1
|
Shah K, Kracher D, Macheroux P, Wallner S, Pick A, Kourist R. Discovery and characterization of NADH oxidases for selective sustainable synthesis of 5-hydroxymethylfuran carboxylic acid. J Biotechnol 2024; 398:18-28. [PMID: 39603419 DOI: 10.1016/j.jbiotec.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/14/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Efficient regeneration of NAD+ remains a significant challenge for oxidative biotransformations. In order to identify enzymes with higher activity and stability, a panel of NADH oxidases (Nox) was investigated in the regeneration of nicotinamide cofactors for the oxidation of hydroxymethyl furfural (HMF) to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA). We present novel Nox that exhibit remarkable catalytic activities, elevated thermal and pH stabilities, and higher intrinsic flavin loadings, thus eliminating the need for external flavin addition. The kinetic analysis of the NADH oxidases indicates that AdNox, GdNox, CmNox, and LvNox exhibit Vmax values of 86 U/mg, 50 U/mg, 4.3 U/mg, and 23 U/mg, respectively. When these NADH oxidases were applied in a HMF oxidation reaction, LvNox demonstrated the highest HMFCA yield of 97 % in the presence of 0.1 mM NAD and 10 mM HMF. In contrast to previously reported NADH oxidases from the same family, these NADH oxidases naturally accept NADPH as a substrate. Rapid kinetics experiments identified the oxidative reaction as the rate-limiting step of the reaction. NADH oxidases achieved high atom economy, a high reaction mass efficiency and a low process mass intensity. The findings contribute significantly to the field of biocatalysis and offer potential avenues for more environmentally friendly cofactor regeneration in chemical synthesis.
Collapse
Affiliation(s)
- Karishma Shah
- acib GmbH, Krenngasse 37, Graz 8010, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria; CASCAT GmbH, Europaring 4, Straubing 94315, Germany
| | - Daniel Kracher
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Petersgasse 10-12, Graz 8010, Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 10-12, Graz 8010, Austria
| | - André Pick
- CASCAT GmbH, Europaring 4, Straubing 94315, Germany
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, Graz 8010, Austria.
| |
Collapse
|
2
|
Characterization of L-arabinose/D-galactose 1-dehydrogenase from Thermotoga maritima and its application in galactonate production. World J Microbiol Biotechnol 2022; 38:223. [DOI: 10.1007/s11274-022-03406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
|
3
|
Madeira CL, Menezes O, Park D, Jog KV, Hatt JK, Gavazza S, Krzmarzick MJ, Sierra-Alvarez R, Spain JC, Konstantinidis KT, Field JA. Bacteria Make a Living Breathing the Nitroheterocyclic Insensitive Munitions Compound 3-Nitro-1,2,4-triazol-5-one (NTO). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5806-5814. [PMID: 33835790 DOI: 10.1021/acs.est.0c07161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The nitroheterocyclic 3-nitro-1,2,4-triazol-5-one (NTO) is an ingredient of insensitive explosives increasingly used by the military, becoming an emergent environmental pollutant. Cometabolic biotransformation of NTO occurs in mixed microbial cultures in soils and sludges with excess electron-donating substrates. Herein, we present the unusual energy-yielding metabolic process of NTO respiration, in which the NTO reduction to 3-amino-1,2,4-triazol-5-one (ATO) is linked to the anoxic acetate oxidation to CO2 by a culture enriched from municipal anaerobic digester sludge. Cell growth was observed simultaneously with NTO reduction, whereas the culture was unable to grow in the presence of acetate only. Extremely low concentrations (0.06 mg L-1) of the uncoupler carbonyl cyanide m-chlorophenyl hydrazone inhibited NTO reduction, indicating that the process was linked to respiration. The ultimate evidence of NTO respiration was adenosine triphosphate production due to simultaneous exposure to NTO and acetate. Metagenome sequencing revealed that the main microorganisms (and relative abundances) were Geobacter anodireducens (89.3%) and Thauera sp. (5.5%). This study is the first description of a nitroheterocyclic compound being reduced by anaerobic respiration, shedding light on creative microbial processes that enable bacteria to make a living reducing NTO.
Collapse
Affiliation(s)
- Camila L Madeira
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
| | - Osmar Menezes
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, Pernambuco 50740-530, Brazil
| | - Doyoung Park
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
| | - Kalyani V Jog
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
| | - Savia Gavazza
- Laboratório de Saneamento Ambiental, Departamento de Engenharia Civil e Ambiental, Universidade Federal de Pernambuco, Recife, Pernambuco 50740-530, Brazil
| | - Mark J Krzmarzick
- School of Civil and Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Reyes Sierra-Alvarez
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
| | - Jim C Spain
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
- Center for Environmental Diagnostics & Bioremediation, University of West Florida, Pensacola, Florida 32514, United States
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
| | - Jim A Field
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721-0011, United States
| |
Collapse
|
4
|
Comerlato CB, Zhang X, Walker K, Brandelli A, Figeys D. Comparative proteomic analysis reveals metabolic variability of probiotic Enterococcus durans during aerobic and anaerobic cultivation. J Proteomics 2020; 220:103764. [PMID: 32247174 DOI: 10.1016/j.jprot.2020.103764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/10/2020] [Accepted: 03/28/2020] [Indexed: 01/04/2023]
Abstract
The variation in the bioavailability of oxygen constitutes the environmental conditions found by bacteria in their passage through the host gastro-intestinal tract. Given the importance of oxygen in the defense mechanism of bacteria, it is important to understand how bacteria respond to this stress at a metabolic level. The probiotic strain Enterococcus durans LAB18S was cultivated under aerobic and anaerobic conditions using prebiotic oligosaccharides as carbon source. The whole cell proteome and secretome were analyzed through label-free quantitative proteomics approach. The results showed that the LAB18S isolate when grown with fructo-oligosacchrides (FOS) showed a higher number of differentially expressed proteins compared to samples with galacto-oligosaccharides (GOS) or glucose. Clinically important enzymes for the treatment of cancer, L-asparaginase and arginine deiminase, were overexpressed when the isolate was cultured in FOS. In addition, the absence of oxygen induced the strain to produce proteins related to cell multiplication, cell wall integrity and resistance, and H2O2 detoxification. This study showed that E. durans LAB18S growing on FOS was stimulated to produce clinically important biomolecules, including proteins that have been investigated as potential antineoplastic agents. Significance: The probiotic strain E. durans LAB18S produce clinically relevant enzymes for the treatment of cancer when cultivated in symbiosis with fructo-oligosacchrides (FOS). In addition, proteins associated with cellular multiplication, cell wall integrity and resistance, and H2O2 detoxification were induced under anaerobic growth. These characteristics could be relevant to support maintenance of intestinal health.
Collapse
Affiliation(s)
- Carolina Baldisserotto Comerlato
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91510-970, Porto Alegre, Brazil
| | - Xu Zhang
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Krystal Walker
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91510-970, Porto Alegre, Brazil.
| | - Daniel Figeys
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
5
|
Functional Characterization and Structural Analysis of NADH Oxidase Mutants from Thermus thermophilus HB27: Role of Residues 166, 174, and 194 in the Catalytic Properties and Thermostability. Microorganisms 2019; 7:microorganisms7110515. [PMID: 31683638 PMCID: PMC6921046 DOI: 10.3390/microorganisms7110515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 11/16/2022] Open
Abstract
The Thermus thermophilus strain HB27 NADH-oxidase (Tt27-NOX) catalyzes the oxidation of nicotinamide adenine dinucleotide (NAD(P)H) by reducing molecular oxygen to hydrogen peroxide in a two-electron transfer mechanism. Surprisingly, Tt27-NOX showed significant differences in catalytic properties compared to its counterpart from the strain HB8 (Tt8-NOX), despite a high degree of sequence homology between both variants. The sequence comparison between both enzymes revealed only three divergent amino acid residues at positions 166, 174, and 194. Motivated with these findings, in this work we performed mutagenesis experiments in the former three positions to study the specific role of these residues in the catalytic properties and thermostability of Tt27-NOX. We subjected five mutants, along with the wild-type enzyme, to biochemical characterization and thermal stability studies. As a result, we identified two more active and more thermostable variants than any Tt8-NOX variant reported in the literature. The most active and thermostable variant K166/H174/Y194 retained 90% of its initial activity after 5 h at pH 7 and 80 °C and an increase in melting temperature of 48.3 °C compared with the least active variant K166/R174/Y194 (inactivated after 15 min of incubation). These results, supported by structural analysis and molecular dynamics simulation studies, suggest that Lys at position 166 may stabilize the loop in which His174 is located, increasing thermal stability.
