1
|
Valetti F, Morra S, Barbieri L, Dezzani S, Ratto A, Catucci G, Sadeghi SJ, Gilardi G. Oxygen-resistant [FeFe]hydrogenases: new biocatalysis tools for clean energy and cascade reactions. Faraday Discuss 2024; 252:223-240. [PMID: 38836410 DOI: 10.1039/d4fd00010b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The use of enzymes to generate hydrogen, instead of using rare metal catalysts, is an exciting area of study in modern biochemistry and biotechnology, as well as biocatalysis driven by sustainable hydrogen. Thus far, the oxygen sensitivity of the fastest hydrogen-producing/exploiting enzymes, [FeFe]hydrogenases, has hindered their practical application, thereby restricting innovations mainly to their [NiFe]-based, albeit slower, counterparts. Recent exploration of the biodiversity of clostridial hydrogen-producing enzymes has yielded the isolation of representatives from a relatively understudied group. These enzymes possess an inherent defense mechanism against oxygen-induced damage. This discovery unveils fresh opportunities for applications such as electrode interfacing, biofuel cells, immobilization, and entrapment for enhanced stability in practical uses. Furthermore, it suggests potential combinations with cascade reactions for CO2 conversion or cofactor regeneration, like NADPH, facilitating product separation in biotechnological processes. This work provides an overview of this new class of biocatalysts, incorporating unpublished protein engineering strategies to further investigate the dynamic mechanism of oxygen protection and to address crucial details remaining elusive such as still unidentified switching hot-spots and their effects. Variants with improved kcat as well as chimeric versions with promising features to attain gain-of-function variants and applications in various biotechnological processes are also presented.
Collapse
Affiliation(s)
- Francesca Valetti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| | - Simone Morra
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Lisa Barbieri
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
- University School for Advanced Studies IUSS Pavia, Italy
| | - Sabrina Dezzani
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
- University School for Advanced Studies IUSS Pavia, Italy
| | - Alessandro Ratto
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| | - Sheila J Sadeghi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| |
Collapse
|
2
|
Lachmann MT, Duan Z, Rodríguez-Maciá P, Birrell JA. The missing pieces in the catalytic cycle of [FeFe] hydrogenases. Chem Sci 2024:d4sc04041d. [PMID: 39246377 PMCID: PMC11376134 DOI: 10.1039/d4sc04041d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
Hydrogen could provide a suitable means for storing energy from intermittent renewable sources for later use on demand. However, many challenges remain regarding the activity, specificity, stability and sustainability of current hydrogen production and consumption methods. The lack of efficient catalysts based on abundant and sustainable elements lies at the heart of this problem. Nature's solution led to the evolution of hydrogenase enzymes capable of reversible hydrogen conversion at high rates using iron- and nickel-based active sites. Through a detailed understanding of these enzymes, we can learn how to mimic them to engineer a new generation of highly active synthetic catalysts. Incredible progress has been made in our understanding of biological hydrogen activation over the last few years. In particular, detailed studies of the [FeFe] hydrogenase class have provided substantial insight into a sophisticated, optimised, molecular catalyst, the active site H-cluster. In this short perspective, we will summarise recent findings and highlight the missing pieces needed to complete the puzzle.
