basel) 2016; 8:E226. [PMID: 27455327 PMCID: PMC4999844 DOI: 10.3390/toxins8080226] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 06/19/2016] [Accepted: 07/13/2016] [Indexed: 12/28/2022] Open
Abstract
Spiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to an interest in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress at an increasingly faster pace. In this review, the current knowledge of spider and scorpion venoms is presented, followed by a discussion of all published biotechnological efforts within development of spider and scorpion antitoxins based on small molecules, antibodies and fragments thereof, and next generation immunization strategies. The increasing number of discovery and development efforts within this field may point towards an upcoming transition from serum-based antivenoms towards therapeutic solutions based on modern biotechnology.
Collapse
Affiliation(s)
- Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen East, Denmark.
| | - Mireia Solà
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Emma Christine Jappe
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Saioa Oscoz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Line Præst Lauridsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Mikael Engmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
- Department of Bio and Health Informatics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
20
|
Santibáñez-López CE, Francke OF, Ureta C, Possani LD. Scorpions from Mexico: From Species Diversity to Venom Complexity. Toxins (Basel) 2015; 8:E2. [PMID: 26712787 PMCID: PMC4728524 DOI: 10.3390/toxins8010002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/25/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
Scorpions are among the oldest terrestrial arthropods, which are distributed worldwide, except for Antarctica and some Pacific islands. Scorpion envenomation represents a public health problem in several parts of the world. Mexico harbors the highest diversity of scorpions in the world, including some of the world's medically important scorpion species. The systematics and diversity of Mexican scorpion fauna has not been revised in the past decade; and due to recent and exhaustive collection efforts as part of different ongoing major revisionary systematic projects, our understanding of this diversity has changed compared with previous assessments. Given the presence of several medically important scorpion species, the study of their venom in the country is also important. In the present contribution, the diversity of scorpion species in Mexico is revised and updated based on several new systematic contributions; 281 different species are recorded. Commentaries on recent venomic, ecological and behavioral studies of Mexican scorpions are also provided. A list containing the most important peptides identified from 16 different species is included. A graphical representation of the different types of components found in these venoms is also revised. A map with hotspots showing the current knowledge on scorpion distribution and areas explored in Mexico is also provided.
Collapse
Affiliation(s)
- Carlos E Santibáñez-López
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico.
| | - Oscar F Francke
- Colección Nacional de Arácnidos, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Copilco, Coyoacán A.P. 70-233, Distrito Federal 04510, Mexico.
| | - Carolina Ureta
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria, Distrito Federal 04510, Mexico.
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico.
| |
Collapse
|
21
|
Riaño-Umbarila L, Ledezma-Candanoza LM, Serrano-Posada H, Fernández-Taboada G, Olamendi-Portugal T, Rojas-Trejo S, Gómez-Ramírez IV, Rudiño-Piñera E, Possani LD, Becerril B. Optimal Neutralization of Centruroides noxius Venom Is Understood through a Structural Complex between Two Antibody Fragments and the Cn2 Toxin. J Biol Chem 2015; 291:1619-1630. [PMID: 26589800 DOI: 10.1074/jbc.m115.685297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 12/19/2022] Open
Abstract
The current trend of using recombinant antibody fragments in research to develop novel antidotes against scorpion stings has achieved excellent results. The polyclonal character of commercial antivenoms, obtained through the immunization of animals and which contain several neutralizing antibodies that recognize different epitopes on the toxins, guarantees the neutralization of the venoms. To avoid the use of animals, we aimed to develop an equivalent recombinant antivenom composed of a few neutralizing single chain antibody fragments (scFvs) that bind to two different epitopes on the scorpion toxins. In this study, we obtained scFv RU1 derived from scFv C1. RU1 showed a good capacity to neutralize the Cn2 toxin and whole venom of the scorpion Centruroides noxius. Previously, we had produced scFv LR, obtained from a different parental fragment (scFv 3F). LR also showed a similar neutralizing capacity. The simultaneous administration of both scFvs resulted in improved protection, which was translated as a rapid recovery of previously poisoned animals. The crystallographic structure of the ternary complex scFv LR-Cn2-scFv RU1 allowed us to identify the areas of interaction of both scFvs with the toxin, which correspond to non-overlapping sites. The epitope recognized by scFv RU1 seems to be related to a greater efficiency in the neutralization of the whole venom. In addition, the structural analysis of the complex helped us to explain the cross-reactivity of these scFvs and how they neutralize the venom.
Collapse
Affiliation(s)
- Lidia Riaño-Umbarila
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and
| | - Luis M Ledezma-Candanoza
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and
| | - Hugo Serrano-Posada
- the Laboratorio de Bioingeniería, Universidad de Colima, Km. 9 carretera Coquimatlán-Colima, C.P. 28400 Coquimatlán, Colima, México
| | - Guillermo Fernández-Taboada
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and
| | - Timoteo Olamendi-Portugal
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and
| | - Sonia Rojas-Trejo
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and
| | - Ilse V Gómez-Ramírez
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and
| | - Enrique Rudiño-Piñera
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and
| | - Lourival D Possani
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and
| | - Baltazar Becerril
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México and.