Collapse
|
6
|
Impact of Five Succinate Dehydrogenase Inhibitors on DON Biosynthesis of Fusarium asiaticum, Causing Fusarium Head Blight in Wheat. Toxins (Basel) 2019; 11:toxins11050272. [PMID: 31096549 PMCID: PMC6563320 DOI: 10.3390/toxins11050272] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/28/2022] Open
Abstract
Deoxynivalenol (DON) is a class of mycotoxin produced in cereal crops infected with Fusarium graminearum species complex (FGSC). In China, FGSC mainly includes Fusarium asiaticum and F. graminearum. DON belongs to the trichothecenes and poses a serious threat to the safety and health of humans and animals. Succinate dehydrogenase inhibitors (SDHIs) are a class of fungicides that act on succinate dehydrogenase and inhibit the respiration of pathogenic fungi. In this study, the fungicidal activities of five SDHIs, including fluopyram, flutolanil, boscalid, benzovindiflupyr, and fluxapyroxad, against FGSC were determined based on mycelial growth and spore germination inhibition methods. The five SDHIs exhibited better inhibitory activities in spore germination than mycelial growth. Fluopyram exhibited a higher inhibitory effect in mycelial growth and spore germination in comparison to the other four SDHIs. In addition, the biological characteristics of F. asiaticum as affected by the five SDHIs were determined. We found that these five SDHIs decreased DON, pyruvic acid and acetyl-CoA production, isocitrate dehydrogenase mitochondrial (ICDHm) and SDH activities, and NADH and ATP content of F. asiaticum but increased the citric acid content. In addition, TRI5 gene expression was inhibited, and the formation of toxisomes was disrupted by the five SDHIs, further confirming that SDHIs can decrease DON biosynthesis of F. asiaticum. Thus, we concluded that SDHIs may decrease DON biosynthesis of F. asiaticum by inhibiting glycolysis and the tricarboxylic acid (TCA) cycle. Overall, the findings from the study will provide important references for managing Fusarium head blight (FHB) caused by FGSC and reducing DON contamination in F. asiaticum-infected wheat grains.
Collapse
|
7
|
Chen X, Cui Y, Feng J, Wang Y, Liu X, Wu Q, Zhu D, Ma Y. Flavin Oxidoreductase‐Mediated Regeneration of Nicotinamide Adenine Dinucleotide with Dioxygen and Catalytic Amount of Flavin Mononucleotide for One‐Pot Multi‐Enzymatic Preparation of Ursodeoxycholic Acid. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xi Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Yunfeng Cui
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Jinhui Feng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Yu Wang
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Xiangtao Liu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin 300308, People's Republic of China
| |
Collapse
|
8
|
Akiva E, Copp JN, Tokuriki N, Babbitt PC. Evolutionary and molecular foundations of multiple contemporary functions of the nitroreductase superfamily. Proc Natl Acad Sci U S A 2017; 114:E9549-E9558. [PMID: 29078300 PMCID: PMC5692541 DOI: 10.1073/pnas.1706849114] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insight regarding how diverse enzymatic functions and reactions have evolved from ancestral scaffolds is fundamental to understanding chemical and evolutionary biology, and for the exploitation of enzymes for biotechnology. We undertook an extensive computational analysis using a unique and comprehensive combination of tools that include large-scale phylogenetic reconstruction to determine the sequence, structural, and functional relationships of the functionally diverse flavin mononucleotide-dependent nitroreductase (NTR) superfamily (>24,000 sequences from all domains of life, 54 structures, and >10 enzymatic functions). Our results suggest an evolutionary model in which contemporary subgroups of the superfamily have diverged in a radial manner from a minimal flavin-binding scaffold. We identified the structural design principle for this divergence: Insertions at key positions in the minimal scaffold that, combined with the fixation of key residues, have led to functional specialization. These results will aid future efforts to delineate the emergence of functional diversity in enzyme superfamilies, provide clues for functional inference for superfamily members of unknown function, and facilitate rational redesign of the NTR scaffold.
Collapse
Affiliation(s)
- Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| | - Janine N Copp
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4;
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158;
- California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158
| |
Collapse
|
9
|
Hoben JP, Lubner CE, Ratzloff MW, Schut GJ, Nguyen DMN, Hempel KW, Adams MWW, King PW, Miller AF. Equilibrium and ultrafast kinetic studies manipulating electron transfer: A short-lived flavin semiquinone is not sufficient for electron bifurcation. J Biol Chem 2017; 292:14039-14049. [PMID: 28615449 DOI: 10.1074/jbc.m117.794214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/11/2017] [Indexed: 11/06/2022] Open
Abstract
Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power), and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to "bifurcation." It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that the presence of a short-lived anionic flavin semiquinone (ASQ) is not sufficient to infer the existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase, and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over 2 orders of magnitude. Capacity for electron transfer among redox cofactors versus charge recombination with nearby donors can explain the range of ASQ lifetimes that we observe. Our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase I and can be an indication of capacity for electron bifurcation.
Collapse
Affiliation(s)
- John P Hoben
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | | | | | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Karl W Hempel
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Paul W King
- National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Anne-Frances Miller
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506.
| |
Collapse
|
10
|
Huijbers MME, Martínez-Júlvez M, Westphal AH, Delgado-Arciniega E, Medina M, van Berkel WJH. Proline dehydrogenase from Thermus thermophilus does not discriminate between FAD and FMN as cofactor. Sci Rep 2017; 7:43880. [PMID: 28256579 PMCID: PMC5335563 DOI: 10.1038/srep43880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/30/2017] [Indexed: 12/19/2022] Open
Abstract
Flavoenzymes are versatile biocatalysts containing either FAD or FMN as cofactor. FAD often binds to a Rossmann fold, while FMN prefers a TIM-barrel or flavodoxin-like fold. Proline dehydrogenase is denoted as an exception: it possesses a TIM barrel-like fold while binding FAD. Using a riboflavin auxotrophic Escherichia coli strain and maltose-binding protein as solubility tag, we produced the apoprotein of Thermus thermophilus ProDH (MBP-TtProDH). Remarkably, reconstitution with FAD or FMN revealed that MBP-TtProDH has no preference for either of the two prosthetic groups. Kinetic parameters of both holo forms are similar, as are the dissociation constants for FAD and FMN release. Furthermore, we show that the holo form of MBP-TtProDH, as produced in E. coli TOP10 cells, contains about three times more FMN than FAD. In line with this flavin content, the crystal structure of TtProDH variant ΔABC, which lacks helices αA, αB and αC, shows no electron density for an AMP moiety of the cofactor. To the best of our knowledge, this is the first example of a flavoenzyme that does not discriminate between FAD and FMN as cofactor. Therefore, classification of TtProDH as an FAD-binding enzyme should be reconsidered.