Collapse
Affiliation(s)
- Manon T Lachmann
- School of Chemistry and Leicester Institute of Structural and Chemical Biology, University of Leicester Leicester LE1 7RH UK
| | - Zehui Duan
- University of Oxford, Department of Chemistry, Inorganic Chemistry Laboratory South Parks Road Oxford OX1 3QR UK
| | - Patricia Rodríguez-Maciá
- School of Chemistry and Leicester Institute of Structural and Chemical Biology, University of Leicester Leicester LE1 7RH UK
| | - James A Birrell
- School of Life Sciences, University of Essex Colchester CO4 3SQ UK
| |
Collapse
|
3
|
Hippler M, Khosravitabar F. Light-Driven H 2 Production in Chlamydomonas reinhardtii: Lessons from Engineering of Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2114. [PMID: 39124233 PMCID: PMC11314271 DOI: 10.3390/plants13152114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
In the green alga Chlamydomonas reinhardtii, hydrogen production is catalyzed via the [FeFe]-hydrogenases HydA1 and HydA2. The electrons required for the catalysis are transferred from ferredoxin (FDX) towards the hydrogenases. In the light, ferredoxin receives its electrons from photosystem I (PSI) so that H2 production becomes a fully light-driven process. HydA1 and HydA2 are highly O2 sensitive; consequently, the formation of H2 occurs mainly under anoxic conditions. Yet, photo-H2 production is tightly coupled to the efficiency of photosynthetic electron transport and linked to the photosynthetic control via the Cyt b6f complex, the control of electron transfer at the level of photosystem II (PSII) and the structural remodeling of photosystem I (PSI). These processes also determine the efficiency of linear (LEF) and cyclic electron flow (CEF). The latter is competitive with H2 photoproduction. Additionally, the CBB cycle competes with H2 photoproduction. Consequently, an in-depth understanding of light-driven H2 production via photosynthetic electron transfer and its competition with CO2 fixation is essential for improving photo-H2 production. At the same time, the smart design of photo-H2 production schemes and photo-H2 bioreactors are challenges for efficient up-scaling of light-driven photo-H2 production.
Collapse
Affiliation(s)
- Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Fatemeh Khosravitabar
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
4
|
Alavi G, Engelbrecht V, Hemschemeier A, Happe T. The Alga Uronema belkae Has Two Structural Types of [FeFe]-Hydrogenases with Different Biochemical Properties. Int J Mol Sci 2023; 24:17311. [PMID: 38139142 PMCID: PMC10744039 DOI: 10.3390/ijms242417311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Several species of microalgae can convert light energy into molecular hydrogen (H2) by employing enzymes of early phylogenetic origin, [FeFe]-hydrogenases, coupled to the photosynthetic electron transport chain. Bacterial [FeFe]-hydrogenases consist of a conserved domain that harbors the active site cofactor, the H-domain, and an additional domain that binds electron-conducting FeS clusters, the F-domain. In contrast, most algal hydrogenases characterized so far have a structurally reduced, so-termed M1-type architecture, which consists only of the H-domain that interacts directly with photosynthetic ferredoxin PetF as an electron donor. To date, only a few algal species are known to contain bacterial-type [FeFe]-hydrogenases, and no M1-type enzymes have been identified in these species. Here, we show that the chlorophycean alga Uronema belkae possesses both bacterial-type and algal-type [FeFe]-hydrogenases. Both hydrogenase genes are transcribed, and the cells produce H2 under hypoxic conditions. The biochemical analyses show that the two enzymes show features typical for each of the two [FeFe]-hydrogenase types. Most notable in the physiological context is that the bacterial-type hydrogenase does not interact with PetF proteins, suggesting that the two enzymes are integrated differently into the alga's metabolism.
Collapse
Affiliation(s)
| | | | - Anja Hemschemeier
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany; (G.A.); (V.E.)
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany; (G.A.); (V.E.)
| |
Collapse
|
5
|
Rao G, Yu X, Zhang Y, Rauchfuss TB, Britt RD. Fully Refined Semisynthesis of the [FeFe] Hydrogenase H-Cluster. Biochemistry 2023; 62:2868-2877. [PMID: 37691492 DOI: 10.1021/acs.biochem.3c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
[FeFe] hydrogenases contain a 6-Fe cofactor that serves as the active site for efficient redox interconversion between H2 and protons. The biosynthesis of the so-called H-cluster involves unusual enzymatic reactions that synthesize organometallic Fe complexes containing azadithiolate, CO, and CN- ligands. We have previously demonstrated that specific synthetic [Fe(CO)x(CN)y] complexes can be used to functionally replace proposed Fe intermediates in the maturation reaction. Here, we report the results from performing such cluster semisynthesis in the context of a recent fully defined cluster maturation procedure, which eliminates unknown components previously employed from Escherichia coli cell lysate and demonstrate this provides a concise route to H-cluster synthesis. We show that formaldehyde can be used as a simple reagent as the carbon source of the bridging adt ligand of H-cluster in lieu of serine/serine hydroxymethyltransferase. In addition to the actual H-cluster, we observe the formation of several H-cluster-like species, the identities of which are probed by cryogenic photolysis combined with EPR/ENDOR spectroscopy.
