1
|
Pierron D, Opazo JC, Heiske M, Papper Z, Uddin M, Chand G, Wildman DE, Romero R, Goodman M, Grossman LI. Silencing, positive selection and parallel evolution: busy history of primate cytochromes C. PLoS One 2011; 6:e26269. [PMID: 22028846 PMCID: PMC3196546 DOI: 10.1371/journal.pone.0026269] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/23/2011] [Indexed: 12/20/2022] Open
Abstract
Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades.
Collapse
Affiliation(s)
- Denis Pierron
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- Perinatology Research Branch, National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland and Detroit, Michigan, United States of America
| | - Juan C. Opazo
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- Instituto de Ecologia y Evolucion, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Margit Heiske
- Laboratoire de Physiopathologie Mitochondriale, INSERM, Université Victor Segalen Bordeaux 2, Bordeaux, France
| | - Zack Papper
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Monica Uddin
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- School of Public Health, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gopi Chand
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- Perinatology Research Branch, National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland and Detroit, Michigan, United States of America
| | - Derek E. Wildman
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- Perinatology Research Branch, National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland and Detroit, Michigan, United States of America
- Department Of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Roberto Romero
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- Perinatology Research Branch, National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland and Detroit, Michigan, United States of America
| | - Morris Goodman
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
2
|
Pierron D, Wildman DE, Hüttemann M, Markondapatnaikuni GC, Aras S, Grossman LI. Cytochrome c oxidase: evolution of control via nuclear subunit addition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:590-7. [PMID: 21802404 DOI: 10.1016/j.bbabio.2011.07.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 02/01/2023]
Abstract
According to theory, present eukaryotic cells originated from a beneficial association between two free-living cells. Due to this endosymbiotic event the pre-eukaryotic cell gained access to oxidative phosphorylation (OXPHOS), which produces more than 15 times as much ATP as glycolysis. Because cellular ATP needs fluctuate and OXPHOS both requires and produces entities that can be toxic for eukaryotic cells such as ROS or NADH, we propose that the success of endosymbiosis has largely depended on the regulation of endosymbiont OXPHOS. Several studies have presented cytochrome c oxidase as a key regulator of OXPHOS; for example, COX is the only complex of mammalian OXPHOS with known tissue-specific isoforms of nuclear encoded subunits. We here discuss current knowledge about the origin of nuclear encoded subunits and the appearance of different isozymes promoted by tissue and cellular environments such as hypoxia. We also review evidence for recent selective pressure acting on COX among vertebrates, particularly in primate lineages, and discuss the unique pattern of co-evolution between the nuclear and mitochondrial genomes. Finally, even though the addition of nuclear encoded subunits was a major event in eukaryotic COX evolution, this does not lead to emergence of a more efficient COX, as might be expected from an anthropocentric point of view, for the "higher" organism possessing large brains and muscles. The main function of these subunits appears to be "only" to control the activity of the mitochondrial subunits. We propose that this control function is an as yet under appreciated key point of evolution. Moreover, the importance of regulating energy supply may have caused the addition of subunits encoded by the nucleus in a process comparable to a "domestication scenario" such that the host tends to control more and more tightly the ancestral activity of COX performed by the mtDNA encoded subunits.