Collapse
Affiliation(s)
- Mieke M. E. Huijbers
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marta Martínez-Júlvez
- Department of Biochemistry and Molecular Cell Biology and Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Adrie H. Westphal
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Estela Delgado-Arciniega
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Milagros Medina
- Department of Biochemistry and Molecular Cell Biology and Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Willem J. H. van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
11
|
Purification and characterization of thermostable serine proteases encoded by the genes ttha0099 and ttha01320 from Thermus thermophilus HB8. Extremophiles 2016; 20:493-502. [DOI: 10.1007/s00792-016-0839-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/15/2016] [Indexed: 10/21/2022]
|
12
|
Shi XC, Zou YN, Chen Y, Zheng C, Li BB, Xu JH, Shen XN, Ying HJ. A water-forming NADH oxidase regulates metabolism in anaerobic fermentation. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:103. [PMID: 27175216 PMCID: PMC4864899 DOI: 10.1186/s13068-016-0517-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/26/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND Water-forming NADH oxidase can oxidize cytosolic NADH to NAD(+), thus relieving cytosolic NADH accumulation in Saccharomyces cerevisiae. Previous studies of the enzyme were conducted under aerobic conditions, as O2 is the recognized electron acceptor of the enzyme. In order to extend its use in industrial production and to study its effect on anaerobes, the effects of overexpression of this oxidase in S. cerevisiae BY4741 and Clostridium acetobutylicum 428 (Cac-428) under anaerobic conditions were evaluated. RESULTS Glucose was exhausted in the NADH oxidase-overexpressing S. cerevisiae strain (Sce-NOX) culture after 26 h, while 43.51 ± 2.18 g/L residual glucose was left in the control strain (Sce-CON) culture at this time point. After 30 h of fermentation, the concentration of ethanol produced by Sce-NOX reached 36.28 ± 1.81 g/L, an increase of 56.38 % as compared to Sce-CON (23.20 ± 1.16 g/L), while the byproduct glycerol was remarkably decreased in the culture of Sce-NOX. In the case of the C. acetobutylicum strain (Cac-NOX) overexpressing NADH oxidase, glucose consumption, cell growth rate, and the production of acetone-butanol-ethanol (ABE) all decreased, while the concentrations of acetic acid and butyric acid increased as compared to the control strain (Cac-CON). During fermentation of Cac-CON and Cac-NOX in 100-mL screw-capped bottles, the concentrations of ABE increased with increasing headspace. Additionally, several alternative electron acceptors in C. acetobutylicum fermentation were tested. Nitroblue tetrazolium and 2,6-dichloroindophenol were lethiferous to both Cac-CON and Cac-NOX. Methylene blue could relieve the effect caused by the overexpression of the NADH oxidase on the metabolic network of C. acetobutylicum strains, while cytochrome c aggravated the effect. CONCLUSIONS The water-forming NADH oxidase could regulate the metabolism of both the S. cerevisiae and the C. acetobutylicum strains in anaerobic conditions. Thus, the recombinant S. cerevisiae strain might be useful in industrial production. Besides the recognized electron acceptor O2, methylene blue and/or the structural analogs may be the alternative elector acceptor of the NADH oxidase in anaerobic conditions.
Collapse
Affiliation(s)
- Xin-Chi Shi
- State Key Laboratory of Materials–Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 210009 People’s Republic of China
| | - Ya-Nan Zou
- State Key Laboratory of Materials–Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 210009 People’s Republic of China
| | - Yong Chen
- State Key Laboratory of Materials–Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 210009 People’s Republic of China
| | - Cheng Zheng
- State Key Laboratory of Materials–Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 210009 People’s Republic of China
| | - Bing-Bing Li
- State Key Laboratory of Materials–Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 210009 People’s Republic of China
| | - Jia-Hui Xu
- State Key Laboratory of Materials–Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 210009 People’s Republic of China
| | - Xiao-Ning Shen
- State Key Laboratory of Materials–Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 210009 People’s Republic of China
| | - Han-Jie Ying
- State Key Laboratory of Materials–Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
13
|
Azuma Y, Zschoche R, Tinzl M, Hilvert D. Quantitative Beladung eines Proteinkäfigs mit aktiven Enzymen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yusuke Azuma
- Laboratorium für Organische Chemie; ETH Zürich; 8093 Zürich Schweiz
| | | | - Matthias Tinzl
- Laboratorium für Organische Chemie; ETH Zürich; 8093 Zürich Schweiz
| | - Donald Hilvert
- Laboratorium für Organische Chemie; ETH Zürich; 8093 Zürich Schweiz
| |
Collapse
|
14
|
Azuma Y, Zschoche R, Tinzl M, Hilvert D. Quantitative Packaging of Active Enzymes into a Protein Cage. Angew Chem Int Ed Engl 2015; 55:1531-4. [DOI: 10.1002/anie.201508414] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Yusuke Azuma
- Laboratory of Organic Chemistry; ETH Zurich; 8093 Zurich Switzerland
| | - Reinhard Zschoche
- Laboratory of Organic Chemistry; ETH Zurich; 8093 Zurich Switzerland
| | - Matthias Tinzl
- Laboratory of Organic Chemistry; ETH Zurich; 8093 Zurich Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry; ETH Zurich; 8093 Zurich Switzerland
| |
Collapse
|
15
|
Wang J, Feng J, Li W, Yang C, Chen X, Bao B, Yang J, Wang P, Li D, Shi R. Characterization of a novel (R)-mandelate dehydrogenase from Pseudomonas putida NUST506. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Shahverdi AR, Mirzaie S, Rafii F, Kakavand M, Foroumadi A. Monoterpenes as nitrofurantoin resistance modulating agents: minimal structural requirements, molecular dynamics simulations, and the effect of piperitone on the emergence of nitrofurantoin resistance in Enterobacteriaceae. J Mol Model 2015; 21:198. [PMID: 26174760 DOI: 10.1007/s00894-015-2741-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/24/2015] [Indexed: 01/10/2023]
Abstract
The effects of different monoterpenes and 2-cyclohexen-1-one on the antibacterial activity of nitrofurantoin against resistant Enterobacter cloacae, were compared and the minimal structural component of monoterpene required for the highest level of resistance-modulating activity was determined. Subinhibitory concentrations of all compounds tested enhanced the antibacterial activity of nitrofurantoin against E. cloacae to different extents. The highest synergistic effect was observed for the monoterpenes, like piperitone, which contained a conjugated ketone and C=C bond in their carbon ring structure. Piperitone also suppressed the emergence of nitrofurantoin-resistant strains of Enterobacteriaceae that were mutagenized by ethyl methanesulfonate. The modes of interaction of carvone, piperitone, and an enzyme inhibitor, benzoate, with nitroreductase were investigated by molecular docking and molecular dynamic (MD) simulation for 20 ns. MD simulation supported greater stability of the benzoate and monoterpene-nitroreductase (NR) complexes than of free NR. The results of this investigation are promising for the synthesis of more effective lead compounds to enhance the antibacterial activity of nitro drugs against resistant Enterobacter strains.