Collapse
Affiliation(s)
- Guodong Rao
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Xin Yu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Yu Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Thomas B Rauchfuss
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
- Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Cabotaje P, Walter K, Zamader A, Huang P, Ho F, Land H, Senger M, Berggren G. Probing Substrate Transport Effects on Enzymatic Hydrogen Catalysis: An Alternative Proton Transfer Pathway in Putatively Sensory [FeFe] Hydrogenase. ACS Catal 2023; 13:10435-10446. [PMID: 37560193 PMCID: PMC10407848 DOI: 10.1021/acscatal.3c02314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Indexed: 08/11/2023]
Abstract
[FeFe] hydrogenases, metalloenzymes catalyzing proton/dihydrogen interconversion, have attracted intense attention due to their remarkable catalytic properties and (bio-)technological potential for a future hydrogen economy. In order to unravel the factors enabling their efficient catalysis, both their unique organometallic cofactors and protein structural features, i.e., "outer-coordination sphere" effects have been intensively studied. These structurally diverse enzymes are divided into distinct phylogenetic groups, denoted as Group A-D. Prototypical Group A hydrogenases display high turnover rates (104-105 s-1). Conversely, the sole characterized Group D representative, Thermoanaerobacter mathranii HydS (TamHydS), shows relatively low catalytic activity (specific activity 10-1 μmol H2 mg-1 min-1) and has been proposed to serve a H2-sensory function. The various groups of [FeFe] hydrogenase share the same catalytic cofactor, the H-cluster, and the structural factors causing the diverging reactivities of Group A and D remain to be elucidated. In the case of the highly active Group A enzymes, a well-defined proton transfer pathway (PTP) has been identified, which shuttles H+ between the enzyme surface and the active site. In Group D hydrogenases, this conserved pathway is absent. Here, we report on the identification of highly conserved amino acid residues in Group D hydrogenases that constitute a possible alternative PTP. We varied two proposed key amino acid residues of this pathway (E252 and E289, TamHydS numbering) via site-directed mutagenesis and analyzed the resulting variants via biochemical and spectroscopic methods. All variants displayed significantly decreased H2-evolution and -oxidation activities. Additionally, the variants showed two redox states that were not characterized previously. These findings provide initial evidence that these amino acid residues are central to the putative PTP of Group D [FeFe] hydrogenase. Since the identified residues are highly conserved in Group D exclusively, our results support the notion that the PTP is not universal for different phylogenetic groups in [FeFe] hydrogenases.
Collapse
Affiliation(s)
| | | | - Afridi Zamader
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Ping Huang
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Felix Ho
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Henrik Land
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Moritz Senger
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Gustav Berggren
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| |
Collapse
|
7
|
Sidabras JW, Stripp ST. A personal account on 25 years of scientific literature on [FeFe]-hydrogenase. J Biol Inorg Chem 2023; 28:355-378. [PMID: 36856864 DOI: 10.1007/s00775-023-01992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/25/2023] [Indexed: 03/02/2023]
Abstract
[FeFe]-hydrogenases are gas-processing metalloenzymes that catalyze H2 oxidation and proton reduction (H2 release) in microorganisms. Their high turnover frequencies and lack of electrical overpotential in the hydrogen conversion reaction has inspired generations of biologists, chemists, and physicists to explore the inner workings of [FeFe]-hydrogenase. Here, we revisit 25 years of scientific literature on [FeFe]-hydrogenase and propose a personal account on 'must-read' research papers and review article that will allow interested scientists to follow the recent discussions on catalytic mechanism, O2 sensitivity, and the in vivo synthesis of the active site cofactor with its biologically uncommon ligands carbon monoxide and cyanide. Focused on-but not restricted to-structural biology and molecular biophysics, we highlight future directions that may inspire young investigators to pursue a career in the exciting and competitive field of [FeFe]-hydrogenase research.