| |
Collapse
|
22
|
Carmo AO, Chatzaki M, Horta CCR, Magalhães BF, Oliveira-Mendes BBR, Chávez-Olórtegui C, Kalapothakis E. Evolution of alternative methodologies of scorpion antivenoms production. Toxicon 2015; 97:64-74. [PMID: 25701676 DOI: 10.1016/j.toxicon.2015.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/10/2014] [Accepted: 02/17/2015] [Indexed: 12/23/2022]
Abstract
Scorpionism represents a serious public health problem resulting in the death of children and debilitated individuals. Scorpion sting treatment employs various strategies including the use of specific medicines such as antiserum, especially for patients with severe symptoms. In 1909 Charles Todd described the production of an antiserum against the venom of the scorpion Buthus quinquestriatus. Based on Todd's work, researchers worldwide began producing antiserum using the same approach i.e., immunization of horses with crude venom as antigen. Despite achieving satisfactory results using this approach, researchers in this field have developed alternative approaches for the production of scorpion antivenom serum. In this review, we describe the work published by experts in toxinology to the development of scorpion venom antiserum. Methods and results describing the use of specific antigens, detoxified venom or toxins, purified toxins and or venom fractions, native toxoids, recombinant toxins, synthetic peptides, monoclonal and recombinant antibodies, and alternative animal models are presented.
Collapse
Affiliation(s)
- A O Carmo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - M Chatzaki
- Department of Molecular Biology & Genetics, Democritus University of Thrace, University Campus, 69100 Komotini, Greece.
| | - C C R Horta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - B F Magalhães
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - B B R Oliveira-Mendes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - C Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - E Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
23
|
Escalona MP, Batista CV, Cassulini RR, Rios MS, Coronas FI, Possani LD. A proteomic analysis of the early secondary molecular effects caused by Cn2 scorpion toxin on neuroblastoma cells. J Proteomics 2014; 111:212-23. [DOI: 10.1016/j.jprot.2014.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/20/2014] [Accepted: 04/22/2014] [Indexed: 01/16/2023]
|
24
|
Riaño-Umbarila L, Olamendi-Portugal T, Morelos-Juárez C, Gurrola GB, Possani LD, Becerril B. A novel human recombinant antibody fragment capable of neutralizing Mexican scorpion toxins. Toxicon 2013; 76:370-6. [DOI: 10.1016/j.toxicon.2013.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/08/2013] [Accepted: 09/12/2013] [Indexed: 11/24/2022]
|
25
|
Valdez-Velázquez LL, Quintero-Hernández V, Romero-Gutiérrez MT, Coronas FIV, Possani LD. Mass fingerprinting of the venom and transcriptome of venom gland of scorpion Centruroides tecomanus. PLoS One 2013; 8:e66486. [PMID: 23840487 PMCID: PMC3688770 DOI: 10.1371/journal.pone.0066486] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/06/2013] [Indexed: 01/02/2023] Open
Abstract
Centruroides tecomanus is a Mexican scorpion endemic of the State of Colima, that causes human fatalities. This communication describes a proteome analysis obtained from milked venom and a transcriptome analysis from a cDNA library constructed from two pairs of venom glands of this scorpion. High perfomance liquid chromatography separation of soluble venom produced 80 fractions, from which at least 104 individual components were identified by mass spectrometry analysis, showing to contain molecular masses from 259 to 44,392 Da. Most of these components are within the expected molecular masses for Na+- and K+-channel specific toxic peptides, supporting the clinical findings of intoxication, when humans are stung by this scorpion. From the cDNA library 162 clones were randomly chosen, from which 130 sequences of good quality were identified and were clustered in 28 contigs containing, each, two or more expressed sequence tags (EST) and 49 singlets with only one EST. Deduced amino acid sequence analysis from 53% of the total ESTs showed that 81% (24 sequences) are similar to known toxic peptides that affect Na+-channel activity, and 19% (7 unique sequences) are similar to K+-channel especific toxins. Out of the 31 sequences, at least 8 peptides were confirmed by direct Edman degradation, using components isolated directly from the venom. The remaining 19%, 4%, 4%, 15% and 5% of the ESTs correspond respectively to proteins involved in cellular processes, antimicrobial peptides, venom components, proteins without defined function and sequences without similarity in databases. Among the cloned genes are those similar to metalloproteinases.
Collapse
Affiliation(s)
| | | | | | - Fredy I. V. Coronas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Lourival D. Possani
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
26
|
An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Nav1.6 in peripheral pain pathways. Pain 2013; 154:1749-1757. [PMID: 23711479 DOI: 10.1016/j.pain.2013.05.032] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/07/2013] [Accepted: 05/17/2013] [Indexed: 12/15/2022]
Abstract
Cold allodynia, pain in response to cooling, occurs during or within hours of oxaliplatin infusion and is thought to arise from a direct effect of oxaliplatin on peripheral sensory neurons. To characterize the pathophysiological mechanisms underlying acute oxaliplatin-induced cold allodynia, we established a new intraplantar oxaliplatin mouse model that rapidly developed long-lasting cold allodynia mediated entirely through tetrodotoxin-sensitive Nav pathways. Using selective inhibitors and knockout animals, we found that Nav1.6 was the key isoform involved, while thermosensitive transient receptor potential channels were not involved. Consistent with a crucial role for delayed-rectifier potassium channels in excitability in response to cold, intraplantar administration of the K(+)-channel blocker 4-aminopyridine mimicked oxaliplatin-induced cold allodynia and was also inhibited by Nav1.6 blockers. Intraplantar injection of the Nav1.6 activator Cn2 elicited spontaneous pain, mechanical allodynia, and enhanced 4-aminopyridine-induced cold allodynia. These findings provide behavioural evidence for a crucial role of Nav1.6 in multiple peripheral pain pathways including cold allodynia.