Collapse
Affiliation(s)
- Ahmad R Shahverdi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran,
| | | | | | | | | |
Collapse
|
17
|
Miletti T, Di Trani J, Jr Levros LC, Mittermaier A. Conformational plasticity surrounding the active site of NADH oxidase from Thermus thermophilus. Protein Sci 2015; 24:1114-28. [PMID: 25970557 PMCID: PMC4500311 DOI: 10.1002/pro.2693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 04/26/2015] [Indexed: 11/08/2022]
Abstract
Biotechnological applications of enzymes can involve the use of these molecules under nonphysiological conditions. Thus, it is of interest to understand how environmental variables affect protein structure and dynamics and how this ultimately modulates enzyme function. NADH oxidase (NOX) from Thermus thermophilus exemplifies how enzyme activity can be tuned by reaction conditions, such as temperature, cofactor substitution, and the addition of cosolutes. This enzyme catalyzes the oxidation of reduced NAD(P)H to NAD(P)(+) with the concurrent reduction of O2 to H2O2, with relevance to biosensing applications. It is thermophilic, with an optimum temperature of approximately 65°C and sevenfold lower activity at 25°C. Moderate concentrations (≈1M) of urea and other chaotropes increase NOX activity by up to a factor of 2.5 at room temperature. Furthermore, it is a flavoprotein that accepts either FMN or the much larger FAD as cofactor. We have used nuclear magnetic resonance (NMR) titration and (15)N spin relaxation experiments together with isothermal titration calorimetry to study how NOX structure and dynamics are affected by changes in temperature, the addition of urea and the substitution of the FMN cofactor with FAD. The majority of signals from NOX are quite insensitive to changes in temperature, cosolute addition, and cofactor substitution. However, a small cluster of residues surrounding the active site shows significant changes. These residues are implicated in coupling changes in the solution conditions of the enzyme to changes in catalytic activity.
Collapse
Affiliation(s)
- Teresa Miletti
- Department of Chemistry, McGill UniversityMontreal, Quebec, H3A 0B8
| | - Justin Di Trani
- Department of Chemistry, McGill UniversityMontreal, Quebec, H3A 0B8
| | - Louis-Charles Jr Levros
- Laboratoire de biologie moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à MontréalMontréal, Québec, H3C 3P8
| | | |
Collapse
|
18
|
Fang B, Jiang W, Zhou Q, Wang S. Codon-Optimized NADH Oxidase Gene Expression and Gene Fusion with Glycerol Dehydrogenase for Bienzyme System with Cofactor Regeneration. PLoS One 2015; 10:e0128412. [PMID: 26115038 PMCID: PMC4482596 DOI: 10.1371/journal.pone.0128412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/27/2015] [Indexed: 11/30/2022] Open
Abstract
NADH oxidases (NOXs) play an important role in maintaining balance of NAD+/NADH by catalyzing cofactors regeneration. The expression of nox gene from Lactobacillus brevis in Escherichia coli BL21 (BL21 (DE3)) was studied. Two strategies, the high AT-content in the region adjacent to the initiation codon and codon usage of the whole gene sequence consistent with the host, obtained the NOX activity of 59.9 U/mg and 73.3 U/mg (crude enzyme), with enhanced expression level of 2.0 and 2.5-folds, respectively. Purified NOX activity was 213.8 U/mg. Gene fusion of glycerol dehydrogenase (GDH) and NOX formed bifuctional multi-enzymes for bioconversion of glycerol coupled with coenzyme regeneration. Kinetic parameters of the GDH-NOX for each substrate, glycerol and NADH, were calculated as Vmax(Glycerol) 20 μM/min, Km(Glycerol) 19.4 mM, Vmax (NADH) 12.5 μM/min and Km (NADH) 51.3 μM, respectively, which indicated the potential application of GDH-NOX for quick glycerol analysis and dioxyacetone biosynthesis.
Collapse
Affiliation(s)
- Baishan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
- The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian, 361005, China
| | - Wei Jiang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Qiang Zhou
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Shizhen Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
- * E-mail:
| |
Collapse
|
19
|
Yan Z, Nam YW, Fushinobu S, Wakagi T. Sulfolobus tokodaii ST2133 is characterized as a thioredoxin reductase-like ferredoxin:NADP+ oxidoreductase. Extremophiles 2013; 18:99-110. [DOI: 10.1007/s00792-013-0601-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
|
20
|
Wang G, Chen L, Zhu Y, Wang L, Zhang X. Adenosine Triphosphate Sensing by Electrocatalysis with DNAzyme. ELECTROANAL 2013. [DOI: 10.1002/elan.201300425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Okazaki F, Nakashima N, Ogino C, Tamaru Y, Kondo A. Biochemical characterization of a thermostable β-1,3-xylanase from the hyperthermophilic eubacterium, Thermotoga neapolitana strain DSM 4359. Appl Microbiol Biotechnol 2012; 97:6749-57. [PMID: 23149756 DOI: 10.1007/s00253-012-4555-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
The biochemical properties of a putative β-1,3-xylanase from the hyperthermophilic eubacterium Thermotoga neapolitana DSM 4359 were determined from a recombinant protein (TnXyn26A) expressed in Escherichia coli. This enzyme showed specific hydrolytic activity against β-1,3-xylan and released β-1,3-xylobiose and β-1,3-xylotriose as main products. It displayed maximum activity at 85 °C during a 10-min incubation, and its activity half-life was 23.9 h at 85 °C. Enzyme activity was stable in the pH range 3-10, with pH 6.5 being optimal. Enzyme activity was significantly inhibited by the presence of N-bromosuccinimide (NBS). The insoluble β-1,3-xylan K m value was 10.35 mg/ml and the k cat value was 588.24 s(-1). The observed high thermostability and catalytic efficiency of TnXyn26A is both industrially desirable and also aids an understanding of the chemistry of its hydrolytic reaction.
Collapse
Affiliation(s)
- Fumiyoshi Okazaki
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | | | | | | | | |
Collapse
|
22
|
Golub E, Freeman R, Willner I. A hemin/G-quadruplex acts as an NADH oxidase and NADH peroxidase mimicking DNAzyme. Angew Chem Int Ed Engl 2012; 50:11710-4. [PMID: 22229160 DOI: 10.1002/anie.201103853] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Eyal Golub
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
23
|
Wang L, Chong H, Jiang R. Comparison of alkyl hydroperoxide reductase and two water-forming NADH oxidases from Bacillus cereus ATCC 14579. Appl Microbiol Biotechnol 2012; 96:1265-73. [PMID: 22311647 DOI: 10.1007/s00253-012-3919-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Bacillus cereus (B. cereus) is an ubiquitous facultative anaerobic bacterium, and its growth in aerobic environment correlates to the functions of its oxygen defense system. Water-forming NADH oxidase (nox-2) can catalyze the conversion of oxygen to water with concomitant NADH oxidation in anaerobic microorganisms. Here, we report the cloning and characterization of two annotated nox-2 s (nox-2(444) and nox-2(554)) from B. cereus ATCC 14579 and their comparison with another oxidative stress defense system alkyl hydroperoxide reductase (AhpR) from this microbe, which composed of two enzymes-hydrogen peroxide-forming NADH oxidase (nox-1) and peroxidase. Both nox-2 and AhpR catalyze the same reaction in the presence of oxygen. With the stimulation of exogenously added FAD, the maximum activity of nox-1, nox-2(444), and nox-2(554) could reach 27.7 U/mg, 22.9 U/mg, and 2.4 U/mg, respectively, at pH 7.0, 30 °C. Different from nox-1, both nox-2 s were thermotolerant enzymes and could maintain above 87% of their optimum activity at 80 °C, which was not found in other nox-2 s. As for operational stability, all are turnover-limited. Exogenously added reductive reagent dithiothreitol could dramatically increase the total turnover number of nox-2(444) and nox-2(554) by twofold and threefold, respectively, but had no effect on AhpR or nox-1.
Collapse
Affiliation(s)
- Liang Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | | | | |
Collapse
|
24
|
Merkley ED, Daggett V, Parson WW. A temperature-dependent conformational change of NADH oxidase from Thermus thermophilus HB8. Proteins 2011; 80:546-55. [PMID: 22081476 DOI: 10.1002/prot.23219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/04/2011] [Accepted: 10/07/2011] [Indexed: 11/10/2022]
Abstract
Using molecular dynamics simulations and steady-state fluorescence spectroscopy, we have identified a conformational change in the active site of a thermophilic flavoenzyme, NADH oxidase from Thermus thermophilus HB8 (NOX). The enzyme's far-UV circular dichroism spectrum, intrinsic tryptophan fluorescence, and apparent molecular weight measured by dynamic light scattering varied little between 25 and 75°C. However, the fluorescence of the tightly bound FAD cofactor increased approximately fourfold over this temperature range. This effect appears not to be due to aggregation, unfolding, cofactor dissociation, or changes in quaternary structure. We therefore attribute the change in flavin fluorescence to a temperature-dependent conformational change involving the NOX active site. Molecular dynamics simulations and the effects of mutating aromatic residues near the flavin suggest that the change in fluorescence results from a decrease in quenching by electron transfer from tyrosine 137 to the flavin.
