1
|
Abstract
Flavin-dependent enzymes catalyze a wide variety of biological reactions that are important for all types of living organisms. Knowledge gained from studying the chemistry and biological functions of flavins and flavin-dependent enzymes has continuously made significant contributions to the development of the fields of enzymology and metabolism from the 1970s until now. The enzymes have been applied in various applications such as use as biocatalysts in synthetic processes for the chemical and pharmaceutical industries or in the biodetoxification and bioremediation of toxic or unwanted compounds, and as biosensors or biodetection tools for quantifying various agents of interest. Many flavin-dependent enzymes are also prime targets for drug development. Based on their reaction mechanisms, they can be classified into five categories: oxidase, dehydrogenase, monooxygenase, reductase, and redox neutral flavin-dependent enzymes. In this chapter, the general properties of flavin-dependent enzymes and the nature of their chemical reactions are discussed, along with their practical applications.
Collapse
|
2
|
Turaeva N. Simple electronic model of enzymatic reactions. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Pitsawong W, Chenprakhon P, Dhammaraj T, Medhanavyn D, Sucharitakul J, Tongsook C, van Berkel WJH, Chaiyen P, Miller AF. Tuning of p Ka values activates substrates in flavin-dependent aromatic hydroxylases. J Biol Chem 2020; 295:3965-3981. [PMID: 32014994 DOI: 10.1074/jbc.ra119.011884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
Hydroxylation of substituted phenols by flavin-dependent monooxygenases is the first step of their biotransformation in various microorganisms. The reaction is thought to proceed via electrophilic aromatic substitution, catalyzed by enzymatic deprotonation of substrate, in single-component hydroxylases that use flavin as a cofactor (group A). However, two-component hydroxylases (group D), which use reduced flavin as a co-substrate, are less amenable to spectroscopic investigation. Herein, we employed 19F NMR in conjunction with fluorinated substrate analogs to directly measure pKa values and to monitor protein events in hydroxylase active sites. We found that the single-component monooxygenase 3-hydroxybenzoate 6-hydroxylase (3HB6H) depresses the pKa of the bound substrate analog 4-fluoro-3-hydroxybenzoate (4F3HB) by 1.6 pH units, consistent with previously proposed mechanisms. 19F NMR was applied anaerobically to the two-component monooxygenase 4-hydroxyphenylacetate 3-hydroxylase (HPAH), revealing depression of the pKa of 3-fluoro-4-hydroxyphenylacetate by 2.5 pH units upon binding to the C2 component of HPAH. 19F NMR also revealed a pKa of 8.7 ± 0.05 that we attributed to an active-site residue involved in deprotonating bound substrate, and assigned to His-120 based on studies of protein variants. Thus, in both types of hydroxylases, we confirmed that binding favors the phenolate form of substrate. The 9 and 14 kJ/mol magnitudes of the effects for 3HB6H and HPAH-C2, respectively, are consistent with pKa tuning by one or more H-bonding interactions. Our implementation of 19F NMR in anaerobic samples is applicable to other two-component flavin-dependent hydroxylases and promises to expand our understanding of their catalytic mechanisms.
Collapse
Affiliation(s)
- Warintra Pitsawong
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055
| | - Pirom Chenprakhon
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Taweesak Dhammaraj
- Faculty of Pharmacy, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Dheeradhach Medhanavyn
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10300, Thailand
| | - Chanakan Tongsook
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan Valley, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Anne-Frances Miller
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055
| |
Collapse
|
4
|
Moriwaki Y, Yato M, Terada T, Saito S, Nukui N, Iwasaki T, Nishi T, Kawaguchi Y, Okamoto K, Arakawa T, Yamada C, Fushinobu S, Shimizu K. Understanding the Molecular Mechanism Underlying the High Catalytic Activity of p-Hydroxybenzoate Hydroxylase Mutants for Producing Gallic Acid. Biochemistry 2019; 58:4543-4558. [DOI: 10.1021/acs.biochem.9b00443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yoshitaka Moriwaki
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Tohru Terada
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Seiji Saito
- Department of Medical Management and Informatics, Hokkaido Information University, 59-2, Nishi Nopporo, Ebetsu, Hokkaido 069-8585, Japan
- Genaris, Inc., 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Noriyuki Nukui
- Genaris, Inc., 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Takumi Iwasaki
- Genaris, Inc., 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Tatsunari Nishi
- Genaris, Inc., 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Yuko Kawaguchi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan
| | - Ken Okamoto
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan
| | - Takatoshi Arakawa
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chihaya Yamada
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinya Fushinobu
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Shimizu
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Pimviriyakul P, Surawatanawong P, Chaiyen P. Oxidative dehalogenation and denitration by a flavin-dependent monooxygenase is controlled by substrate deprotonation. Chem Sci 2018; 9:7468-7482. [PMID: 30319747 PMCID: PMC6180312 DOI: 10.1039/c8sc01482e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022] Open
Abstract
Enzymes that are capable of detoxifying halogenated phenols (HPs) and nitrophenols (NPs) are valuable for bioremediation and waste biorefining. HadA monooxygenase was found to perform dual functions of oxidative dehalogenation (hydroxylation plus halide elimination) and denitration (hydroxylation plus nitro elimination). Rate constants associated with individual steps of HadA reactions with phenol, halogenated phenols and nitrophenols were measured using combined transient kinetic approaches of stopped-flow absorbance/fluorescence and rapid-quench flow techniques. Density functional theory was used to calculate the thermodynamic and electronic parameters associated with hydroxylation and group elimination steps. These parameters were correlated with the rate constants of hydroxylation, group elimination, and overall product formation to identify factors controlling individual steps. The results indicated that the hydroxylation rate constant is higher when the pK a of the phenolic group is lower, i.e. it is more easily deprotonated, but not higher when the energy gap between the E LUMO of the C4a-hydroperoxy-FAD intermediate and the E HOMO of the phenolate substrate is lower. These data suggest that the substrate deprotonation has a higher energy barrier than the -OH transfer, and thus controls the hydroxylation step. For the group elimination, the process is controlled by the ability of the C-X bond to break. For the overall product formation (hydroxylation and group elimination combined), this analysis showed that the rate constant of product formation is dependent on the pK a value of the substrate, indicating that the overall reaction is controlled by substrate deprotonation. This step also likely has the highest energy barrier and thus controls the overall process of oxidative dehalogenation and denitration by HadA. This report is the first to identify a key mechanistic factor controlling the enzymatic processes of oxidative dehalogenation and denitration.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- School of Biomolecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Wangchan Valley , Rayong , 21210 , Thailand .
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology , Faculty of Science , Mahidol University , Bangkok , 10400 , Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry , Faculty of Science , Mahidol University , Bangkok , 10400 , Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology (VISTEC) , Wangchan Valley , Rayong , 21210 , Thailand .
| |
Collapse
|
6
|
Ganguly A, Boulanger E, Thiel W. Importance of MM Polarization in QM/MM Studies of Enzymatic Reactions: Assessment of the QM/MM Drude Oscillator Model. J Chem Theory Comput 2017; 13:2954-2961. [DOI: 10.1021/acs.jctc.7b00016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Abir Ganguly
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Eliot Boulanger
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Form follows function: structural and catalytic variation in the class a flavoprotein monooxygenases. Int J Mol Sci 2012; 13:15601-39. [PMID: 23443084 PMCID: PMC3546652 DOI: 10.3390/ijms131215601] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 12/02/2022] Open
Abstract
Flavoprotein monooxygenases (FPMOs) exhibit an array of mechanistic solutions to a common chemical objective; the monooxygenation of a target substrate. Each FPMO efficiently couples reduction of a flavin cofactor by NAD(P)H to oxygenation of the target substrate via a (hydro)peroxyflavin intermediate. This purpose of this review is to describe in detail the Class A flavoprotein hydroxylases (FPMO) in the context of the other FPMO classes (B–F). Both one and two component FPMOs are found in nature. Two-component enzymes require, in addition to the monooxygenase, the involvement of a reductase that first catalyzes the reduction of the flavin by NAD(P)H. The Class A and B FPMOs are single-component and manage to orchestrate the same net reaction within a single peptide. The Class A enzymes have, by some considerable margin, the most complete research record. These enzymes use choreographed movements of the flavin ring that facilitate access of the organic substrates to the active site, provide a means for interaction of NADPH with the flavin, offer a mechanism to sequester the dioxygen reduction chemistry from solvent and a means to release the product. The majority of the discrete catalytic events of the catalytic cycle can be observed directly in exquisite detail using spectrophotometric kinetic methods and many of the key mechanistic conclusions are further supported by structural data. This review attempts to compile each of the key observations made for both paradigm and newly discovered examples of Class A FPMOs into a complete catalytic description of one enzymatic turnover.