Collapse
|
27
|
Higareda AE, Possani LD, Ramírez OT. The use of culture redox potential and oxygen uptake rate for assessing glucose and glutamine depletion in hybridoma cultures. Biotechnol Bioeng 2012; 56:555-63. [PMID: 18642276 DOI: 10.1002/(sici)1097-0290(19971205)56:5<555::aid-bit9>3.0.co;2-h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Culture redox potential (CRP) and oxygen uptake rate (OUR) were monitored on-line during glucose- and glutamine-limited batch cultures of a murine hybridoma cell line that secretes a neutralizing monoclonal antibody specific to toxin 2 of the scorpion Centruroides noxius Hoffmann. It was found that OUR and CRP can be used for assessing the viable cell concentration and growth phases of the culture. Before nutrient depletion, OUR increased exponentially with viable cell concentration, whereas CRP decreased monotonically until cell viability started to decrease. During the death phase, CRP gradually increased. A sudden decrease in OUR occurred upon glucose or glutamine depletion. CRP traced the dissolved oxygen profile during a control action or an operational eventuality, however, during nutrient depletion it did not follow the expected behavior of a system composed mainly by the O(2)/H(2)O redox couple. Such a behavior was not due to the accumulated lactate or ammonia, nor to possible intracellular redox potential changes caused by nutrient depletion, as inferred from respiration inhibition by rotenone or uncoupled respiration by 2,4-dinitrophenol. As shown in this study, operational eventualities can be erroneously interpreted as changes in OUR when using algorithms based solely on oxygen balances. However, simultaneous measurements of CRP and OUR may be used to discriminate real metabolic events from operational failures. The results presented here can be used in advanced real-time algorithms for controling glucose and glutamine at low concentrations, avoiding under- or over-feeding them in hybridoma cultures, and consequently reducing the accumulation of metabolic wastes and improving monoclonal antibody production. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 555-563, 1997.
Collapse
Affiliation(s)
- A E Higareda
- Department of Bioengineering, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad S/N, Apdo. Postal 510-3, Cuernavaca, Morelos 62250, México, telephone: (52-5) 622-7646; fax: (52-7) 317-2388
| | | | | |
Collapse
|
28
|
Rodríguez-Rodríguez ER, Ledezma-Candanoza LM, Contreras-Ferrat LG, Olamendi-Portugal T, Possani LD, Becerril B, Riaño-Umbarila L. A Single Mutation in Framework 2 of the Heavy Variable Domain Improves the Properties of a Diabody and a Related Single-Chain Antibody. J Mol Biol 2012; 423:337-50. [DOI: 10.1016/j.jmb.2012.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
|
29
|
Quintero-Hernández V, Del Pozo-Yauner L, Pedraza-Escalona M, Juárez-González VR, Alcántara-Recillas I, Possani LD, Becerril B. Evaluation of three different formats of a neutralizing single chain human antibody against toxin Cn2: neutralization capacity versus thermodynamic stability. Immunol Lett 2012; 143:152-60. [PMID: 22306104 DOI: 10.1016/j.imlet.2012.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
Abstract
The single-chain antibody fragment (scFv) 6009F, obtained by directed evolution, neutralizes the effects of the Cn2 toxin, which is the major toxic component of Centruroides noxius scorpion venom. In this work we compared the neutralization capacity and the thermodynamic stability of scFv 6009F with those of two other derived formats: Fab 6009F and diabody 6009F. Additionally, the affinity constants to Cn2 toxin of the three recombinant antibody fragments were determined by means of BIAcore. We found a correlation between the thermodynamic stability of these antibody fragments with their neutralization capacity. The order of thermodynamic stability determined was Fab≫scFv>diabody. The Fab and scFv were capable of neutralizing the toxic effects of Cn2 and whole venom but the diabody was unable to fully neutralize intoxication. In silico analysis of the diabody format indicates that the reduction of stability and neutralization capacity could be explained by a less cooperative interface between the heavy and the light variable domains.
Collapse
Affiliation(s)
- Veronica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | | | | | | | | | | | | |
Collapse
|
30
|
Canul-Tec JC, Riaño-Umbarila L, Rudiño-Piñera E, Becerril B, Possani LD, Torres-Larios A. Structural basis of neutralization of the major toxic component from the scorpion Centruroides noxius Hoffmann by a human-derived single-chain antibody fragment. J Biol Chem 2011; 286:20892-900. [PMID: 21489992 PMCID: PMC3121463 DOI: 10.1074/jbc.m111.238410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 03/30/2011] [Indexed: 11/06/2022] Open
Abstract
It has previously been reported that several single-chain antibody fragments of human origin (scFv) neutralize the effects of two different scorpion venoms through interactions with the primary toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2). Here we present the crystal structure of the complex formed between one scFv (9004G) and the Cn2 toxin, determined in two crystal forms at 2.5 and 1.9 Å resolution. A 15-residue span of the toxin is recognized by the antibody through a cleft formed by residues from five of the complementarity-determining regions of the scFv. Analysis of the interface of the complex reveals three features. First, the epitope of toxin Cn2 overlaps with essential residues for the binding of β-toxins to its Na(+) channel receptor site. Second, the putative recognition of Css2 involves mainly residues that are present in both Cn2 and Css2 toxins. Finally, the effect on the increase of affinity of previously reported key residues during the maturation process of different scFvs can be inferred from the structure. Taken together, these results provide the structural basis that explain the mechanism of the 9004G neutralizing activity and give insight into the process of directed evolution that gave rise to this family of neutralizing scFvs.