Collapse
Affiliation(s)
- Eric D Merkley
- Department of Biochemistry, University of Washington, Seattle, Washington
| | | | | |
Collapse
|
25
|
Rocha-Martín J, Vega D, Bolivar JM, Godoy CA, Hidalgo A, Berenguer J, Guisán JM, López-Gallego F. New biotechnological perspectives of a NADH oxidase variant from Thermus thermophilus HB27 as NAD+-recycling enzyme. BMC Biotechnol 2011; 11:101. [PMID: 22053761 PMCID: PMC3238333 DOI: 10.1186/1472-6750-11-101] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 11/03/2011] [Indexed: 11/10/2022] Open
Abstract
Background The number of biotransformations that use nicotinamide recycling systems is exponentially growing. For this reason one of the current challenges in biocatalysis is to develop and optimize more simple and efficient cofactor recycling systems. One promising approach to regenerate NAD+ pools is the use of NADH-oxidases that reduce oxygen to hydrogen peroxide while oxidizing NADH to NAD+. This class of enzymes may be applied to asymmetric reduction of prochiral substrates in order to obtain enantiopure compounds. Results The NADH-oxidase (NOX) presented here is a flavoenzyme which needs exogenous FAD or FMN to reach its maximum velocity. Interestingly, this enzyme is 6-fold hyperactivated by incubation at high temperatures (80°C) under limiting concentrations of flavin cofactor, a change that remains stable even at low temperatures (37°C). The hyperactivated form presented a high specific activity (37.5 U/mg) at low temperatures despite isolation from a thermophile source. Immobilization of NOX onto agarose activated with glyoxyl groups yielded the most stable enzyme preparation (6-fold more stable than the hyperactivated soluble enzyme). The immobilized derivative was able to be reactivated under physiological conditions after inactivation by high solvent concentrations. The inactivation/reactivation cycle could be repeated at least three times, recovering full NOX activity in all cases after the reactivation step. This immobilized catalyst is presented as a recycling partner for a thermophile alcohol dehydrogenase in order to perform the kinetic resolution secondary alcohols. Conclusion We have designed, developed and characterized a heterogeneous and robust biocatalyst which has been used as recycling partner in the kinetic resolution of rac-1-phenylethanol. The high stability along with its capability to be reactivated makes this biocatalyst highly re-useable for cofactor recycling in redox biotransformations.
Collapse
Affiliation(s)
- Javier Rocha-Martín
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, Cantoblanco, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Golub E, Freeman R, Willner I. A Hemin/G-Quadruplex Acts as an NADH Oxidase and NADH Peroxidase Mimicking DNAzyme. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103853] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
|
28
|
Richter N, Zienert A, Hummel W. A single-point mutation enables lactate dehydrogenase from Bacillus subtilis to utilize NAD+ and NADP+ as cofactor. Eng Life Sci 2011. [DOI: 10.1002/elsc.201000151] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
29
|
Tóth K, Sedlák E, Musatov A, Žoldák G. Activity of NADH oxidase from Thermus thermophilus in water/alcohol binary mixtures is limited by the stability of quaternary structure. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Merkley ED, Parson WW, Daggett V. Temperature dependence of the flexibility of thermophilic and mesophilic flavoenzymes of the nitroreductase fold. Protein Eng Des Sel 2010; 23:327-36. [PMID: 20083491 PMCID: PMC2851445 DOI: 10.1093/protein/gzp090] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 11/13/2022] Open
Abstract
A widely held hypothesis regarding the thermostability of thermophilic proteins states asserts that, at any given temperature, thermophilic proteins are more rigid than their mesophilic counterparts. Many experimental and computational studies have addressed this question with conflicting results. Here, we compare two homologous enzymes, one mesophilic (Escherichia coli FMN-dependent nitroreductase; NTR) and one thermophilic (Thermus thermophilus NADH oxidase; NOX), by multiple molecular dynamics simulations at temperatures from 5 to 100 degrees C. We find that the global rigidity/flexibility of the two proteins, assessed by a variety of metrics, is similar on the time scale of our simulations. However, the thermophilic enzyme retains its native conformation to a much greater degree at high temperature than does the mesophilic enzyme, both globally and within the active site. The simulations identify the helix F-helix G 'arm' as the region with the greatest difference in loss of native contacts between the two proteins with increasing temperature. In particular, a network of electrostatic interactions holds helix F to the body of the protein in the thermophilic protein, and this network is absent in the mesophilic counterpart.
Collapse
Affiliation(s)
- Eric D. Merkley
- Department of Biochemistry, University of Washington, Box 357350, Seattle, Washington 98195-7350, USA
| | - William W. Parson
- Department of Biochemistry, University of Washington, Box 357350, Seattle, Washington 98195-7350, USA
| | - Valerie Daggett
- Department of Biochemistry, University of Washington, Box 357350, Seattle, Washington 98195-7350, USA
- Department of Bioengineering, University of Washington, Box 355061, Seattle, WA 98195-5061, USA
| |
Collapse
|
31
|
Koh JU, Chung HJ, Chang WY, Tanokura M, Kong KH. Discovery and Characterization of a Thermostable NADH Oxidase from Pyrococcus horikoshii OT3. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.12.2984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Thermus thermophilus as biological model. Extremophiles 2009; 13:213-31. [DOI: 10.1007/s00792-009-0226-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/31/2008] [Indexed: 10/21/2022]
|
33
|
Suzuki S, Matsumura N, Ohoka T, Sakuma S, Nakahata T, Ishikawa M. Important sequence for overexpression of NADH oxidase gene from Thermus thermophilus HB8 in Escherichia coli. J Environ Sci (China) 2009; 21 Suppl 1:S105-S107. [PMID: 25084403 DOI: 10.1016/s1001-0742(09)60049-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Enzymes fixed on the electrode of biosensor are gradually inactivated and the electrode is discarded after using several times. In order to prepare the stable biosensor, we try to use a stable enzyme from extreme thermophilic bacteria, Thermus thermophilus HB8. It is very important that a stable enzyme from T. thermophilus HB8 is overproduced in Escherichia coli, for the purpose of enough supply of enzyme. Thereby, we determined the important sequence for overexpression of NADH oxidase (nox) gene from T. thermophilus HB8 in E. coli. As a result, it is revealed that ten nucleotides sequence, GAAATTAACT, in the upstream of start codon of nox gene was important for its overexpression in E. coli.