Collapse
Affiliation(s)
- Denis Pierron
- Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
3
|
Döpner S, Hildebrandt P, Rosell FI, Mauk AG, von Walter M, Buse G, Soulimane T. The structural and functional role of lysine residues in the binding domain of cytochrome c in the electron transfer to cytochrome c oxidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:379-91. [PMID: 10215847 DOI: 10.1046/j.1432-1327.1999.00249.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interactions of yeast iso-1 cytochrome c with bovine cytochrome c oxidase were studied using cytochrome c variants in which lysines of the binding domain were substituted by alanines. Resonance Raman spectra of the fully oxidized complexes of both proteins reveal structural changes of both the heme c and the hemes a and a3. The structural changes in cytochrome c are the same as those observed upon binding to phospholipid vesicles where the bound protein exists in two conformers, B1 and B2. Whereas the structure of B1 is the same as that of the unbound cytochrome c, the formation of B2 is associated with substantial alterations of the heme pocket. In cytochrome c oxidase, the structural changes in both hemes refer to more subtle perturbations of the immediate protein environment and may be a result of a conformational equilibrium involving two states. These changes are qualitatively different to those observed for cytochrome c oxidase upon poly-l-lysine binding. The resonance Raman spectra of the various cytochrome c/cytochrome c oxidase complexes were analyzed quantitatively. The spectroscopic studies were paralleled by steady-state kinetic measurements of the same protein combinations. The results of the spectra analysis and the kinetic studies were used to determine the stability of the complexes and the conformational equilibria B2/B1 for all cytochrome c variants. The complex stability decreases in the order: wild-type WT > J72K > K79A > K73A > K87A > J72A > K86A > K73A/K79A (where J is the natural trimethyl lysine). This order is not exhibited by the conformational equilibria. The electrostatic control of state B2 formation does not depend on individual intermolecular salt bridges, but on the charge distribution in a specific region of the front surface of cytochrome c that is defined by the lysyl residues at positions 72, 73 and 79. On the other hand, the conformational changes in cytochrome c oxidase were found to be independent of the identity of the bound cytochrome c variant. The maximum rate constants determined from steady-state kinetic measurements could be related to the conformational equilibria of the bound cytochrome c using a simple model that assumes that the conformational transitions are faster than product formation. Within this model, the data analysis leads to the conclusion that the interprotein electron transfer rate constant is around two times higher in state B2 than in B1. These results can be interpreted in terms of an increase of the driving force in state B2 as a result of the large negative shift of the reduction potential.
Collapse
Affiliation(s)
- S Döpner
- Max-Planck-Institut für Strahlenchemie, Mülheim an der Ruhr, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Kish SJ, Mastrogiacomo F, Guttman M, Furukawa Y, Taanman JW, Dozić S, Pandolfo M, Lamarche J, DiStefano L, Chang LJ. Decreased brain protein levels of cytochrome oxidase subunits in Alzheimer's disease and in hereditary spinocerebellar ataxia disorders: a nonspecific change? J Neurochem 1999; 72:700-7. [PMID: 9930743 DOI: 10.1046/j.1471-4159.1999.0720700.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Controversy exists as to the clinical importance, cause, and disease specificity of the cytochrome oxidase (CO) activity reduction observed in some patients with Alzheimer's disease (AD). Although it is assumed that the enzyme is present in normal amount in AD, no direct measurements of specific CO protein subunits have been conducted. We measured protein levels of CO subunits encoded by mitochondrial (COX I, COX II) and nuclear (COX IV, COX VIc) DNA in autopsied brain of patients with AD whom we previously reported had decreased cerebral cortical CO activity. To assess disease specificity, groups of patients with spinocerebellar ataxia type I and Friedreich's ataxia were also included. As compared with the controls, mean protein concentrations of all four CO subunits were significantly decreased (-19 to -47%) in temporal and parietal cortices in the AD group but were not significantly reduced (-12 to -17%) in occipital cortex. The magnitude of the reduction in protein levels of the CO subunits encoded by mitochondrial DNA (-42 to -47%) generally exceeded that encoded by nuclear DNA (-19 to -43%). In the spinocerebellar ataxia disorders, COX I and COX II levels were significantly decreased in cerebellar cortex (-22 to -32%) but were normal or close to normal in cerebral cortex, an area relatively unaffected by neurodegeneration. We conclude that protein levels of mitochondrial- and nuclear-encoded CO subunits are moderately reduced in degenerating but not in relatively spared brain areas in AD and that the decrease is not specific to this disorder. The simplest explanation for our findings is that CO is decreased in human brain disorders as a secondary event in brain areas having reduced neuronal activity or neuronal/synaptic elements consequent to the primary neurodegenerative process.