Collapse
Affiliation(s)
- Jason W Sidabras
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA, 53226.
| | - Sven T Stripp
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
8
|
Günzel A, Engelbrecht V, Happe T. Changing the tracks: screening for electron transfer proteins to support hydrogen production. J Biol Inorg Chem 2022; 27:631-640. [PMID: 36038787 PMCID: PMC9569306 DOI: 10.1007/s00775-022-01956-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022]
Abstract
Ferredoxins are essential electron transferring proteins in organisms. Twelve plant-type ferredoxins in the green alga Chlamydomonas reinhardtii determine the fate of electrons, generated in multiple metabolic processes. The two hydrogenases HydA1 and HydA2 of. C. reinhardtii compete for electrons from the photosynthetic ferredoxin PetF, which is the first stromal mediator of the high-energy electrons derived from the absorption of light energy at the photosystems. While being involved in many chloroplast-located metabolic pathways, PetF shows the highest affinity for ferredoxin-NADP+ oxidoreductase (FNR), not for the hydrogenases. Aiming to identify other potential electron donors for the hydrogenases, we screened as yet uncharacterized ferredoxins Fdx7, 8, 10 and 11 for their capability to reduce the hydrogenases. Comparing the performance of the Fdx in presence and absence of competitor FNR, we show that Fdx7 has a higher affinity for HydA1 than for FNR. Additionally, we show that synthetic FeS-cluster-binding maquettes, which can be reduced by NADPH alone, can also be used to reduce the hydrogenases. Our findings pave the way for the creation of tailored electron donors to redirect electrons to enzymes of interest.
Collapse
Affiliation(s)
- Alexander Günzel
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Vera Engelbrecht
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| |
Collapse
|
9
|
Lorenzi M, Gamache MT, Redman HJ, Land H, Senger M, Berggren G. Light-Driven [FeFe] Hydrogenase Based H 2 Production in E. coli: A Model Reaction for Exploring E. coli Based Semiartificial Photosynthetic Systems. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:10760-10767. [PMID: 36035441 PMCID: PMC9400101 DOI: 10.1021/acssuschemeng.2c03657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/08/2022] [Indexed: 06/01/2023]
Abstract
Biohybrid technologies like semiartificial photosynthesis are attracting increased attention, as they enable the combination of highly efficient synthetic light-harvesters with the self-healing and outstanding performance of biocatalysis. However, such systems are intrinsically complex, with multiple interacting components. Herein, we explore a whole-cell photocatalytic system for hydrogen (H2) gas production as a model system for semiartificial photosynthesis. The employed whole-cell photocatalytic system is based on Escherichia coli cells heterologously expressing a highly efficient, but oxygen-sensitive, [FeFe] hydrogenase. The system is driven by the organic photosensitizer eosin Y under broad-spectrum white light illumination. The direct involvement of the [FeFe] hydrogenase in the catalytic reaction is verified spectroscopically. We also observe that E. coli provides protection against O2 damage, underscoring the suitability of this host organism for oxygen-sensitive enzymes in the development of (photo) catalytic biohybrid systems. Moreover, the study shows how factorial experimental design combined with analysis of variance (ANOVA) can be employed to identify relevant variables, as well as their interconnectivity, on both overall catalytic performance and O2 tolerance.
Collapse
Affiliation(s)
- Marco Lorenzi
- Department
of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| | - Mira T. Gamache
- Department
of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| | - Holly J. Redman
- Department
of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| | - Henrik Land
- Department
of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| | - Moritz Senger
- Department
of Chemistry - Ångström, Physical Chemistry, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| | - Gustav Berggren
- Department
of Chemistry - Ångström, Molecular Biomimetics, Uppsala University, Lägerhyddsvägen 1, 75120 Uppsala, Sweden
| |
Collapse
|
10
|
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022; 122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.