Collapse
Affiliation(s)
- Juan Carlos Canul-Tec
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62210 and
| | - Lidia Riaño-Umbarila
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62210 and
| | - Enrique Rudiño-Piñera
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62210 and
| | - Baltazar Becerril
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62210 and
| | - Lourival D. Possani
- From the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62210 and
| | - Alfredo Torres-Larios
- the Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado postal 70-243, Mexico City 04510, México
| |
Collapse
|
31
|
Amaro I, Riaño-Umbarila L, Becerril B, Possani LD. Isolation and characterization of a human antibody fragment specific for Ts1 toxin from Tityus serrulatus scorpion. Immunol Lett 2011; 139:73-9. [PMID: 21620895 DOI: 10.1016/j.imlet.2011.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/26/2011] [Accepted: 05/09/2011] [Indexed: 01/16/2023]
Abstract
Scorpion stings are a common event that occurs in tropical and subtropical areas of the world, being a public health problem in certain countries. In most places, medical treatment relays on antivenoms obtained from the sera of hyper-immunized horses, however some efforts are being made to prepare specific antibodies of human origin, using phage display methodology. This communication describes the strategy followed for obtaining a protective human single chain antibody (scFv) capable of partially neutralizing the effect of Ts1, the major toxin isolated from the venom of the Brazilian scorpion Tityus serrulatus. Phage display technique allowed the isolation of scFv 15e from a human library of antibodies, after four rounds of selection against Ts1. This clone codes for 124 amino acids belonging to the family VH6 and 114 amino acids of family VK4. This scFv also recognizes toxins from the scorpions Tityus packyurus and Tityus cambridgei from the Amazonian region. Mice challenged with a LD(50) of Ts1 in the presence of this scFv were substantially resistant to intoxication. ScFv 15e is a leading compound for the development of better anti-scorpion antidotes.
Collapse
Affiliation(s)
- Itzel Amaro
- Department of Molecular Medicine and Bioprocesses, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Avenida Universidad, 2001, Col. Chamilpa 510-3, Cuernavaca 62210, Mexico
| | | | | | | |
Collapse
|
32
|
Espino-Solis GP, Estrada G, Olamendi-Portugal T, Villegas E, Zamudio F, Cestele S, Possani LD, Corzo G. Isolation and molecular cloning of beta-neurotoxins from the venom of the scorpion Centruroides suffusus suffusus. Toxicon 2011; 57:739-46. [PMID: 21329715 DOI: 10.1016/j.toxicon.2011.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/27/2011] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
Abstract
This communication reports the identification and characterization of two new toxins from the venom of the scorpion Centruroides suffusus suffusus, named: CssVIII and CssIX, according to the original nomenclature of toxins previously described for this scorpion. The isolation was obtained by means of two chromatographic steps, and a cDNA library was used to fully identify their precursors. CssVIII and CssIX contain signal peptides of 19 and 17 amino acid residues, and mature peptides of 66 and 65 residues, respectively. Intracranial injections into mice of both purified toxins showed toxicity results similar to those found for toxins CssII and CssIV. Additionally, they compete with the parent toxin CssIV, in binding and displacement experiments, conducted with brain synaptosomes showing nanomolar affinities. These results strongly support the conclusion that they are new β-neurotoxins and certainly would be of the interest of researchers in the field of venomics for studying sodium channels.
Collapse
Affiliation(s)
- Gerardo Pavel Espino-Solis
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Riaño-Umbarila L, Contreras-Ferrat G, Olamendi-Portugal T, Morelos-Juárez C, Corzo G, Possani LD, Becerril B. Exploiting cross-reactivity to neutralize two different scorpion venoms with one single chain antibody fragment. J Biol Chem 2010; 286:6143-51. [PMID: 21156801 DOI: 10.1074/jbc.m110.189175] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We report the optimization of a family of human single chain antibody fragments (scFv) for neutralizing two scorpion venoms. The parental scFv 3F recognizes the main toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2), albeit with low affinity. This scFv was subjected to independent processes of directed evolution to improve its recognition toward Cn2 (Riaño-Umbarila, L., Juárez-González, V. R., Olamendi-Portugal, T., Ortíz-León, M., Possani, L. D., and Becerril, B. (2005) FEBS J. 272, 2591-2601) and Css2 (this work). Each evolved variant showed strong cross-reactivity against several toxins, and was capable of neutralizing Cn2 and Css2. Furthermore, each variant neutralized the whole venoms of the above species. As far as we know, this is the first report of antibodies with such characteristics. Maturation processes revealed key residue changes to attain expression, stability, and affinity improvements as compared with the parental scFv. Combination of these changes resulted in the scFv LR, which is capable of rescuing mice from severe envenomation by 3 LD(50) of freshly prepared whole venom of C. noxius (7.5 μg/20 g of mouse) and C. suffusus (26.25 μg/20 g of mouse), with surviving rates between 90 and 100%. Our research is leading to the formulation of an antivenom consisting of a discrete number of human scFvs endowed with strong cross-reactivity and low immunogenicity.