Collapse
|
8
|
Abstract
Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the method of choice for modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods are required for describing chemical reactions and other electronic processes, such as charge transfer or electronic excitation. However, QM methods are restricted to systems of up to a few hundred atoms. However, the size and conformational complexity of biopolymers calls for methods capable of treating up to several 100,000 atoms and allowing for simulations over time scales of tens of nanoseconds. This is achieved by highly efficient, force-field-based molecular mechanics (MM) methods. Thus to model large biomolecules the logical approach is to combine the two techniques and to use a QM method for the chemically active region (e.g., substrates and co-factors in an enzymatic reaction) and an MM treatment for the surroundings (e.g., protein and solvent). The resulting schemes are commonly referred to as combined or hybrid QM/MM methods. They enable the modeling of reactive biomolecular systems at a reasonable computational effort while providing the necessary accuracy.
Collapse
Affiliation(s)
- Hans Martin Senn
- Department of Chemistry, WestCHEM and University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
9
|
|
10
|
Hiromoto T, Fujiwara S, Hosokawa K, Yamaguchi H. Crystal structure of 3-hydroxybenzoate hydroxylase from Comamonas testosteroni has a large tunnel for substrate and oxygen access to the active site. J Mol Biol 2006; 364:878-96. [PMID: 17045293 DOI: 10.1016/j.jmb.2006.09.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 09/08/2006] [Accepted: 09/12/2006] [Indexed: 11/23/2022]
Abstract
The 3-hydroxybenzoate hydroxylase (MHBH) from Comamonas testosteroni KH122-3s is a single-component flavoprotein monooxygenase, a member of the glutathione reductase (GR) family. It catalyzes the conversion of 3-hydroxybenzoate to 3,4-dihydroxybenzoate with concomitant requirements for equimolar amounts of NADPH and molecular oxygen. The production of dihydroxy-benzenoid derivative by hydroxylation is the first step in the aerobic degradation of various phenolic compounds in soil microorganisms. To establish the structural basis for substrate recognition, the crystal structure of MHBH in complex with its substrate was determined at 1.8 A resolution. The enzyme is shown to form a physiologically active homodimer with crystallographic 2-fold symmetry, in which each subunit consists of the first two domains comprising an active site and the C-terminal domain involved in oligomerization. The protein fold of the catalytic domains and the active-site architecture, including the FAD and substrate-binding sites, are similar to those of 4-hydroxybenzoate hydroxylase (PHBH) and phenol hydroxylase (PHHY), which are members of the GR family, providing evidence that the flavoprotein aromatic hydroxylases share similar catalytic actions for hydroxylation of the respective substrates. Structural comparison of MHBH with the homologous enzymes suggested that a large tunnel connecting the substrate-binding pocket to the protein surface serves for substrate transport in this enzyme. The internal space of the large tunnel is distinctly divided into hydrophilic and hydrophobic regions. The characteristically stratified environment in the tunnel interior and the size of the entrance would allow the enzyme to select its substrate by amphiphilic nature and molecular size. In addition, the structure of the Xe-derivative at 2.5 A resolution led to the identification of a putative oxygen-binding site adjacent to the substrate-binding pocket. The hydrophobic nature of the xenon-binding site extends to the solvent through the tunnel, suggesting that the tunnel could be involved in oxygen transport.
Collapse
Affiliation(s)
- Takeshi Hiromoto
- Department of Chemistry, Nanobiotechnology Research Center, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | | | | | |
Collapse
|
11
|
Hu J, Eriksson L, Bergman A, Jakobsson E, Kolehmainen E, Knuutinen J, Suontamo R, Wei X. Molecular orbital studies on brominated diphenyl ethers. Part II--reactivity and quantitative structure-activity (property) relationships. CHEMOSPHERE 2005; 59:1043-1057. [PMID: 15823338 DOI: 10.1016/j.chemosphere.2004.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Revised: 09/21/2004] [Accepted: 11/12/2004] [Indexed: 05/24/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants and are increasingly turning up in the environment. Their structural similarities to polychlorinated biphenyls and thyroid hormones suggest they may be a risk to human health. The present study examines the reactivity of brominated diphenyl ethers (BDEs) on the basis of the electronic structures as calculated by semiempirical AM1 self-consistent field molecular orbital (SCF-MO) method. Frontier orbital energies were used to elucidate the reactivity of BDEs in electrophilic, nucleophilic and photolytic reactions. From an examination of the frontier electron densities, the regioselectivity, or orientation, of metabolic reactions of BDEs was predicted. Furthermore, satisfactory quantitative structure-activity (property) relationship (QSAR and QSPR) models were derived to calculate gas chromatographic and ultraviolet spectral properties and luciferase induction activities from the AM1-computed electronic parameters.
Collapse
Affiliation(s)
- Jiwei Hu
- Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Senn HM, Thiel S, Thiel W. Enzymatic Hydroxylation in p-Hydroxybenzoate Hydroxylase: A Case Study for QM/MM Molecular Dynamics. J Chem Theory Comput 2005; 1:494-505. [DOI: 10.1021/ct049844p] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hans Martin Senn
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Stephan Thiel
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
13
|
Bach RD, Dmitrenko O. Model Studies onp-Hydroxybenzoate Hydroxylase. The Catalytic Role of Arg-214 and Tyr-201 in the Hydroxylation Step. J Am Chem Soc 2004; 126:127-42. [PMID: 14709077 DOI: 10.1021/ja036310+] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A model C-(4a)-flavinhydroperoxide (FlHOOH) is described that contains the tricyclic isoalloxazine moiety, the C-4a-hydroperoxide functionality, and a beta-hydroxyethyl group to model the effect of the 2'-OH group of the ribityl side chain of native FADHOOH. The electronic structures of this reduced flavin (H(3)()Fl(red)()), its N1 anion (H(2)()Fl(red)()(-)()), oxidized flavin (HFl(ox)()), and FlHOOH have been fully optimized at the B3LYP/ 6-31+G(d,p) level of theory. This model C-4a-flavinhydroperoxide is used to describe the transition state for the key step in the paradigm aromatic hydroxylase, p-hydroxybenzoate hydroxylase (PHBH): the oxidation of p-hydroxybenzoate (p-OHB). The Tyrosine-201 residue in PHBH is modeled by phenol, and Arginine-214 is modeled by guanidine. Electrophilic aromatic substitution proceeds by an S(N)2-like attack of the aromatic sextet of p-OHB phenolate anion on the distal oxygen of FlHOOH 3. The transition structure for oxygen atom transfer is fully optimized [B3LYP/6-31+G(d,p)] and has a classical activation barrier of 24.9 kcal/mol. These data suggest that the role of the Tyr-201 is to orient the p-OHB substrate and to properly align it for the oxygen transfer step. Although the negatively charged phenolate oxygen does activate the C-3 carbon of p-OHB phenolate anion toward oxidation relative to ortho oxidation of the carboxylate anion, it appears that H-bonding the Tyr-201 residue to this phenolic oxygen stabilizes both the ground state (GS) and the transition state (TS) approximately equally and therefore plays only a minor role, if any, in lowering the activation barrier. Complexation of p-OHB with guanidine has only a modest effect upon the oxidation barriers. When the complex is in the form of a salt-bridge (10a), the barrier is only slightly reduced. When the TSs are placed in THF solvent (COSMO) with full geometry optimization, salt-bridge TS-A is slightly favored (DeltaDeltaE() = 2.3 kcal/mol).