Collapse
Affiliation(s)
- Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Berlin 14195, Germany
| | | | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Silke Leimkühler
- University of Potsdam, Molecular Enzymology, Potsdam 14476, Germany
| | - Shun Hirota
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Andrew Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Hideaki Ogata
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
- Hokkaido University, Institute of Low Temperature Science, Sapporo 060-0819, Japan
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
11
|
Pavliuk MV, Lorenzi M, Morado DR, Gedda L, Wrede S, Mejias SH, Liu A, Senger M, Glover S, Edwards K, Berggren G, Tian H. Polymer Dots as Photoactive Membrane Vesicles for [FeFe]-Hydrogenase Self-Assembly and Solar-Driven Hydrogen Evolution. J Am Chem Soc 2022; 144:13600-13611. [PMID: 35863067 PMCID: PMC9354254 DOI: 10.1021/jacs.2c03882] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A semiartificial photosynthesis approach that utilizes enzymes for solar fuel production relies on efficient photosensitizers that should match the enzyme activity and enable long-term stability. Polymer dots (Pdots) are biocompatible photosensitizers that are stable at pH 7 and have a readily modifiable surface morphology. Therefore, Pdots can be considered potential photosensitizers to drive such enzyme-based systems for solar fuel formation. This work introduces and unveils in detail the interaction within the biohybrid assembly composed of binary Pdots and the HydA1 [FeFe]-hydrogenase from Chlamydomonas reinhardtii. The direct attachment of hydrogenase on the surface of toroid-shaped Pdots was confirmed by agarose gel electrophoresis, cryogenic transmission electron microscopy (Cryo-TEM), and cryogenic electron tomography (Cryo-ET). Ultrafast transient spectroscopic techniques were used to characterize photoinduced excitation and dissociation into charges within Pdots. The study reveals that implementation of a donor-acceptor architecture for heterojunction Pdots leads to efficient subpicosecond charge separation and thus enhances hydrogen evolution (88 460 μmolH2·gH2ase-1·h-1). Adsorption of [FeFe]-hydrogenase onto Pdots resulted in a stable biohybrid assembly, where hydrogen production persisted for days, reaching a TON of 37 500 ± 1290 in the presence of a redox mediator. This work represents an example of a homogeneous biohybrid system combining polymer nanoparticles and an enzyme. Detailed spectroscopic studies provide a mechanistic understanding of light harvesting, charge separation, and transport studied, which is essential for building semiartificial photosynthetic systems with efficiencies beyond natural and artificial systems.
Collapse
Affiliation(s)
- Mariia V Pavliuk
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Marco Lorenzi
- Department of Chemistry─Ångström Laboratory, Molecular Biomimetics, Uppsala University, 751 20 Uppsala, Sweden
| | - Dustin R Morado
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, 171 65 Solna, Sweden
| | - Lars Gedda
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Sina Wrede
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Sara H Mejias
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Aijie Liu
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Moritz Senger
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Starla Glover
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Katarina Edwards
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| | - Gustav Berggren
- Department of Chemistry─Ångström Laboratory, Molecular Biomimetics, Uppsala University, 751 20 Uppsala, Sweden
| | - Haining Tian
- Department of Chemistry─Ångström Laboratory, Physical Chemistry, Uppsala University, 751 20 Uppsala, Sweden
| |
Collapse
|
12
|
King SJ, Jerkovic A, Brown LJ, Petroll K, Willows RD. Synthetic biology for improved hydrogen production in Chlamydomonas reinhardtii. Microb Biotechnol 2022; 15:1946-1965. [PMID: 35338590 PMCID: PMC9249334 DOI: 10.1111/1751-7915.14024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/04/2022] Open
Abstract
Hydrogen is a clean alternative to fossil fuels. It has applications for electricity generation and transportation and is used for the manufacturing of ammonia and steel. However, today, H2 is almost exclusively produced from coal and natural gas. As such, methods to produce H2 that do not use fossil fuels need to be developed and adopted. The biological manufacturing of H2 may be one promising solution as this process is clean and renewable. Hydrogen is produced biologically via enzymes called hydrogenases. There are three classes of hydrogenases namely [FeFe], [NiFe] and [Fe] hydrogenases. The [FeFe] hydrogenase HydA1 from the model unicellular algae Chlamydomonas reinhardtii has been studied extensively and belongs to the A1 subclass of [FeFe] hydrogenases that have the highest turnover frequencies amongst hydrogenases (21,000 ± 12,000 H2 s−1 for CaHydA from Clostridium acetobutyliticum). Yet to date, limitations in C. reinhardtii H2 production pathways have hampered commercial scale implementation, in part due to O2 sensitivity of hydrogenases and competing metabolic pathways, resulting in low H2 production efficiency. Here, we describe key processes in the biogenesis of HydA1 and H2 production pathways in C. reinhardtii. We also summarize recent advancements of algal H2 production using synthetic biology and describe valuable tools such as high‐throughput screening (HTS) assays to accelerate the process of engineering algae for commercial biological H2 production.