Collapse
Affiliation(s)
- Lidia Riaño-Umbarila
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México
| | | | | | | | | | | | | |
Collapse
|
34
|
Solution structure of Cn5, a crustacean toxin found in the venom of the scorpions Centruroides noxius and Centruroides suffusus suffusus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1591-8. [DOI: 10.1016/j.bbapap.2009.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/30/2009] [Accepted: 07/13/2009] [Indexed: 11/20/2022]
|
35
|
Heterologous expressed toxic and non-toxic peptide variants of toxin CssII are capable to produce neutralizing antibodies against the venom of the scorpion Centruroides suffusus suffusus. Immunol Lett 2009; 125:93-9. [DOI: 10.1016/j.imlet.2009.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/20/2009] [Accepted: 06/03/2009] [Indexed: 11/21/2022]
|
36
|
Antidotes against venomous animals: State of the art and prospectives. J Proteomics 2009; 72:183-99. [DOI: 10.1016/j.jprot.2009.01.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 01/14/2009] [Accepted: 01/14/2009] [Indexed: 12/12/2022]
|
37
|
Cordeiro MDN, Richardson M, Gilroy J, Figueiredo SGD, Beirão PSL, Diniz CR. Properties of the Venom from the South American ‘‘Armed'’ Spider Phoneutria Nigriventer (Keyserling, 1891). ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569549509019466] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Becerril B, Corona M, García C, Bolívar F, Possani LD. Cloning of Genes Encoding Scorpion Toxins: An Interpretative Review. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569549509019468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Quintero-Hernández V, Juárez-González VR, Ortíz-León M, Sánchez R, Possani LD, Becerril B. The change of the scFv into the Fab format improves the stability and in vivo toxin neutralization capacity of recombinant antibodies. Mol Immunol 2007; 44:1307-15. [PMID: 16814388 DOI: 10.1016/j.molimm.2006.05.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Revised: 05/19/2006] [Accepted: 05/24/2006] [Indexed: 11/28/2022]
Abstract
The antigen-binding fragment (Fab) has been considered a more functionally stable version of recombinant antibodies than single chain antibody fragments (scFvs), however this intuitive consideration has not been sufficiently proven in vivo. This communication shows that three out of four specific scFvs against a scorpion toxin, with different affinities and stabilities, become neutralizing in vivo when expressed as Fabs, despite the fact that they are not neutralizing in the scFv format. A scFv fragment previously obtained from a neutralizing mouse antibody (BCF2) was used to produce three derived scFvs by directed evolution. Only one of them was neutralizing, however when expressed as Fab, all of them became neutralizing fragments in vivo. The initial scFvBCF2 (earlier used for directed evolution) was not neutralizing in the scFv format. After expressing it as Fab did not become a neutralizing fragment, but did reduce the intoxication symptoms of experimental mice. The stability of the four Fabs derived from their respective scFvs was improved when tested in the presence of guanidinium chloride. The in vitro stability of the Fab format has been shown earlier, but the physiological consequences of this stability are shown in this communication. The present results indicate that improved functional stability conferred by the Fab format can replace additional maturation steps, when the affinity and stability are close to the minimum necessary to be neutralizing.
Collapse
Affiliation(s)
- Veronica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | | | | | | | | | | |
Collapse
|
40
|
Schiavon E, Sacco T, Cassulini RR, Gurrola G, Tempia F, Possani LD, Wanke E. Resurgent Current and Voltage Sensor Trapping Enhanced Activation by a β-Scorpion Toxin Solely in Nav1.6 Channel. J Biol Chem 2006; 281:20326-37. [PMID: 16702217 DOI: 10.1074/jbc.m600565200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Resurgent currents are functionally crucial in sustaining the high frequency firing of cerebellar Purkinje neurons expressing Na(v)1.6 channels. Beta-scorpion toxins, such as CssIV, induce a left shift in the voltage-dependent activation of Na(v)1.2 channels by "trapping" the IIS4 voltage sensor segment. We found that the dangerous Cn2 beta-scorpion peptide induces both the left shift voltage-dependent activation and a transient resurgent current only in human Na(v)1.6 channels (among 1.1-1.7), whereas CssIV did not induce the resurgent current. Cn2 also produced both actions in mouse Purkinje cells. These findings suggest that only distinct beta-toxins produce resurgent currents. We suggest that the novel and unique selectivity of Cn2 could make it a model drug to replace deep brain stimulation of the subthalamic nucleus in patients with Parkinson disease.
Collapse
Affiliation(s)
- Emanuele Schiavon
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan 20126, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Serrato JA, Palomares LA, Meneses-Acosta A, Ramírez OT. Heterogeneous conditions in dissolved oxygen affect N-glycosylation but not productivity of a monoclonal antibody in hybridoma cultures. Biotechnol Bioeng 2005; 88:176-88. [PMID: 15449295 DOI: 10.1002/bit.20232] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is known that heterogeneous conditions exist in large-scale animal cell cultures. However, little is known about how heterogeneities affect cells, productivities, and product quality. To study the effect of non-constant dissolved oxygen tension (DOT), hybridomas were subjected to sinusoidal DOT oscillations in a one-compartment scale-down simulator. Oscillations were forced by manipulating the inlet oxygen partial pressure through a feedback control algorithm in a 220-mL bioreactor maintained at a constant agitation. Such temporal DOT oscillations simulate spatial DOT gradients that can occur in large scales. Different oscillation periods, in the range of 800 to 12,800 s (axis of 7% (air saturation) and amplitude of 7%), were tested and compared to constant DOT (10%) control cultures. Oscillating DOT decreased maximum cell concentrations, cell growth rates, and viability indexes. Cultures at oscillating DOT had an increased glycolytic metabolism that was evidenced by a decrease in yield of cells on glucose and an increase in lactate yield. DOT gradients, even several orders of magnitude higher than those expected under practical large-scale conditions, did not significantly affect the maximum concentration of an IgG(1) monoclonal antibody (MAb). The glycosylation profile of the MAb produced at a constant DOT of 10% was similar to that reported in the literature. However, MAb produced under oscillating culture conditions had a higher amount of triantennary and sialylated glycans, which can interfere with effector functions of the antibody. It was shown that transient excursions of hybridomas to limiting DOT, as occurs in deficiently mixed large-scale bioreactors, is important to culture performance as the oscillation period, and thus the time cells spent at low DOT, affected cell growth, metabolism, and the glycosylation pattern of MAb. Such results underline the importance of monitoring protein characteristics for the development of large-scale processes.