Collapse
Affiliation(s)
- Robert D Bach
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | |
Collapse
|
14
|
Bach RD, Dmitrenko O. Electronic Requirements for Oxygen Atom Transfer from Alkyl Hydroperoxides. Model Studies on Multisubstrate Flavin-Containing Monooxygenases. J Phys Chem B 2003. [DOI: 10.1021/jp035289w] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert D. Bach
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Olga Dmitrenko
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
15
|
Moonen M, Fraaije M, Rietjens I, Laane C, van Berkel W. Flavoenzyme-Catalyzed Oxygenations and Oxidations of Phenolic Compounds. Adv Synth Catal 2002. [DOI: 10.1002/1615-4169(200212)344:10<1023::aid-adsc1023>3.0.co;2-t] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Ortiz-Maldonado M, Aeschliman SM, Ballou DP, Massey V. Synergistic interactions of multiple mutations on catalysis during the hydroxylation reaction of p-hydroxybenzoate hydroxylase: studies of the Lys297Met, Asn300Asp, and Tyr385Phe mutants reconstituted with 8-Cl-flavin. Biochemistry 2001; 40:8705-16. [PMID: 11467930 DOI: 10.1021/bi010892v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxygen transfer to p-hydroxybenzoate catalyzed by p-hydroxybenzoate hydroxylase (PHBH) has been shown to occur via a C4a-hydroperoxide of the flavin. Two factors are likely to be important in facilitating the transfer of oxygen from the C4a-hydroperoxide to the substrate. (a) The positive electrostatic potential of the active site partially stabilizes the negative charge centered on the oxygen of the flavin-C4a-alkoxide leaving group during the transition state [Ortiz-Maldonado, M., Ballou, D. P., and Massey, V. (1999) Biochemistry 38, 8124-8137]. (b) The hydrogen-bonding network ionizes the substrate to promote its nucleophilic attack on the electrophilic C4a-hydroperoxide intermediate [Entsch, B., Palfey, B. A., Ballou, D. P., and Massey, V. (1991) J. Biol. Chem. 266, 17341-17349]. This ionization is also aided by the positive electrostatic potential of the active site [Moran, G. R., Entsch, B., Palfey, B. A., and Ballou, D. P. (1997) Biochemistry 36, 7548-7556]. Substituents on the flavin can specifically affect the stability of the alkoxide leaving-group, whereas changes to specific enzyme residues can affect the charge in the active site and the hydrogen-bonding network. We have used wild-type (WT) PHBH and several mutant forms, all with normal FAD and with 8-Cl-FAD substituted for FAD, to assess the relative contributions of the two effects. Lys297Met and Asn300Asp have decreased positive charge in the active site, and these variants engender approximately 35-fold slower hydroxylation rates than the WT enzyme. Substitution of 8-Cl-FAD in these mutant forms gives approximately 1.8-fold increases in hydroxylation rates, compared with a > or =4.8-fold increase for WT with this flavin. The hydroxylation catalyzed by Tyr385Phe, a mutant enzyme form with a disrupted hydrogen-bonding network that compromises the ionization of the substrate without changing the positive charge of the active site, is stimulated 1.5-fold by substituting the enzyme with 8-Cl-FAD. The substrate, tetrafluoro-p-hydroxybenzoate, is fully ionized in WT PHBH, but this phenolate is a poor nucleophile because of the electron-withdrawing effects of the fluorine substituents. With tetrafluoro-p-hydroxybenzoate as the substrate, substitution of FAD with 8-Cl-FAD in the WT enzyme stabilizes the leaving alkoxide and leads to a 2.3-fold increase in the hydroxylation rate compared to that with FAD. Either the use of substrates that do not communicate with the proton network or the mutation of amino acid residues that perturb this interaction may prevent a necessary conformational change that allows proper orientation between reactants during the hydroxylation reaction or permits the essential protonation of the initially formed nascent flavin-C4a-peroxide anion. Thus, both activation of substrate by the proton network and stabilization of the leaving alkoxide appear to be important for oxygen transfer catalyzed by PHBH. The full effect of the substituents on the flavin (4.8-fold) can only be realized when the optimal transition state can be achieved, and this optimal state is not fully realized with the mutant forms.
Collapse
Affiliation(s)
- M Ortiz-Maldonado
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | | | | | | |
Collapse
|
17
|
Ridder L, Mulholland AJ, Rietjens IMCM, Vervoort J. A Quantum Mechanical/Molecular Mechanical Study of the Hydroxylation of Phenol and Halogenated Derivatives by Phenol Hydroxylase. J Am Chem Soc 2000. [DOI: 10.1021/ja0007814] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lars Ridder
- Contribution from the Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands, and School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Adrian J. Mulholland
- Contribution from the Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands, and School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Ivonne M. C. M. Rietjens
- Contribution from the Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands, and School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| | - Jacques Vervoort
- Contribution from the Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands, and School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K
| |
Collapse
|
18
|
Ridder L, Palfey BA, Vervoort J, Rietjens IM. Modelling flavin and substrate substituent effects on the activation barrier and rate of oxygen transfer by p-hydroxybenzoate hydroxylase. FEBS Lett 2000; 478:197-201. [PMID: 10922496 DOI: 10.1016/s0014-5793(00)01844-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The simulation of enzymatic reactions, using computer models, is becoming a powerful tool in the most fundamental challenge in biochemistry: to relate the catalytic activity of enzymes to their structure. In the present study, various computed parameters were correlated with the natural logarithm of experimental rate constants for the hydroxylation of various substrate derivatives catalysed by wild-type para-hydroxybenzoate hydroxylase (PHBH) as well as for the hydroxylation of the native substrate (p-hydroxybenzoate) by PHBH reconstituted with a series of 8-substituted flavins. The following relative parameters have been calculated and tested: (a) energy barriers from combined quantum mechanical/molecular mechanical (QM/MM) (AM1/CHARMM) reaction pathway calculations, (b) gas-phase reaction enthalpies (AM1) and (c) differences between the HOMO and LUMO energies of the isolated substrate and cofactor molecules (AM1 and B3LYP/6-31+G(d)). The gas-phase approaches yielded good correlations, as long as similarly charged species are involved. The QM/MM approach resulted in a good correlation, even including differently charged species. This indicates that the QM/MM model accounts quite well for the solvation effects of the active site surroundings, which vary for differently charged species. The correlations obtained demonstrate quantitative structure activity relationships for an enzyme-catalysed reaction including, for the first time, substitutions on both substrate and cofactor.