Collapse
Affiliation(s)
- Satoshi Suzuki
- Department of Materials Science and Engineering, Graduate School of Engineering, Saitama Institute of Technology, Fukaya 369-0293, Japan
| | - Norikazu Matsumura
- Department of Applied Chemistry, Graduate School of Engineering, Saitama Institute of Technology, Fukaya 369-0293, Japan
| | - Takeshi Ohoka
- Department of Applied Chemistry, Graduate School of Engineering, Saitama Institute of Technology, Fukaya 369-0293, Japan
| | - Shun Sakuma
- Department of Applied Chemistry, Faculty of Engineering, Saitama Institute of Technology, Fukaya 369-0293, Japan
| | - Tomohiro Nakahata
- Department of Applied Chemistry, Faculty of Engineering, Saitama Institute of Technology, Fukaya 369-0293, Japan
| | - Masahide Ishikawa
- Department of Materials Science and Engineering, Graduate School of Engineering, Saitama Institute of Technology, Fukaya 369-0293, Japan; Department of Applied Chemistry, Graduate School of Engineering, Saitama Institute of Technology, Fukaya 369-0293, Japan
| |
Collapse
|
34
|
Agari Y, Kashihara A, Yokoyama S, Kuramitsu S, Shinkai A. Global gene expression mediated by Thermus thermophilus SdrP, a CRP/FNR family transcriptional regulator. Mol Microbiol 2008; 70:60-75. [PMID: 18699868 DOI: 10.1111/j.1365-2958.2008.06388.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thermus thermophilus SdrP is one of four cyclic AMP receptor protein (CRP)/fumarate and nitrate reduction regulator (FNR) family proteins from the extremely thermophilic bacterium T. thermophilus HB8. Expression of sdrP mRNA increased in the stationary phase during cultivation at 70 degrees C. Although the sdrP gene was non-essential, an sdrP-deficient strain showed growth defects, particularly when grown in a synthetic medium, and increased sensitivity to disulphide stress. The expression of several genes was altered in the sdrP disruptant. Among them, we found eight SdrP-dependent promoters using in vitro transcription assays. A predicted SdrP binding site similar to that recognized by Escherichia coli CRP was found upstream of each SdrP-dependent promoter. In the wild-type strain, expression of these eight genes tended to increase upon entry into the stationary phase. Transcriptional activation in vitro was independent of any added effector molecule. The hypothesis that apo-SdrP is the active form of the protein was supported by the observation that the three-dimensional structure of apo-SdrP is similar to that of the DNA-binding form of E. coli CRP. Based on the properties of the SdrP-regulated genes found in this study, it is speculated that SdrP is involved in nutrient and energy supply, redox control, and polyadenylation of mRNA.
Collapse
Affiliation(s)
- Yoshihiro Agari
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | |
Collapse
|
35
|
Hirano JI, Miyamoto K, Ohta H. Purification and characterization of thermostable H2O2-forming NADH oxidase from 2-phenylethanol-assimilating Brevibacterium sp. KU1309. Appl Microbiol Biotechnol 2008; 80:71-8. [DOI: 10.1007/s00253-008-1535-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 05/06/2008] [Accepted: 05/08/2008] [Indexed: 11/29/2022]
|
36
|
Roldán MD, Pérez-Reinado E, Castillo F, Moreno-Vivián C. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 2008; 32:474-500. [PMID: 18355273 DOI: 10.1111/j.1574-6976.2008.00107.x] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Most nitroaromatic compounds are toxic and mutagenic for living organisms, but some microorganisms have developed oxidative or reductive pathways to degrade or transform these compounds. Reductive pathways are based either on the reduction of the aromatic ring by hydride additions or on the reduction of the nitro groups to hydroxylamino and/or amino derivatives. Bacterial nitroreductases are flavoenzymes that catalyze the NAD(P)H-dependent reduction of the nitro groups on nitroaromatic and nitroheterocyclic compounds. Nitroreductases have raised a great interest due to their potential applications in bioremediation, biocatalysis, and biomedicine, especially in prodrug activation for chemotherapeutic cancer treatments. Different bacterial nitroreductases have been purified and their biochemical and kinetic parameters have been determined. The crystal structure of some nitroreductases have also been solved. However, the physiological role(s) of these enzymes remains unclear. Nitroreductase genes are widely spread within bacterial genomes, but are also found in archaea and some eukaryotic species. Although studies on regulation of nitroreductase gene expression are scarce, it seems that nitroreductase genes may be controlled by the MarRA and SoxRS regulatory systems that are involved in responses to several antibiotics and environmental chemical hazards and to specific oxidative stress conditions. This review covers the microbial distribution, types, biochemical properties, structure and regulation of the bacterial nitroreductases. The possible physiological functions and the biotechnological applications of these enzymes are also discussed.
Collapse
Affiliation(s)
- María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain.
| | | | | | | |
Collapse
|
37
|
Tóth K, Sedlák E, Sprinzl M, Zoldák G. Flexibility and enzyme activity of NADH oxidase from Thermus thermophilus in the presence of monovalent cations of Hofmeister series. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:789-95. [PMID: 18339331 DOI: 10.1016/j.bbapap.2008.01.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 01/26/2008] [Accepted: 01/29/2008] [Indexed: 11/25/2022]
Abstract
Recently, we have shown that anions of Hofmeister series affect the enzyme activity through modulation of flexibility of its active site. The enzyme activity vs. anion position in Hofmeister series showed an unusual bell-shaped dependence. In the present work, six monovalent cations (Na(+), Gdm(+), NH(4)(+), Li(+), K(+) and Cs(+)) of Hofmeister series with chloride as a counterion have been studied in relation to activity and stability of flavoprotein NADH oxidase from Thermus thermophilus (NOX). With the exception of strongly chaotropic guanidinium cation, cations are significantly less effective in promoting the Hofmeister effect than anions mainly due to repulsive interactions of positive charges around the active site. Thermal denaturations of NOX reveal unfavorable electrostatic interaction at the protein surface that may be shielded to different extent by salts. Michaelis-Menten constants for NADH, accessibility of the active site as reflected by Stern-Volmer constants and activity of NOX at high cation concentrations (1-2 M) show bell-shaped dependences on cation position in Hofmeister series. Our analysis indicates that in the presence of kosmotropic cations the enzyme is more stable and possibly more rigid than in the presence of chaotropic cations. Molecular dynamic (MD) simulations of NOX showed that active site switches between open and closed conformations [J. Hritz, G. Zoldak, E. Sedlak, Cofactor assisted gating mechanism in the active site of NADH oxidase from Thermus thermophilus, Proteins 64 (2006) 465-476]. Enzyme activity, as well as substrate binding, can be regulated by the salt mediated perturbation of the balance between open and closed forms. We propose that compensating effect of accessibility and flexibility of the enzyme active site leads to bell-shaped dependence of the investigated parameters.
Collapse
Affiliation(s)
- Kamil Tóth
- Department of Biochemistry, Faculty of Sciences P. J. Safárik University, Kosice, Slovakia
| | | | | | | |
Collapse
|
38
|
Huang Y, Humenik M, Sprinzl M. Esterase 2 from Alicyclobacillus acidocaldarius as a reporter and affinity tag for expression and single step purification of polypeptides. Protein Expr Purif 2007; 54:94-100. [PMID: 17399994 DOI: 10.1016/j.pep.2007.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/08/2007] [Accepted: 02/10/2007] [Indexed: 11/25/2022]
Abstract
A novel dual function (reporter and affinity) tag system has been developed. Expression vectors have been constructed to express polypeptides in Escherichia coli cells as C-terminal fusions with esterase 2, a 34-kDa protein from Alicyclobacillus acidocaldarius. Presence of esterase allows to monitor the expression of fusion proteins spectrophotometrically or by activity staining in the polyacrylamide gels. The fusion proteins can be purified from crude bacterial extracts under non-denaturing conditions by one step affinity chromatography on Sepharose CL-6B immobilized trifluoromethyl-alkyl-ketone. The esterase carrier can be cleaved from fusion proteins by digestion with amino acid sequence-specific proteases blood coagulation factor Xa. The system has been used successfully for the expression and purification of polypeptides from different prokaryotic and eukaryotic organisms.