Collapse
Affiliation(s)
- J Antonio Serrato
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
| | | | | | | |
Collapse
|
42
|
Riaño-Umbarila L, Juárez-González VR, Olamendi-Portugal T, Ortíz-León M, Possani LD, Becerril B. A strategy for the generation of specific human antibodies by directed evolution and phage display. FEBS J 2005; 272:2591-601. [PMID: 15885107 DOI: 10.1111/j.1742-4658.2005.04687.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study describes the construction of a library of single-chain antibody fragments (scFvs) from a single human donor by individual amplification of all heavy and light variable domains (1.1 x 10(8) recombinants). The library was panned using the phage display technique, which allowed selection of specific scFvs (3F and C1) capable of recognizing Cn2, the major toxic component of Centruroides noxius scorpion venom. The scFv 3F was matured in vitro by three cycles of directed evolution. The use of stringent conditions in the third cycle allowed the selection of several improved clones. The best scFv obtained (6009F) was improved in terms of its affinity by 446-fold, from 183 nm (3F) to 410 pm. This scFv 6009F was able to neutralize 2 LD(50) of Cn2 toxin when a 1 : 10 molar ratio of toxin-to-antibody fragment was used. It was also able to neutralize 2 LD(50) of the whole venom. These results pave the way for the future generation of recombinant human antivenoms.
Collapse
Affiliation(s)
- Lidia Riaño-Umbarila
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Mexico
| | | | | | | | | | | |
Collapse
|
43
|
Gazarian KG, Gazarian T, Hernández R, Possani LD. Immunology of scorpion toxins and perspectives for generation of anti-venom vaccines. Vaccine 2005; 23:3357-68. [PMID: 15837360 DOI: 10.1016/j.vaccine.2004.12.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 08/31/2004] [Accepted: 12/22/2004] [Indexed: 10/25/2022]
Abstract
Scorpions and other venomous animals contain concentrates of biologically active substances developed to block vital physiological and biochemical functions of the victims. These have contrasting human health concerns, provide important pharmacological raw material and pose a serious threat to human life and health in tropical and subtropical regions. Because only occasional and minor quantities of venom are introduced into the human organism with a scorpion sting and their mortal effect is an acute phenomenon these substances are unknown to the immune defense system and thus no immunity has appeared against them during evolution. Antidotes prepared from animal anti-sera are effective against some species of scorpions but depend on the manufacturer and the availability of product to the medical community. Although significant progress has been made in immunological studies of certain groups of toxins, few centers are dedicated to this research. Information is still insufficient to generate a comprehensive picture of the subject and to propose vaccines against venoms. A novel approach based on mimotopes selected from phage-displayed random peptide libraries show potential to impel further progress of toxin immunological studies and to provide putative vaccine resources. In this report we revise the "state of the art" in the field.
Collapse
Affiliation(s)
- Karlen G Gazarian
- Department of Molecular Biology and Biotechnology of Institute of Biomedical Research, Mexican National University (UNAM), Ciudad Universitaria, Circuito escolar s/n, Ciudad Universitaria, 04510 México DF, México.
| | | | | | | |
Collapse
|
44
|
Juárez-González VR, Riaño-Umbarila L, Quintero-Hernández V, Olamendi-Portugal T, Ortiz-León M, Ortíz E, Possani LD, Becerril B. Directed Evolution, Phage Display and Combination of Evolved Mutants: A Strategy to Recover the Neutralization Properties of the scFv Version of BCF2 a Neutralizing Monoclonal Antibody Specific to Scorpion Toxin Cn2. J Mol Biol 2005; 346:1287-97. [PMID: 15713481 DOI: 10.1016/j.jmb.2004.12.060] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 12/15/2004] [Accepted: 12/30/2004] [Indexed: 11/25/2022]
Abstract
BCF2, a monoclonal antibody raised against scorpion toxin Cn2, is capable of neutralizing both, the toxin and the whole venom of the Mexican scorpion Centruroides noxius Hoffmann. The single chain antibody fragment (scFv) of BCF2 was constructed and expressed in Escherichia coli. Although its affinity for the Cn2 toxin was shown to be in the nanomolar range, it was non-neutralizing in vivo due to a low stability. In order to recover the neutralizing capacity, the scFv of BCF2 was evolved by error-prone PCR and the variants were panned by phage display. Seven improved mutants were isolated from three different libraries. One of these mutants, called G5 with one mutation at CDR1 and another at CDR2 of the light chain, showed an increased affinity to Cn2, as compared to the parental scFv. A second mutant, called B7 with a single change at framework 2 of heavy chain, also had a higher affinity. Mutants G5 and B7 were also improved in their stability but they were unable to neutralize the toxin. Finally, we constructed a variant containing the changes present in G5 and B7. The purpose of this construction was to combine the increments in affinity and stability borne by these mutants. The result was a triple mutant capable of neutralizing the Cn2 toxin. This variant showed the best affinity constant (KD=7.5x10(-11) M), as determined by surface plasmon resonance (BIAcore). The k(on) and k(off) were improved threefold and fivefold, respectively, leading to 15-fold affinity improvement. Functional stability determinations by ELISA in the presence of different concentrations of guanidinium hydrochloride (Gdn-HCl) revealed that the triple mutant is significantly more stable than the parental scFv. These results suggest that not only improving the affinity but also the stability of our scFv were important for recovering its neutralization capacity. These findings pave the way for the generation of recombinant neutralizing antisera against scorpion stings based on scFvs.