Collapse
Affiliation(s)
- L Ridder
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Ortiz-Maldonado M, Ballou DP, Massey V. Use of free energy relationships to probe the individual steps of hydroxylation of p-hydroxybenzoate hydroxylase: studies with a series of 8-substituted flavins. Biochemistry 1999; 38:8124-37. [PMID: 10387058 DOI: 10.1021/bi990560e] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report Hammett correlations, using 8-substituted flavins, to clarify the mechanism of hydroxylation by p-hydroxybenzoate hydroxylase (PHBH). The 8-position of the FAD isoalloxazine ring was chosen for modifications, because in PHBH it has minimal interactions with the protein, and it is accessible to solvent and away from the site of hydroxylation. Although two intermediates, a flavin-C4a-hydroperoxide and a flavin-C4a-hydroxide, are known to participate in hydroxylation, the mechanism of oxygen transfer remains controversial. Mechanisms as diverse as electrophilic aromatic substitution, diradical formation, and isoalloxazine ring opening have been proposed. In the studies reported here, it was possible to monitor spectrally each of the individual steps involved in hydroxylation, because the FAD cofactor acts as a reporter group. Thus, with PHBH, substituted separately with nine derivatives of FAD altered in the 8-position, quantitative structure-reactivity relationships (QSAR) have been applied to probe the mechanisms of formation of the flavin-C4a-hydroperoxide, the conversion to the flavin-C4a-hydroxide with concomitant oxygen transfer to the substrate, and the dehydration of the flavin-C4a-hydroxide to form oxidized FAD. The individual chemical steps in the mechanism of PHBH were not altered when using any of the modified flavins, and normal products were obtained; however, the rates of individual steps were affected, and depended on the electronic properties of the 8-substituent. Increased hydroxylation rates were observed when a more electrophilic flavin-C4a-hydroperoxide (i.e., with an electron-withdrawing substituent at the 8-position) is bound to PHBH. On the basis of QSAR analysis, we conclude that the mechanism of the hydroxylation step is best described by electrophilic aromatic substitution.
Collapse
Affiliation(s)
- M Ortiz-Maldonado
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-0606, USA
| | | | | |
Collapse
|
20
|
Ridder L, Mulholland AJ, Rietjens IM, Vervoort J. Combined quantum mechanical and molecular mechanical reaction pathway calculation for aromatic hydroxylation by p-hydroxybenzoate-3-hydroxylase. J Mol Graph Model 1999; 17:163-75, 214. [PMID: 10736773 DOI: 10.1016/s1093-3263(99)00027-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The reaction pathway for the aromatic 3-hydroxylation of p-hydroxybenzoate by the reactive C4a-hydroperoxyflavin cofactor intermediate in p-hydroxybenzoate hydroxylase (PHBH) has been investigated by a combined quantum mechanical and molecular mechanical (QM/MM) method. A structural model for the C4a-hydroperoxyflavin intermediate in the PHBH reaction cycle was built on the basis of the crystal structure coordinates of the enzyme-substrate complex. A reaction pathway for the subsequent hydroxylation step was calculated by imposing a reaction coordinate that involves cleavage of the peroxide oxygen-oxygen bond and formation of the carbon-oxygen bond between the C3 atom of the substrate and the distal oxygen of the peroxide moiety of the cofactor. The geometric changes and the Mulliken charge distributions along the calculated reaction pathway are in line with an electrophilic aromatic substitution type of mechanism. The energy barrier of the calculated reaction is considerably lower when the substrate hydroxyl moiety is deprotonated, in comparison with the barrier found with a protonated hydroxyl moiety. This effect of the protonation state of the substrate on the calculated energy barrier supports experimental observations that deprotonation is required for hydroxylation of the substrate. A notable event in the calculated reaction pathway is a lengthening of the peroxide oxygen-oxygen bond at an intermediate stage. Further analysis of the reaction pathway indicates that this oxygen-oxygen bond elongation is accompanied by an increase in electrophilic reactivity on the distal oxygen of the peroxide moiety, which may assist the C-O bond formation in the reaction of the C4a-hydroperoxyflavin intermediate with the substrate. Analysis of the effect of individual active site residues on the reaction reveals a specific transition state stabilization by the backbone carbonyl moiety of Pro293. The crystal water 717 appears to drive the hydroxylation step through a stabilizing hydrogen bond interaction to the proximal oxygen of the C4a-hydroperoxyflavin intermediate, which increases in strength as the hydroperoxyflavin cofactor converts to the anionic (deprotonated) hydroxyflavin.
Collapse
Affiliation(s)
- L Ridder
- Laboratory of Biochemistry, Wageningen University, The Netherlands.
| | | | | | | |
Collapse
|
21
|
Ridder L, Mulholland AJ, Vervoort J, Rietjens IMCM. Correlation of Calculated Activation Energies with Experimental Rate Constants for an Enzyme Catalyzed Aromatic Hydroxylation. J Am Chem Soc 1998. [DOI: 10.1021/ja980639r] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Zakharieva O, Grodzicki M, Trautwein AX, Veeger C, Rietjens IM. Molecular orbital study of porphyrin–substrate interactions in cytochrome P450 catalysed aromatic hydroxylation of substituted anilines. Biophys Chem 1998; 73:189-203. [PMID: 17029727 DOI: 10.1016/s0301-4622(98)00111-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1997] [Revised: 01/12/1998] [Accepted: 02/02/1998] [Indexed: 10/17/2022]
Abstract
The reaction mechanism for the primary reaction step of the hydroxylation of 3-fluoro-6-methylaniline, attacked at different positions (oxygen attack across a C-C bond and direct attack at positions para and ortho with respect to the NH(2)-group) catalysed by a high-valent ferryl-oxo porphyrin a(2u)-cation complex with H(3)CS(-) as an axial ligand, has been investigated on the basis of electronic structure calculations in local spin-density approximation. Non-repulsive potential curves are obtained only in cases of direct attack at the para- and ortho-positions with respect to NH(2), but not for epoxide formation. Comparing the potential curves for the hydroxylation at the positions para and ortho to the NH(2)-group, an attack at the para-position is more likely. The relative orientation of the substrate towards the porphyrin is essentially determined by the interaction between the substituents of the substrate and the porphyrin. Consequently, different geometrical orientations of the substrate are obtained for hydroxylation at the para- and ortho-positions. In both cases of direct attack the substrate plane is not parallel to the porphyrin plane. The decisive role of sulphur in the hydroxylation is demonstrated by the participation of the S(3p)-orbitals in all molecular orbitals involved in the reaction.
Collapse
Affiliation(s)
- O Zakharieva
- Department of Biochemistry, Agricultural University, Dreijenlaan 3, 6703 Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
van der Bolt FJ, van den Heuvel RH, Vervoort J, van Berkel WJ. 19F NMR study on the regiospecificity of hydroxylation of tetrafluoro-4-hydroxybenzoate by wild-type and Y385F p-hydroxybenzoate hydroxylase: evidence for a consecutive oxygenolytic dehalogenation mechanism. Biochemistry 1997; 36:14192-201. [PMID: 9369493 DOI: 10.1021/bi971213c] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The regiospecificity of hydroxylation of tetrafluoro-4-hydroxybenzoate (F4-POHB) by p-hydroxybenzoate hydroxylase (PHBH) and its active site mutant Y385F was investigated by 19F NMR. Evidence is provided that the hydroxylation of F4-POHB is not restricted to the C3 center of the aromatic ring but rather involves sequential oxygenation and dehalogenation steps. The catalytic efficiency of PHBH and Y385F with F4-POHB was optimal near pH 6.5. Below pH 7.0, substantial substrate inhibition occurred. Dianionic F4-POHB was a competent effector, highly stimulating upon binding the rate of flavin reduction by NADPH. Hydroxylation of F4-POHB involved the formation of quinone intermediates as primary products of oxygenolytic defluorination. Ascorbate competed favorably with NADPH for the nonenzymatic reduction of these reactive intermediates and prevented the accumulation of nonspecific oxidation products. 19F NMR showed that the initial aromatic product 2,5,6-trifluoro-3,4-dihydroxybenzoate (F3-DOHB) was further converted to 5,6-difluoro-2,3,4-trihydroxybenzoate (5,6-F2-TOHB). This reaction was most efficient with Y385F. F3-DOHB was not bound in a unique regiospecific orientation as also 2,6-difluoro-3,4, 5-trihydroxybenzoate (2,6-F2-TOHB) was formed. The oxygenolytic dehalogenation of F3-DOHB by PHBH and Y385F is consistent with the electrophilic aromatic substitution mechanism proposed for this class of flavoenzymes. Nucleophilic attack of the carbon centers of F3-DOHB onto the distal oxygen of the electrophilic flavin C(4a)-hydroperoxide occurs when the carbon center has a relatively high HOMO density and is relatively close to the distal oxygen of the flavin C(4a)-hydroperoxide.