Collapse
Affiliation(s)
- S J Kish
- Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Taanman JW, Burton MD, Marusich MF, Kennaway NG, Capaldi RA. Subunit specific monoclonal antibodies show different steady-state levels of various cytochrome-c oxidase subunits in chronic progressive external ophthalmoplegia. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1315:199-207. [PMID: 8611660 DOI: 10.1016/0925-4439(95)00127-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Monoclonal antibodies recognizing the mitochondrially encoded subunits I and II, and the nuclear-encoded subunits IV, Va, Vb and VIc of human cytochrome-c oxidase were generated. These antibodies are highly specific and allow the assessment of subunit steady-state levels in crude cell extracts and tissue sections. In the experimental human cell line 143B206, which is devoid of mitochondrial DNA, immunovisualization with the antibodies revealed that the nuclear-encoded subunits IV and Va were present in amounts close to that of the parental cell line despite the absence of the mitochondrially encoded subunits. In contrast, the nuclear-encoded subunits Vb and VIc were severely reduced in cell line 143B206, suggesting that unassembled nuclear-encoded subunits are degraded at different rates. In skeletal muscle sections of a patient with chronic progressive external ophthalmoplegia known to harbor the 'common deletion' in a subpopulation of her mitochondrial DNA, most cytochrome-c oxidase activity negative fibers had greatly reduced levels of subunits I, II, Va, Vb and VIc of cytochrome-c oxidase. The steady-state level of subunit IV, however, was less affected. This was particularly evident in cytochrome-c oxidase activity negative fibers with accumulated mitochondria ('ragged-red' fibers) where immunodetection with anti-subunit IV resulted in intense staining. The data presented in this paper demonstrate that the battery of monoclonal antibodies can be employed for diagnostic purposes to analyze steady-state levels of mitochondrially and nuclear-encoded subunits of cytochrome-c oxidase.
Collapse
Affiliation(s)
- J W Taanman
- Institute of Molecular Biology, University of Oregon, Eugene 97403, USA.
| | | | | | | | | |
Collapse
|
6
|
Winkler JR, Malmström BG, Gray HB. Rapid electron injection into multisite metalloproteins: intramolecular electron transfer in cytochrome oxidase. Biophys Chem 1995; 54:199-209. [PMID: 7749059 DOI: 10.1016/0301-4622(94)00156-e] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The principles for the operation of redox-linked proton pumps are reviewed and applied to one specific pump, cytochrome oxidase. Systematic studies of internal electron transfer in the different redox states of this pump will be facilitated by the development of methods for rapid electron injection into the metal centers of the enzyme. Two methods that have been employed to generate electron donors are pulse radiolysis and laser flash photolysis. The rate of electron injection from photoexcited Ru-modified cytochrome c or triplet Zn-cytochrome c into the CuA center is about 10(5) s-1, and the CuA/cytochrome a electron equilibration rate is 2 x 10(4) s-1. Electron transfer from cytochrome a to the cytochrome a3-CuB site occurs at 2 x 10(5) s-1 in the half-reduced enzyme, whereas the rate is only 2 x 10(2) s-1 in the peroxide intermediate, despite a much higher driving force. It is likely that variations in distant electronic coupling attributable to a ligand shuttle, as well as changes in the reorganization energy of one or more of the redox centers, contribute to the control of internal electron flow in the enzyme.
Collapse
Affiliation(s)
- J R Winkler
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
7
|
Nijtmans LG, Barth PG, Lincke CR, Van Galen MJ, Zwart R, Klement P, Bolhuis PA, Ruitenbeek W, Wanders RJ, Van den Bogert C. Altered kinetics of cytochrome c oxidase in a patient with severe mitochondrial encephalomyopathy. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1270:193-201. [PMID: 7727543 DOI: 10.1016/0925-4439(95)00044-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Deficiency of cytochrome c oxidase activity was established in a girl born to consanguineous parents. She showed symptoms of dysmaturity, generalized hypotonia, myoclonic seizures and progressive respiratory failure, leading to death on the seventh day of life. Structural abnormalities of the central nervous system consisted of severe cerebellar hypoplasia and optic nerve atrophy. Biochemical analysis of a muscle biopsy specimen demonstrated deficiency of cytochrome c oxidase activity. Cultured fibroblasts from this patient also showed a selective decrease in the activity of cytochrome c oxidase, excluding a muscle-specific type of deficiency. Further investigations in cultured fibroblasts revealed that synthesis, assembly and stability of both the mitochondrial and the nuclear subunits of the enzyme were entirely normal. The steady-state concentration of cytochrome c oxidase in the fibroblasts of the patient was also normal, suggesting that the kinetic properties of the enzyme were altered. Analysis of the kinetic parameters of cytochrome c oxidase demonstrated an aberrant interaction between cytochrome c oxidase and its substrate, cytochrome c, most likely because of a mutation in one of the nuclear subunits of the enzyme.
Collapse
Affiliation(s)
- L G Nijtmans
- Department of Neurology, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|