Collapse
Affiliation(s)
- V R Juárez-González
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Borges A, Alfonzo MJ, García CC, Winand NJ, Leipold E, Heinemann SH. Isolation, molecular cloning and functional characterization of a novel beta-toxin from the Venezuelan scorpion, Tityus zulianus. Toxicon 2004; 43:671-84. [PMID: 15109888 DOI: 10.1016/j.toxicon.2004.02.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 02/26/2004] [Accepted: 02/27/2004] [Indexed: 11/18/2022]
Abstract
Sting in children by Tityus zulianus scorpions (western Venezuela) often produces cardiorespiratory arrest and death by pulmonary oedema. To assess its toxicity, lethality in mice of T. zulianus soluble venom was determined. Toxin composition was studied by fractionating the crude venom through reversed-phase HPLC. The most abundant peptide, Tz1, was purified further and its N-terminal sequence, amino acid composition and molecular mass (by electron-spray ionization mass spectrometry) determined. In the presence of Tz1, activation of recombinant rat skeletal muscle sodium channels (Na(V)1.4) was shifted about 35 mV in the hyperpolarizing direction in a prepulse-dependent manner. This typical beta-toxin effect had an apparent EC50 of 3.5 microM A cDNA sequence encoding Tz1 was isolated from T. zulianus venom gland RNA using a combination of 5'- and 3'-RACE PCR. Analysis of the encoded sequence indicated that Tz1 is the processed product of a precursor containing: (i) a 20-residue long leader peptide; (ii) the amino acid sequence of the mature toxin (64 residues); and (iii) an extra Gly-Lys tail at the C-terminus, probably removed post-translationally. A comparison of Tz1 with Tityus serrulatus beta-toxin Ts1 revealed that some of the non-conservative replacements in Tz1 lie in regions potentially involved in receptor recognition.
Collapse
Affiliation(s)
- Adolfo Borges
- Sección de Biomembranas, Instituto de Medicina Experimental, Facultad de Medicina, Universidad Central de Venezuela, Box 50587, Sabana Grande, Caracas 1051, Venezuela.
| | | | | | | | | | | |
Collapse
|
46
|
Selisko B, Cosío G, García C, Becerril B, Possani LD, Horjales E. Bacterial expression, purification and functional characterization of a recombinant chimeric Fab derived from murine mAb BCF2 that neutralizes the venom of the scorpion Centruroides noxius hoffmann. Toxicon 2004; 43:43-51. [PMID: 15037028 DOI: 10.1016/j.toxicon.2003.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Revised: 09/06/2003] [Accepted: 10/10/2003] [Indexed: 10/26/2022]
Abstract
The murine monoclonal antibody BCF2 is able to neutralize the venom of the scorpion Centruroides noxius Hoffmann. A chimeric Fab of BCF2 (chFab-BCF2) comprising the variable regions of murine BCF2 and human constant regions was assembled. chFab-BCF2 was expressed as a soluble and functional protein in the periplasmic space of Escherichia coli. An expression yield of 1 mg/l was reached by combination of late-log-phase induction, rich culture medium, low expression temperature and addition of sucrose (0.3 M) to the culture medium. The addition of sucrose induced secretion of 60% of the protein into the medium. After expression for 23 h, a novel process was used to release the remaining periplasmic protein in situ consisting in the addition of lysozyme and sucrose up to 0.6 M (20%) directly to the culture medium. chFab-BCF2 was recovered by ammonium sulfate precipitation and purified in a single step by affinity chromatography using anti-human anti-F(ab')(2) IgG coupled to Sepharose-proteinG. Pure chFab-BCF2 maintained a similar nanomolar affinity as BCF2 to its cognate antigen, the Na(+)-channel-affecting toxin Cn2. Recombinant chFab-BCF2 was able to neutralize Cn2 in vivo even at a molar ratio of 1:1, as well as the whole venom of C. noxius. Thus, it is a promising candidate to be used as a specific and efficient recombinant antidote against scorpion stings.
Collapse
Affiliation(s)
- Barbara Selisko
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology/National Autonomous University of Mexico (UNAM), Av. Universidad 2001, Apartado Postal 510-3, Cuernavaca, Morelos 62210, Mexico
| | | | | | | | | | | |
Collapse
|
47
|
Garcia C, Calderón-Aranda ES, Anguiano GAV, Becerril B, Possani LD. Analysis of the immune response induced by a scorpion venom sub-fraction, a pure peptide and a recombinant peptide, against toxin Cn2 of Centruroides noxius Hoffmann. Toxicon 2003; 41:417-27. [PMID: 12657311 DOI: 10.1016/s0041-0101(02)00337-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Three different immunogens from the venom of the Mexican scorpion Centruroides noxius Hoffmann were used to study protective antibody response in mice and rabbits, challenged with toxin Cn2, one of the most abundant toxic peptide of this venom. The immunogens were: Cn5, a crustacean specific toxin; a recombinant protein containing the peptide Cn5 linked to the maltose transporter and a sub-fraction (F.II.5) containing 25 distinct peptides, among which is Cn5. Mice immunized with these three preparations, when directly challenged with Cn2 presented no apparent protection, whereas anti-sera produced in rabbits with these three immunogens were capable of partially neutralizing the effect of Cn2, when injected into naive mice. Cn5 rabbit anti-serum showed a better protective effect on mice, than the rabbit sera obtained against the two other antigens. The subcutaneous route of challenging mice was shown to be better than intraperitoneal injections. Comparative structural analysis of Cn5 with other toxins of this venom showed that our results are important to be taken into consideration, when choosing appropriate immunogens aimed at the production of better anti-venoms or for the rational design of possible vaccines.