Collapse
Affiliation(s)
- F J van der Bolt
- Department of Biochemistry, Wageningen Agricultural University, Dreijenlaan 3 6703 HA Wageningen, The Netherlands
| | | | | | | |
Collapse
|
24
|
Eppink MH, Boeren SA, Vervoort J, van Berkel WJ. Purification and properties of 4-hydroxybenzoate 1-hydroxylase (decarboxylating), a novel flavin adenine dinucleotide-dependent monooxygenase from Candida parapsilosis CBS604. J Bacteriol 1997; 179:6680-7. [PMID: 9352916 PMCID: PMC179595 DOI: 10.1128/jb.179.21.6680-6687.1997] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel flavoprotein monooxygenase, 4-hydroxybenzoate 1-hydroxylase (decarboxylating), from Candida parapsilosis CBS604 was purified to apparent homogeneity. The enzyme is induced when the yeast is grown on either 4-hydroxybenzoate, 2,4-dihydroxybenzoate, or 3,4-dihydroxybenzoate as the sole carbon source. The purified monooxygenase is a monomer of about 50 kDa containing flavin adenine dinucleotide as weakly bound cofactor. 4-Hydroxybenzoate 1-hydroxylase from C. parapsilosis catalyzes the oxidative decarboxylation of a wide range of 4-hydroxybenzoate derivatives with the stoichiometric consumption of NAD(P)H and oxygen. Optimal catalysis is reached at pH 8, with NADH being the preferred electron donor. By using (18)O2, it was confirmed that the oxygen atom inserted into the product 1,4-dihydroxybenzene is derived from molecular oxygen. 19F nuclear magnetic resonance spectroscopy revealed that the enzyme catalyzes the conversion of fluorinated 4-hydroxybenzoates to the corresponding hydroquinones. The activity of the enzyme is strongly inhibited by 3,5-dichloro-4-hydroxybenzoate, 4-hydroxy-3,5-dinitrobenzoate, and 4-hydroxyisophthalate, which are competitors with the aromatic substrate. The same type of inhibition is exhibited by chloride ions. Molecular orbital calculations show that upon deprotonation of the 4-hydroxy group, nucleophilic reactivity is located in all substrates at the C-1 position. This, and the fact that the enzyme is highly active with tetrafluoro-4-hydroxybenzoate and 4-hydroxy-3-nitrobenzoate, suggests that the phenolate forms of the substrates play an important role in catalysis. Based on the substrate specificity, a mechanism is proposed for the flavin-mediated oxidative decarboxylation of 4-hydroxybenzoate.
Collapse
Affiliation(s)
- M H Eppink
- Department of Biochemistry, Wageningen Agricultural University, The Netherlands
| | | | | | | |
Collapse
|
25
|
Moran GR, Entsch B, Palfey BA, Ballou DP. Electrostatic effects on substrate activation in para-hydroxybenzoate hydroxylase: studies of the mutant lysine 297 methionine. Biochemistry 1997; 36:7548-56. [PMID: 9200706 DOI: 10.1021/bi9706327] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
p-Hydroxybenzoate hydroxylase (EC 1.14.13.2) is a flavoprotein monooxygenase that catalyzes the incorporation of one atom of molecular oxygen into p-hydroxybenzoate to form 3,4-dihydroxybenzoate. The enzyme activates the substrate at the 3 position to electrophilic substitution by lowering the pKa of the phenolic oxygen. The results presented here indicate that regions of positive potential in the active site facilitate this substrate activation, which is necessary for rapid hydroxylation. We have neutralized a positive point charge by mutating lysine 297 to methionine (K297M). This mutation changes an amino acid near the active site, but not directly in contact with the flavin or the substrate. A variety of transient state kinetic and static parameters have been determined with two substrates. The results indicate that the K297M mutant does not activate the substrate through phenolic ionization to the same extent as wild-type (WT) and yet remains a competent hydroxylase. However, catalysis by the mutant is slow compared to that of WT, particularly in the oxidative half-reaction. Thus, normally quite labile oxygenated flavin intermediates encountered in the hydroxylation pathway of WT p-hydroxybenzoate hydroxylase are stabilized and their decay is rate limiting in the K297M turnover. Electrostatic potential calculations offer an explanation for the lack of substrate activation. The stability of the oxidative reaction intermediates seems to be related to a lower degree of substrate activation.
Collapse
Affiliation(s)
- G R Moran
- Department of Molecular and Cellular Biology, University of New England, New South Wales, Australia
| | | | | | | |
Collapse
|
26
|
Karelson M, Lobanov VS, Katritzky AR. Quantum-Chemical Descriptors in QSAR/QSPR Studies. Chem Rev 1996; 96:1027-1044. [PMID: 11848779 DOI: 10.1021/cr950202r] [Citation(s) in RCA: 939] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mati Karelson
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200
| | | | | |
Collapse
|
27
|
van der Bolt FJ, Vervoort J, van Berkel WJ. Flavin motion in p-hydroxybenzoate hydroxylase. Substrate and effector specificity of the Tyr22-->Ala mutant. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:592-600. [PMID: 8647102 DOI: 10.1111/j.1432-1033.1996.0592p.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The side chain of Tyr222 in p-hydroxybenzoate hydroxylase interacts with the carboxy moiety of the substrate. Studies on the Tyr222-->Phe mutant, [F222]p-hydroxybenzoate hydroxylase, have shown that disruption of this interaction hampers the hydroxylation of 4-hydroxybenzoate. Tyr222 is possibly involved in flavin motion, which may facilitate the exchange of substrate and product during catalysis. To elucidate the function of Tyr222 in more detail, in the present study the substrate and effector specificity of the Tyr222-->Ala mutant, [A222]p-hydroxybenzoate hydroxylase, was investigated. Replacement of Tyr222 by Ala impairs the binding of the physiological substrate 4-hydroxybenzoate and the substrate analog 4-aminobenzoate. With these compounds, [A222]p-hydroxybenzoate hydroxylase mainly acts as a NADPH oxidase. [A222]p-hydroxybenzoate hydroxylase tightly interacts with 2,4-dihydroxybenzoate and 2-hydroxy-4-aminobenzoate. Crystallographic data [Schreuder, H.A., Mattevi, A., Oblomova, G., Kalk, K.H., Hol, W.G.J., van der Bolt, F.J.T. & van Berkel, W.J.H. (1994) Biochemistry 33, 10161-10170] suggest that this is due to motion of the flavin ring out of the active site, allowing hydrogen-bond interaction between the 2-hydroxy group of the substrate analogs and N3 of the flavin. [A222]p-Hydroxybenzoate hydroxylase produces about 0.6 mol 2,3,4-trihydroxybenzoate from 2,4-dihydroxybenzoate/mol NADPH oxidized. This indicates that reduction of the Tyr222-->Ala mutant shifts the equilibrium of flavin conformers towards the productive "in' position. [A222]p-Hydroxybenzoate hydroxylase converts 2-fluoro-4-hydroxybenzoate to 2-fluoro-3,4-dihydroxybenzoate. The regioselectivity of hydroxylation suggests that [A222]p-hydroxybenzoate hydroxylase binds the fluorinated substrate in the same orientation as wild-type. Spectral studies suggest that wild-type and [A222]p-hydroxybenzoate hydroxylase bind 2-fluoro-4-hydroxybenzoate in the phenolate form with the flavin ring preferring the "out' conformation. Despite activation of the fluorinated substrate and in contrast to the wild-type enzyme, [A222]p-hydroxybenzoate hydroxylase largely produces hydrogen peroxide. The effector specificity of p-hydroxybenzoate hydroxylase is not changed by the Tyr222-->Ala replacement. This supports the idea that the effector specificity is mainly dictated by the protein-substrate interactions at the re-side of the flavin ring.