Collapse
Affiliation(s)
- Yiwei Huang
- Laboratorium für Biochemie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | | | |
Collapse
|
39
|
Smets BF, Yin H, Esteve-Nuñez A. TNT biotransformation: when chemistry confronts mineralization. Appl Microbiol Biotechnol 2007; 76:267-77. [PMID: 17534614 DOI: 10.1007/s00253-007-1008-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 04/19/2007] [Accepted: 04/19/2007] [Indexed: 10/23/2022]
Abstract
Our understanding of the genetics and biochemistry of microbial 2,4,6-trinitrotoluene (TNT) biotransformation has advanced significantly during the past 10 years, and biotreatment technologies have developed. In this review, we summarize this new knowledge. A number of enzyme classes involved in TNT biotransformation include the type I nitroreductases, the old yellow enzyme family, a respiration-associated nitroreductase, and possibly ring hydroxylating dioxygenases. Several strains harbor dual pathways: nitroreduction (reduction of the nitro group in TNT to a hydroxylamino and/or amino group) and denitration (reduction of the aromatic ring of TNT to Meisenheimer complexes with nitrite release). TNT can serve as a nitrogen source for some strains, and the postulated mechanism involves ammonia release from hydroxylamino intermediates. Field biotreatment technologies indicate that both stimulation of microbial nitroreduction and phytoremediation result in significant and permanent immobilization of TNT via its metabolites. While the possibility for TNT mineralization was rekindled with the discovery of TNT denitration and oxygenolytic and respiration-associated pathways, further characterization of responsible enzymes and their reaction mechanisms are required.
Collapse
Affiliation(s)
- Barth F Smets
- Institute of Environment and Resources, Technical University of Denmark, Bygningstorvet, Bldg 115, 2800 Kgs. Lyngby, Denmark.
| | | | | |
Collapse
|
40
|
Takeda K, Iizuka M, Watanabe T, Nakagawa J, Kawasaki S, Niimura Y. Synechocystis DrgA protein functioning as nitroreductase and ferric reductase is capable of catalyzing the Fenton reaction. FEBS J 2007; 274:1318-27. [PMID: 17298443 DOI: 10.1111/j.1742-4658.2007.05680.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In order to identify an enzyme capable of Fenton reaction in Synechocystis, we purified an enzyme catalyzing one-electron reduction of t-butyl hydroperoxide in the presence of FAD and Fe(III)-EDTA. The enzyme was a 26 kDa protein, and its N-terminal amino acid sequencing revealed it to be DrgA protein previously reported as quinone reductase [Matsuo M, Endo T and Asada K (1998) Plant Cell Physiol39, 751-755]. The DrgA protein exhibited potent quinone reductase activity and, furthermore, we newly found that it contained FMN and highly catalyzed nitroreductase, flavin reductase and ferric reductase activities. This is the first demonstration of nitroreductase activity of DrgA protein previously identified by a drgA mutant phenotype. DrgA protein strongly catalyzed the Fenton reaction in the presence of synthetic chelate compounds, but did so poorly in the presence of natural chelate compounds. Its ferric reductase activity was observed with both natural and synthetic chelate compounds with a better efficiency with the latter. In addition to small molecular-weight chemical chelators, an iron transporter protein, transferrin, and an iron storage protein, ferritin, turned out to be substrates of the DrgA protein, suggesting it might play a role in iron metabolism under physiological conditions and possibly catalyze the Fenton reaction under hyper-reductive conditions in this microorganism.
Collapse
Affiliation(s)
- Kouji Takeda
- Department of Bioscience, Tokyo University of Agriculture, 10101 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Mooser D, Maneg O, MacMillan F, Malatesta F, Soulimane T, Ludwig B. The menaquinol-oxidizing cytochrome bc complex from Thermus thermophilus: Protein domains and subunits. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1084-95. [PMID: 16908008 DOI: 10.1016/j.bbabio.2006.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 04/27/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
A recently resolved respiratory complex III, isolated from the extreme thermophile Thermus thermophilus, is discussed in terms of cofactor and subunit composition, and with respect to the origin of its protein modules. The four polypeptides, encoded by a single operon, share general homologies to canonical complexes both of the bc and b6f type, but exhibit some unexpected features as well. Evidence for high thermostability of the isolated protein and for its quinol substrate specificity is derived from EPR and kinetic measurements. A functional integration of this complex into an aerobic electron transfer scheme, connecting known dehydrogenase activities to the terminal oxidase branches of Thermus is outlined, as well as the specific principles of redox protein interactions prevailing at high temperature. Findings from this enzyme are linked to present knowledge on other menaquinol oxidizing bc complexes.
Collapse
Affiliation(s)
- Daniela Mooser
- Molekulare Genetik, Institut für Biochemie, Biozentrum der J. W. Goethe-Universität, 60439 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Hritz J, Zoldák G, Sedlák E. Cofactor assisted gating mechanism in the active site of NADH oxidase from Thermus thermophilus. Proteins 2006; 64:465-76. [PMID: 16642502 DOI: 10.1002/prot.20990] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
NADH oxidase (NOX) from Thermus thermophilus is a member of a structurally homologous flavoprotein family of nitroreductases and flavin reductases. The importance of local conformational dynamics in the active site of NOX has been recently demonstrated. The enzyme activity was increased by 250% in the presence of 1 M urea with no apparent perturbation of the native structure of the protein. The present in silico results correlate with the in vitro data and suggest the possible explanation about the effect of urea on NOX activity at the molecular level. Both, X-ray structure and molecular dynamics (MD) simulations, show open conformation of the active site represented by approximately 0.9 nm distance between the indole ring of Trp47 and the isoalloxazine ring of FMN412. In this conformation, the substrate molecule can bind in the active site without sterical restraints. MD simulations also indicate more stable conformation of the active site called "closed" conformation. In this conformation, Trp47 and the isoalloxazine ring of FMN412 are so close to each other (approximately 0.5 nm) that the substrate molecule is unable to bind between them without perturbing this conformation. The open/close transition of the active site between Trp47 and the flavin ring is accompanied by release of the "tightly" bound water molecule from the active site--cofactor assisted gating mechanism. The presence of urea in aqueous solutions of NOX prohibits closing of the active site and even unlocks the closed active site because of the concomitant binding of a urea molecule in the active site cavity. The binding of urea in the active site is stabilized by formation of one/two persistent hydrogen bonds involving the carbonyl group of the urea molecule. Our report represents the first MD study of an enzyme from the novel flavoprotein family of nitroreductases and flavin reductases. The common occurrence of aromatic residues covering the active sites in homologous enzymes suggests the possibility of a general gating mechanism and the importance of local dynamics within this flavoprotein family.
Collapse
Affiliation(s)
- Jozef Hritz
- Department of Biochemistry, Faculty of Science P. J. Safárik University, Kosice, Slovakia
| | | | | |
Collapse
|
44
|
Redox-flexible NADH oxidase biosensor: A platform for various dehydrogenase bioassays and biosensors. Electrochim Acta 2006. [DOI: 10.1016/j.electacta.2006.03.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Friedman JE, Watson JA, Lam DWH, Rokita SE. Iodotyrosine Deiodinase Is the First Mammalian Member of the NADH Oxidase/Flavin Reductase Superfamily. J Biol Chem 2006; 281:2812-9. [PMID: 16316988 DOI: 10.1074/jbc.m510365200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme responsible for iodide salvage in the thyroid, iodotyrosine deiodinase, was solubilized from porcine thyroid microsomes by limited proteolysis with trypsin. The resulting protein retained deiodinase activity and was purified using anion exchange, dye, and hydrophobic chromatography successively. Peptide sequencing of the final isolate identified the gene responsible for the deiodinase. The amino acid sequence of the porcine enzyme is highly homologous to corresponding genes in a variety of mammals including humans, and the mouse gene was expressed in human embryonic kidney 293 cells to confirm its identity. The amino acid sequence of the deiodinase suggests the presence of three domains. The N-terminal domain provides a membrane anchor. The intermediate domain contains the highest sequence variability and lacks homology to structural motifs available in the common databases. The C-terminal domain is highly conserved and resembles bacterial enzymes of the NADH oxidase/flavin reductase superfamily. A three-dimensional model of the deiodinase based on the coordinates of the minor nitroreductase of Escherichia coli indicates that a Cys common to all of the mammal sequences is located adjacent to bound FMN. However, the deiodinase is not structurally related to other known flavoproteins containing redox-active cysteines or the iodothyronine deiodinases containing an active site selenocysteine.