Collapse
Affiliation(s)
- Consuelo Garcia
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | | | | | | | | |
Collapse
|
48
|
Selisko B, Licea AF, Becerril B, Zamudio F, Possani LD, Horjales E. Antibody BCF2 against scorpion toxin cn2 fromCentruroides noxius hoffmann: Primary structure and three-dimensional model as free fv fragment and complexed with its antigen. Proteins 1999. [DOI: 10.1002/(sici)1097-0134(19991001)37:1<130::aid-prot13>3.0.co;2-s] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Possani LD, Becerril B, Delepierre M, Tytgat J. Scorpion toxins specific for Na+-channels. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:287-300. [PMID: 10491073 DOI: 10.1046/j.1432-1327.1999.00625.x] [Citation(s) in RCA: 480] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Na+-channel specific scorpion toxins are peptides of 60-76 amino acid residues in length, tightly bound by four disulfide bridges. The complete amino acid sequence of 85 distinct peptides are presently known. For some toxins, the three-dimensional structure has been solved by X-ray diffraction and NMR spectroscopy. A constant structural motif has been found in all of them, consisting of one or two short segments of alpha-helix plus a triple-stranded beta-sheet, connected by variable regions forming loops (turns). Physiological experiments have shown that these toxins are modifiers of the gating mechanism of the Na+-channel function, affecting either the inactivation (alpha-toxins) or the activation (beta-toxins) kinetics of the channels. Many functional variations of these peptides have been demonstrated, which include not only the classical alpha- and beta-types, but also the species specificity of their action. There are peptides that bind or affect the function of Na+-channels from different species (mammals, insects or crustaceans) or are toxic to more than one group of animals. Based on functional and structural features of the known toxins, a classification containing 10 different groups of toxins is proposed in this review. Attempts have been made to correlate the presence of certain amino acid residues or 'active sites' of these peptides with Na+-channel functions. Segments containing positively charged residues in special locations, such as the five-residue turn, the turn between the second and the third beta-strands, the C-terminal residues and a segment of the N-terminal region from residues 2-11, seems to be implicated in the activity of these toxins. However, the uncertainty, and the limited success obtained in the search for the site through which these peptides bind to the channels, are mainly due to the lack of an easy method for expression of cloned genes to produce a well-folded, active peptide. Many scorpion toxin coding genes have been obtained from cDNA libraries and from polymerase chain reactions using fragments of scorpion DNAs, as templates. The presence of an intron at the DNA level, situated in the middle of the signal peptide, has been demonstrated.
Collapse
Affiliation(s)
- L D Possani
- Department of Molecular Recognition and Structural Biology, Institute of Biotechnology, National Autonomous University of Mexico, Avenida Universidad 2001, Cuernavaca, Mexico.
| | | | | | | |
Collapse
|
50
|
Calderon-Aranda ES, Selisko B, York EJ, Gurrola GB, Stewart JM, Possani LD. Mapping of an epitope recognized by a neutralizing monoclonal antibody specific to toxin Cn2 from the scorpion Centruroides noxius, using discontinuous synthetic peptides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:746-55. [PMID: 10491120 DOI: 10.1046/j.1432-1327.1999.00620.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Na+-channel-affecting toxin Cn2 represents the major and one of the most toxic components of the venom of the Mexican scorpion Centruroides noxius Hoffmann. A monoclonal antibody BCF2 raised against Cn2 has been shown previously to be able to neutralize the toxic effect of Cn2 and of the whole venom of C. noxius. In the present study the epitope was mapped to a surface region comprising the N- and C-terminal segments of Cn2, using continuous and discontinuous synthetic peptides, designed on the basis of the sequence and a three-dimensional model of Cn2. The study of peptides of varying length resulted in the identification of segments 5-14 and 56-65 containing residues essential for recognition by BCF2. The peptide (abbreviated SP7) with the highest affinity to BCF2 (IC50 = 5.1 microM) was a synthetic heterodimer comprising the amino acid sequence from position 3-15 (amidated) of Cn2, bridged by disulfide to peptide from position 54-66, acetylated and amidated. Similar affinity was found with peptide SP1 [heterodimer comprising residues 1-14 (amidated) of Cn2, bridged with synthetic peptide 52-66 (acetylated)]. SP1 and SP7 were used to induce anti-peptide antibodies in mouse and rabbit. Both peptides were highly immunogenic. The sera obtained were able to recognize Cn2 and to neutralize Cn2 in vitro. The most efficient protection (8.3 microgram Cn2 neutralized per mL of serum) was induced by rabbit anti-SP1 serum.
Collapse
Affiliation(s)
- E S Calderon-Aranda
- Department of Molecular Recognition, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | | | | | | | | |
Collapse
|