Collapse
Affiliation(s)
- F J van der Bolt
- Department of Biochemistry, Wageningen Agricultural University, The Netherlands
| | | | | |
Collapse
|
28
|
Soffers AE, Ploemen JH, Moonen MJ, Wobbes T, van Ommen B, Vervoort J, van Bladeren PJ, Rietjens IM. Regioselectivity and quantitative structure-activity relationships for the conjugation of a series of fluoronitrobenzenes by purified glutathione S-transferase enzymes from rat and man. Chem Res Toxicol 1996; 9:638-46. [PMID: 8728510 DOI: 10.1021/tx9501804] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Quantitative structure-activity relationships (QSAR's) are described for the rate of conjugation of a series of fluoronitrobenzenes with cytosolic as well as with two major alpha and mu class enzymes of rat and human liver, viz., glutathione S-transferases (GST) 1-1, 3-3, A1-1, and M1a-1a. For all purified enzymes studied, the natural logarithm of the rate of conversion of the fluoronitrobenzenes correlates with both the calculated reactivity of the fluoronitrobenzenes for an electrophilic attack (i.e., E(LUMO)) and the calculated relative heat of formation for formation of the respective Meisenheimer complex intermediate (delta delta HF). In addition, the regioselectivity of the reaction was determined and compared. The results obtained strongly support the conclusion that chemical reactivity of the fluoronitrobenzenes is the main factor determining the outcomes of their conversion by all glutathione S-transferase enzymes. The regioselectivities vary only a few percent from one enzyme to another, whereas QSAR lines for all purified enzymes are in the same region and run parallel. This indicates that in the overall reaction the nucleophilic attack of the thiolate anion on the fluoronitrobenzenes, leading to formation of the Meisenheimer complex, is the rate-limiting step in the overall catalysis. The fact that chemical reactivity of the fluoronitrobenzenes is the main factor in setting the outcomes of the overall conversion by the different glutathione S-transferase enzymes implies that extrapolation from rat to results of other species including man, and also from one individual to another, must be feasible. That this is actually the case is clearly demonstrated by the results of the present study.
Collapse
Affiliation(s)
- A E Soffers
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gatti DL, Entsch B, Ballou DP, Ludwig ML. pH-dependent structural changes in the active site of p-hydroxybenzoate hydroxylase point to the importance of proton and water movements during catalysis. Biochemistry 1996; 35:567-78. [PMID: 8555229 DOI: 10.1021/bi951344i] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Deprotonation of p-hydroxybenzoate to the phenolate and reprotonation of the hydroxylated dienone intermediate to form the product are essential steps in the reaction catalyzed by p-hydroxybenzoate hydroxylase (PHBH). The mechanism by which protons are transferred in these reactions is not obvious, because the substrate bound in the active site is isolated from solvent. Structure analyses of wild-type and mutant PHBH, with bound p-hydroxybenzoate or p-aminobenzoate, reveal a chain of proton donors and acceptors (the hydroxyl groups of Tyr201 and Tyr385, and two water molecules) that can connect the substrate 4-OH to His72, a surface residue. This chain could provide a pathway for proton transfer to and from the substrate. Using various combinations of pH and substrates, we show that in crystalline PHBH ionizable groups in the chain may rotate and change hydrogen-bond orientation. Molecular dynamics simulations have been used to predict the preferred orientation of hydrogen bonds in the chain as a function of the ionization states of substrate and His72. The calculations suggest that changes in the ionization state of the substrate could be associated with changes in orientation of the hydrogen bonds in the chain. Transfer of water between the chain of proton donors and the solvent also appears to be an essential part of the mechanism that provides reversible transfer of protons during the hydroxylation reaction.
Collapse
Affiliation(s)
- D L Gatti
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
30
|
Eppink MH, Schreuder HA, Van Berkel WJ. Structure and function of mutant Arg44Lys of 4-hydroxybenzoate hydroxylase implications for NADPH binding. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:157-65. [PMID: 7628466 DOI: 10.1111/j.1432-1033.1995.0157f.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Arg44, located at the si-face side of the flavin ring in 4-hydroxybenzoate hydroxylase, was changed to lysine by site-specific mutagenesis. Crystals of [R44K]4-hydroxybenzoate hydroxylase complexed with 4-hydroxybenzoate diffract to 0.22-nm resolution. The structure of [R44K]4-hydroxybenzoate hydroxylase is identical to the wild-type enzyme except for local changes in the vicinity of the mutation. The peptide unit between Ile43 and Lys44 is flipped by about 180 degrees in 50% of the molecules. The phi, psi angles in both the native and flipped conformation are outside the allowed regions and indicate a strained conformation. [R44K]4-Hydroxybenzoate hydroxylase has a decreased affinity for the flavin prosthetic group. This is ascribed to the lost interactions between the side chain of Arg44 and the diphosphoribose moiety of the FAD. The replacement of Arg44 by Lys does not change the position of the flavin ring which occupies the same interior position as in wild type. [R44K]4-Hydroxybenzoate hydroxylase fully couples flavin reduction to substrate hydroxylation. Stopped-flow kinetics showed that the effector role of 4-hydroxybenzoate is largely conserved in the mutant. Replacement of Arg44 by Lys however affects NADPH binding, resulting in a low yield of the charge-transfer species between reduced flavin and NADP+. It is inferred from these data that Arg44 is indispensable for optimal catalysis.
Collapse
Affiliation(s)
- M H Eppink
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | |
Collapse
|
31
|
Peelen S, Rietjens IM, Boersma MG, Vervoort J. Conversion of phenol derivatives to hydroxylated products by phenol hydroxylase from Trichosporon cutaneum. A comparison of regioselectivity and rate of conversion with calculated molecular orbital substrate characteristics. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:284-91. [PMID: 7851397 DOI: 10.1111/j.1432-1033.1995.tb20386.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study describes the regioselective hydroxylation and the rates of conversion of a series of fluorinated phenol derivatives by phenol hydroxylase from the yeast Trichosporon cutaneum. The natural logarithm of the kcat value for the conversion of the phenolic substrates correlates with the calculated energy of the reactive electrons in the highest occupied molecular orbital of the substrate (r = 0.85). This observation supports the hypothesis that at physiological pH (7.6) and 25 degrees C, in the absence of monovalent anions, the nucleophilic attack of the electrons in the highest occupied molecular orbital of the substrate on the C(4a)-hydroperoxyflavin enzyme intermediate is of major importance in determining the overall rate of catalysis. Results from 19F-NMR analysis of the incubation mixtures demonstrate for phenols with two identical ortho substituents, that the ortho position which becomes preferentially hydroxylated is the one with the highest density of the reactive electrons in the highest occupied molecular orbital. A halogen substituent at a meta position decreases the chances for hydroxylation at the adjacent ortho position further than expected on the basis of the calculated reactivity. This result indicates a contribution of a protein/substrate dipolar interaction, influencing the time-averaged orientation of the substrate with respect to the reactive C(4a)-hydroperoxyflavin intermediate.