Collapse
Affiliation(s)
- Jessica E Friedman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | |
Collapse
|
46
|
Stupák M, Zoldák G, Musatov A, Sprinzl M, Sedlák E. Unusual effect of salts on the homodimeric structure of NADH oxidase from Thermus thermophilus in acidic pH. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:129-37. [PMID: 16330265 DOI: 10.1016/j.bbapap.2005.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 09/24/2005] [Accepted: 10/24/2005] [Indexed: 11/17/2022]
Abstract
The unusual salt-dependent behavior of the homodimeric flavoenzyme NADH oxidase from Thermus thermophilus in acidic pH has been studied using circular dichroism (CD) and sedimentation velocity. The native-like secondary and quaternary structures in acidic low ionic strength conditions were significantly perturbed by the addition of salts. The peptide region of the CD spectra showed a major salt-induced conformational change in the protein secondary structure. Sedimentation velocity experiments showed dissociation of the homodimeric structure of NADH oxidase in the presence of salt (>1 M). The new acidic conformation of the protein was stabilized by high ionic strength as indicated by a salt-induced increase in the melting temperature of the protein, and by a shift in the apparent pK(a) values of the conformational transition to a less acidic pH. Distortion of the dominant alpha-helical signal was expressed as the disappearance of the parallel polarized Moffitt exciton band at 208 nm without an accompanying loss of amplitude of n-->pi* electronic transitions at 222 nm. The unusual CD spectra correlated qualitatively with the theoretically calculated CD spectra of short alpha-helical structures and/or twisted beta-sheets. Differences between the experimentally obtained CD spectra and theoretical calculations (AGADIR) of the alpha-helical content of NADH oxidase indicate a role for non-local interactions in the protein conformation at high ionic strength and low pH. These findings indicate the importance of the homodimeric interface and electrostatic interactions for maintaining the structural integrity of this thermophilic protein.
Collapse
Affiliation(s)
- Marek Stupák
- Department of Biochemistry, Faculty of Science, P. J. Safárik University, Moyzesova 11, 041 54 Kosice, Slovakia
| | | | | | | | | |
Collapse
|
47
|
Caballero A, Lázaro JJ, Ramos JL, Esteve-Núñez A. PnrA, a new nitroreductase-family enzyme in the TNT-degrading strain Pseudomonas putida JLR11. Environ Microbiol 2005; 7:1211-9. [PMID: 16011758 DOI: 10.1111/j.1462-2920.2005.00801.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitroreductases are a group of proteins that catalyse pyridine nucleotide-dependent reduction of nitroaromatics compounds, showing significant human health and environmental implications. In this study we have identified the nitroreductase-family enzymes PnrA and PnrB from the TNT-degrading strain Pseudomonas putida. The enzyme encoded by the pnrA gene was expressed in Escherichia coli, purified to homogeneity and shown to be a flavoprotein that used 2 mol of NADPH to reduce 1 mol of 2,4,6-trinitrotoluene (TNT) to 4-hydroxylamine-2,6-dinitrotoluene, using a ping-pong bi-bi mechanism. The PnrA enzyme also recognized as substrates as a number of other nitroaromatic compounds, i.e. 2,4-dinitrotoluene, 3-nitrotoluene, 3- and 4-nitrobenzoate, 3,5-dinitrobenzamide and 3,5-dinitroaniline expanding the substrates profile from previously described nitroreductases. However, TNT resulted to be the most efficient substrate examined according to the Vmax/Km parameter. Expression analysis of pnrA- and pnrB-mRNA isolated from cells growing on different nitrogen sources suggested that expression of both genes was constitutive and that its level of expression was relatively constant regardless of the growth substrate. This is in agreement with enzyme-specific activity determined with cells growing with different N-sources.
Collapse
Affiliation(s)
- Antonio Caballero
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apdo Correos 419, E-18008 Granada, Spain
| | | | | | | |
Collapse
|
48
|
Jiang R, Riebel B, Bommarius A. Comparison of Alkyl Hydroperoxide Reductase (AhpR) and Water-Forming NADH Oxidase fromLactococcus lactis ATCC 19435. Adv Synth Catal 2005. [DOI: 10.1002/adsc.200505063] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Yang X, Ma K. Purification and characterization of an NADH oxidase from extremely thermophilic anaerobic bacterium Thermotoga hypogea. Arch Microbiol 2005; 183:331-7. [PMID: 15912375 DOI: 10.1007/s00203-005-0777-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 04/06/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
Thermotoga hypogea is an extremely thermophilic anaerobic bacterium capable of growing at 90 degrees C. It was found to be able to grow in the presence of micromolar molecular oxygen (O2). Activity of NADH oxidase was detected in the cell-free extract of T. hypogea, from which an NADH oxidase was purified to homogeneity. The purified enzyme was a homodimeric flavoprotein with a subunit of 50 kDa, revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It catalyzed the reduction of O2 to hydrogen peroxide (H2O2), specifically using NADH as electron donor. Its catalytic properties showed that the NADH oxidase had an apparent Vmax value of 37 micromol NADH oxidized min(-1) mg(-1) protein. Apparent Km values for NADH and O2 were determined to be 7.5 microM and 85 microM, respectively. The enzyme exhibited a pH optimum of 7.0 and temperature optimum above 85 degrees C. The NADH-dependent peroxidase activity was also present in the cell-free extract, which could reduce H2O2 produced by the NADH oxidase to H2O. It seems possible that O2 can be reduced to H2O by the oxidase and peroxidase, but further investigation is required to conclude firmly if the purified NADH oxidase is part of an enzyme system that protects anaerobic T. hypogea from accidental exposure to O2.
Collapse
Affiliation(s)
- Xianqin Yang
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada, N2L 3G1
| | | |
Collapse
|
50
|
Zoldák G, Sprinzl M, Sedlák E. Modulation of activity of NADH oxidase from Thermus thermophilus through change in flexibility in the enzyme active site induced by Hofmeister series anions. ACTA ACUST UNITED AC 2004; 271:48-57. [PMID: 14686918 DOI: 10.1046/j.1432-1033.2003.03900.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The conformational dynamics of NADH oxidase from Thermus thermophilus was modulated by the Hofmeister series of anions (H2PO4-, SO42-, CH3COO-, Cl-, Br-, I-, ClO4-, SCN-) in the concentration range 0-3 M. Both chaotropic and kosmotropic anions, at high concentration, inhibit the enzyme by different mechanisms. Chaotropic anions increase the apparent Michaelis constant and decrease the activation barrier of the reaction. Kosmotropic anions have the opposite effect. Anions from the middle of the Hofmeister series do not significantly affect the enzyme activity even at high concentration. We detected no significant changes in ellipticity of the aromatic region in the presence of the anions studied. There is a decreased Stern-Volmer quenching constant for FAD fluorescence quenching in the presence of kosmotropic anions and an increased quenching constant in the presence of chaotropic anions. All of this indicates that active site flexibility is important in the function of the enzyme. The data demonstrate that both the high rigidity of the active site in the presence of kosmotropic anions, and its high flexibility in the presence of chaotropic anions have a decelerating effect on enzyme activity. The Hofmeister series of anions proved to be suitable agents for altering enzyme activity through changes in flexibility of the polypeptide chain, with potential importance in modulating extremozyme activity at room temperature.
Collapse
Affiliation(s)
- Gabriel Zoldák
- Department of Biochemistry, Faculty of Sciences, P. J. Safárik University, Kosice, Slovakia
| | | | | |
Collapse
|