Collapse
Affiliation(s)
- S Peelen
- Department of Biochemistry, Agricultural University, The Netherlands
| | | | | | | |
Collapse
|
32
|
Rietjens IM, Cnubben NH, van Haandel M, Tyrakowska B, Soffers AE, Vervoort J. Different metabolic pathways of 2,5-difluoronitrobenzene and 2,5-difluoroaminobenzene compared to molecular orbital substrate characteristics. Chem Biol Interact 1995; 94:49-72. [PMID: 7820880 DOI: 10.1016/0009-2797(94)03317-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The in vivo metabolite patterns of 2,5-difluoroaminobenzene and of its nitrobenzene analogue, 2,5-difluoronitrobenzene, were determined using 19F NMR analysis of urine samples. Results obtained demonstrate significant differences between the biotransformation patterns of these two analogues. For the aminobenzene, cytochrome P450 catalysed aromatic hydroxylation presents the main metabolic pathway. 2,5-Difluoronitrobenzene was predominantly metabolised through glutathione conjugation leading to excretion of 5-fluoro-2-(N-acetylcysteinyl)-nitrobenzene and fluoride anions, and, to a minor extent, through cytochrome P450 catalysed hydroxylation and nitroreduction. Pretreatment of the rats with various inducers of cytochrome P450 enzymes, known also to influence glutathione S-transferase enzyme patterns, followed by exposure to the 2,5-difluoroamino- or 2,5-difluoronitrobenzene, generally resulted in metabolite patterns that varied only to a small (< or = 12%) extent. Based on these results it was concluded that the biotransformation enzyme pattern is not the predominant factor in determining the metabolic route of these two model compounds. Additional in vitro microsomal and cytosolic incubations with 2,5-difluoroaminobenzene and 2,5-difluoronitrobenzene qualitatively confirmed the in vivo results. NADPH/oxygen supported microsomal cytochrome P450 catalysed hydroxylation was observed only for 2,5-difluoroaminobenzene whereas cytosolic GSH conjugation occurred only in incubations with 2,5-difluoronitrobenzene as the substrate. Outcomes from molecular orbital calculations provided a working hypothesis that can explain the difference in metabolic pathways of the nitro- and aminobenzene derivative on the basis of their chemical characteristics. This hypothesis states that the chances for a nitro- or aminobenzene derivative to enter either a cytochrome P450 or a glutathione conjugation pathway are determined by the relative energy levels of the frontier orbitals of the compounds. The aminobenzene derivative has relatively high energy molecular orbitals leading to an efficient reaction of its highest occupied molecular orbital (HOMO) with the singly occupied molecular orbital of the cytochrome P450 (FeO)3+ intermediate, but a low reactivity of its lowest unoccupied molecular orbital (LUMO) with the HOMO of glutathione. The nitrobenzene, on the other hand, has molecular orbitals of relatively low energy, explaining the efficient interaction, and, thus, reaction between its LUMO and the HOMO electrons of glutathione, but resulting in low reactivity with the SOMO electron of the cytochrome P450 (FeO)3+ reaction intermediate.
Collapse
Affiliation(s)
- I M Rietjens
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
van Berkel WJ, Eppink MH, Schreuder HA. Crystal structure of p-hydroxybenzoate hydroxylase reconstituted with the modified FAD present in alcohol oxidase from methylotrophic yeasts: evidence for an arabinoflavin. Protein Sci 1994; 3:2245-53. [PMID: 7756982 PMCID: PMC2142777 DOI: 10.1002/pro.5560031210] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens was replaced by a stereochemical analog, which is spontaneously formed from natural FAD in alcohol oxidases from methylotrophic yeasts. Reconstitution of p-hydroxybenzoate hydroxylase from apoprotein and modified FAD is a rapid process complete within seconds. Crystals of the enzyme-substrate complex of modified FAD-containing p-hydroxybenzoate hydroxylase diffract to 2.1 A resolution. The crystal structure provides direct evidence for the presence of an arabityl sugar chain in the modified form of FAD. The isoalloxazine ring of the arabinoflavin adenine dinucleotide (a-FAD) is located in a cleft outside the active site as recently observed in several other p-hydroxybenzoate hydroxylase complexes. Like the native enzyme, a-FAD-containing p-hydroxybenzoate hydroxylase preferentially binds the phenolate form of the substrate (pKo = 7.2). The substrate acts as an effector highly stimulating the rate of enzyme reduction by NADPH (kred > 500 s-1). The oxidative part of the catalytic cycle of a-FAD-containing p-hydroxybenzoate hydroxylase differs from native enzyme. Partial uncoupling of hydroxylation results in the formation of about 0.3 mol of 3,4-dihydroxybenzoate and 0.7 mol of hydrogen peroxide per mol NADPH oxidized. It is proposed that flavin motion in p-hydroxybenzoate hydroxylase is important for efficient reduction and that the flavin "out" conformation is associated with the oxidase activity.
Collapse
Affiliation(s)
- W J van Berkel
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | |
Collapse
|
34
|
Schreuder HA, Mattevi A, Obmolova G, Kalk KH, Hol WG, van der Bolt FJ, van Berkel WJ. Crystal structures of wild-type p-hydroxybenzoate hydroxylase complexed with 4-aminobenzoate,2,4-dihydroxybenzoate, and 2-hydroxy-4-aminobenzoate and of the Tyr222Ala mutant complexed with 2-hydroxy-4-aminobenzoate. Evidence for a proton channel and a new binding mode of the flavin ring. Biochemistry 1994; 33:10161-70. [PMID: 7520279 DOI: 10.1021/bi00199a044] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The crystal structures of wild-type p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens, complexed with the substrate analogues 4-aminobenzoate, 2,4-dihydroxybenzoate, and 2-hydroxy-4-aminobenzoate have been determined at 2.3-, 2.5-, and 2.8-A resolution, respectively. In addition, the crystal structure of a Tyr222Ala mutant, complexed with 2-hydroxy-4-aminobenzoate, has been determined at 2.7-A resolution. The structures have been refined to R factors between 14.5% and 15.8% for data between 8.0 A and the high-resolution limit. The differences between these complexes and the wild-type enzyme-substrate complex are all concentrated in the active site region. Binding of substrate analogues bearing a 4-amino group (4-aminobenzoate and 2-hydroxy-4-aminobenzoate) leads to binding of a water molecule next to the active site Tyr385. As a result, a continuous hydrogen-bonding network is present between the 4-amino group of the substrate analogue and the side chain of His72. It is likely that this hydrogen-bonding network is transiently present during normal catalysis, where it may or may not function as a proton channel assisting the deprotonation of the 4-hydroxyl group of the normal substrate upon binding to the active site. Binding of substrate analogues bearing a hydroxyl group at the 2-position (2,4-dihydroxybenzoate and 2-hydroxy-4-aminobenzoate) leads to displacement of the flavin ring from the active site. The flavin is no longer in the active site (the "in" conformation) but is in the cleft leading to the active site instead (the "out" conformation). It is proposed that movement of the FAD out of the active site may provide an entrance for the substrate to enter the active site and an exit for the product to leave.
Collapse
Affiliation(s)
- H A Schreuder
- Bioson Research Institute, University of Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
van Berkel WJ, Eppink MH, Middelhoven WJ, Vervoort J, Rietjens IM. Catabolism of 4-hydroxybenzoate in Candida parapsilosis proceeds through initial oxidative decarboxylation by a FAD-dependent 4-hydroxybenzoate 1-hydroxylase. FEMS Microbiol Lett 1994; 121:207-15. [PMID: 7926672 DOI: 10.1111/j.1574-6968.1994.tb07100.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The first two steps in the catabolism of 4-hydroxybenzoate by the ascomycetous yeast Candida parapsilosis CBS604 were investigated. In contrast to the well-known bacterial pathways and to what was previously assumed, metabolism of 4-hydroxybenzoate in C. parapsilosis proceeds through initial oxidative decarboxylation to give 1,4-dihydroxybenzene. This reaction is catalyzed by a NAD(P)H and FAD-dependent 4-hydroxybenzoate 1-hydroxylase. Further metabolism of 1,4-dihydroxybenzene to the ring-fission substrate 1,2,4-trihydroxybenzene is catalyzed by a NADPH-specific FAD-dependent aromatic hydroxylase acting on phenolic compounds. 19F-NMR experiments with cell extracts and 2-fluoro-4-hydroxybenzoate as the model compound confirm this metabolic pathway and exclude the alternative pathway proceeding through initial 3-hydroxylation followed by oxidative decarboxylation in the second step.
Collapse
Affiliation(s)
- W J van Berkel
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Peelen S, Rietjens IM, van Berkel WJ, van Workum WA, Vervoort J. 19F-NMR study on the pH-dependent regioselectivity and rate of the ortho-hydroxylation of 3-fluorophenol by phenol hydroxylase from Trichosporon cutaneum. Implications for the reaction mechanism. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:345-53. [PMID: 8269923 DOI: 10.1111/j.1432-1033.1993.tb18383.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The regioselectivity and rate of the ortho-hydroxylation of 3-fluorophenol by phenol hydroxylase from Trichosporon cutaneum (EC 1.14.13.7) was studied using 19F-NMR. The regioselective hydroxylation as well as the rate of ortho-hydroxylation are pH dependent with a pKa of 6.5. At pH values below 6.5, 3-fluorophenol preferentially becomes hydroxylated at the C6 ortho position, resulting in a maximum C6/C2 hydroxylation ratio of 6.7. Upon increasing the pH, the total rate of conversion increases. Also, the C2 ortho-hydroxylation increases relatively to the C6 ortho-hydroxylation and yields a minimum C6/C2 hydroxylation ratio of 2.2 at pH values above 7.5. Based on data from 19F-NMR binding studies and molecular orbital calculations, a hypothesis is put forward which explains the pH-dependent effects observed. A mechanism is proposed involving an active-site amino acid residue acting as a base in the reduced form of the protein. Deprotonation of this residue results in hydrogen bond formation with the hydroxyl moiety of the phenolic substrate, leading to (partial) deprotonation of the substrate. Molecular orbital calculations demonstrate that such a (partial) deprotonation increases (a) the overall reactivity of 3-fluorophenol for an electrophilic attack and (b) the reactivity of C2 relative to the C6 position. The hypothesis may explain the decrease in the C6/C2 hydroxylation ratio. Furthermore the increased amount of ortho-hydroxylated products formed with increasing pH can also be explained by this hypothesis.
Collapse
Affiliation(s)
- S Peelen
- Department of Biochemistry, Agricultural University, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Eschrich K, van der Bolt FJ, de Kok A, van Berkel WJ. Role of Tyr201 and Tyr385 in substrate activation by p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 216:137-46. [PMID: 8365400 DOI: 10.1111/j.1432-1033.1993.tb18125.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The crystal structure of the enzyme-substrate complex of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens shows that the hydroxyl group of 4-hydroxybenzoate interacts with the side chain of Tyr201, which is in close contact with the side chain of Tyr385. The role of this hydrogen bonding network in substrate activation was studied by kinetic and spectral analysis of Tyr-->Phe mutant enzymes. The catalytic properties of the enzymes with Tyr201 or Tyr385 replaced by Phe (Tyr201-->Phe and Tyr385-->Phe) with the physiological substrate are comparable with those of the corresponding mutant proteins of p-hydroxybenzoate hydroxylase from P. aeruginosa [Entsch, B., Palfey, B. A., Ballou, D. P. & Massey, V. (1991) J. Biol. Chem. 266, 17341-17349]. Enzyme Tyr201-->Phe has a high Km for NADPH and produces only 5% of 3,4-dihydroxybenzoate/catalytic cycle. Unlike the wild-type enzyme, the Tyr201-->Phe mutant does not stabilize the phenolate form of 4-hydroxybenzoate. With enzyme Tyr385-->Phe, flavin reduction is rate-limiting and the turnover rate is only 2% of wild type. Despite rather efficient hydroxylation, and deviating from the description of the corresponding P. aeruginosa enzyme, mutant Tyr385-->Phe prefers the binding of the phenolic form of 4-hydroxybenzoate. Studies with substrate analogs show that both tyrosines are important for the fine tuning of the effector specificity. Binding of 4-fluorobenzoate differentially stimulates the stabilization of the 4 alpha-hydroperoxyflavin intermediate. Unlike wild type, both Tyr mutants produce 3,4,5-trihydroxybenzoate from 3,4-dihydroxybenzoate. The affinity of enzyme Tyr201-->Phe for the dianionic substrate 2,3,5,6-tetrafluoro-4-hydroxybenzoate is very low, probably because of repulsion of the substrate phenolate in a more nonpolar microenvironment. In contrast to data reported for p-hydroxybenzoate hydroxylase from P. aeruginosa, binding of the inhibitor 4-hydroxycinnamate to wild-type and mutant proteins is not simply described by binary complex formation. A binding model is presented, including secondary binding of the inhibitor. Enzyme Tyr201-->Phe does not stabilize the phenolate form of the inhibitor. In enzyme Tyr385-->Phe, the phenolic pKa of bound 4-hydroxycinnamate is increased with respect to wild type. It is proposed that Tyr385-->Phe is involved in substrate activation by facilitating the deprotonation of Tyr201.
Collapse
Affiliation(s)
- K Eschrich
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
39
|
On the reaction mechanism of phenol hydroxylase. New information obtained by correlation of fluorescence and absorbance stopped flow studies. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53590-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
van Berkel W, Westphal A, Eschrich K, Eppink M, de Kok A. Substitution of Arg214 at the substrate-binding site of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:411-9. [PMID: 1459126 DOI: 10.1111/j.1432-1033.1992.tb17436.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gene encoding p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens was cloned in Escherichia coli to provide DNA for mutagenesis studies on the protein product. A plasmid containing a 1.65-kbp insert of P. fluorescens chromosomal DNA was obtained and its nucleotide sequence determined. The DNA-derived amino acid sequence agrees completely with the chemically determined amino acid sequence of the isolated protein. The enzyme is strongly expressed under influence of the vector-encoded lac promotor and is purified to homogeneity in a simple three-step procedure. The relation between substrate binding, the effector role of substrate and hydroxylation efficiency was studied by use of site-directed mutagenesis. Arg214, in ion-pair interaction with the carboxy moiety of p-hydroxybenzoate, was replaced with Lys, Gln and Ala, respectively. The affinity of the free enzymes for NADPH is unchanged, whereas the affinity for the aromatic substrate is strongly decreased. For enzymes Arg214-->Ala and Arg214-->Gln, the effector role of substrate is lost. For enzyme Arg214-->Lys, binding of p-hydroxybenzoate highly stimulates the rate of flavin reduction. In the presence of substrate or substrate analogues, the reduced enzyme Arg214-->Lys fails to stabilize the 4 alpha-hydroperoxyflavin intermediate, essential for efficient hydroxylation. Like the wild-type, enzyme Arg214-->Lys is susceptible to substrate inhibition. From spectral and kinetic results it is suggested that secondary binding of the substrate occurs at the re side of the flavin, where the nicotinamide moiety of NADPH is supposed to bind.
Collapse
Affiliation(s)
- W van Berkel
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|