Collapse
Affiliation(s)
- Samuel J King
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ante Jerkovic
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Louise J Brown
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kerstin Petroll
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Robert D Willows
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
13
|
Morra S. Fantastic [FeFe]-Hydrogenases and Where to Find Them. Front Microbiol 2022; 13:853626. [PMID: 35308355 PMCID: PMC8924675 DOI: 10.3389/fmicb.2022.853626] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/10/2022] [Indexed: 01/01/2023] Open
Abstract
[FeFe]-hydrogenases are complex metalloenzymes, key to microbial energy metabolism in numerous organisms. During anaerobic metabolism, they dissipate excess reducing equivalents by using protons from water as terminal electron acceptors, leading to hydrogen production. This reaction is coupled to reoxidation of specific redox partners [ferredoxins, NAD(P)H or cytochrome c3], that can be used either individually or simultaneously (via flavin-based electron bifurcation). [FeFe]-hydrogenases also serve additional physiological functions such as H2 uptake (oxidation), H2 sensing, and CO2 fixation. This broad functional spectrum is enabled by a modular architecture and vast genetic diversity, which is not fully explored and understood. This Mini Review summarises recent advancements in identifying and characterising novel [FeFe]-hydrogenases, which has led to expanding our understanding of their multiple roles in metabolism and functional mechanisms. For example, while numerous well-known [FeFe]-hydrogenases are irreversibly damaged by oxygen, some newly discovered enzymes display intrinsic tolerance. These findings demonstrate that oxygen sensitivity varies between different [FeFe]-hydrogenases: in some cases, protection requires the presence of exogenous compounds such as carbon monoxide or sulphide, while in other cases it is a spontaneous built-in mechanism that relies on a reversible conformational change. Overall, it emerges that additional research is needed to characterise new [FeFe]-hydrogenases as this will reveal further details on the physiology and mechanisms of these enzymes that will enable potential impactful applications.
Collapse
Affiliation(s)
- Simone Morra
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
14
|
Heghmanns M, Günzel A, Brandis D, Kutin Y, Engelbrecht V, Winkler M, Happe T, Kasanmascheff M. Fine-tuning of FeS proteins monitored via pulsed EPR redox potentiometry at Q-band. BIOPHYSICAL REPORTS 2021; 1:100016. [PMID: 36425453 PMCID: PMC9680799 DOI: 10.1016/j.bpr.2021.100016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 06/16/2023]
Abstract
As essential electron translocating proteins in photosynthetic organisms, multiple plant-type ferredoxin (Fdx) isoforms are involved in a high number of reductive metabolic processes in the chloroplast. To allow quick cellular responses under changing environmental conditions, different plant-type Fdxs in Chlamydomonas reinhardtii were suggested to have adapted their midpoint potentials to a wide range of interaction partners. We performed pulsed electron paramagnetic resonance (EPR) monitored redox potentiometry at Q-band on three Fdx isoforms for a straightforward determination of their midpoint potentials. Additionally, site-directed mutagenesis was used to tune the midpoint potential of CrFdx1 in a range of approximately -338 to -511 mV, confirming the importance of single positions in the protein environment surrounding the [2Fe2S] cluster. Our results present a new target for future studies aiming to modify the catalytic activity of CrFdx1 that plays an essential role either as electron acceptor of photosystem I or as electron donor to hydrogenases under certain conditions. Additionally, the precisely determined redox potentials in this work using pulsed EPR demonstrate an alternative method that provides additional advantages compared with the well-established continuous wave EPR technique.
Collapse
Affiliation(s)
- Melanie Heghmanns
- TU Dortmund University, Department of Chemistry and Chemical Biology, Dortmund, Germany
| | - Alexander Günzel
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Photobiotechnology, Bochum, Germany
| | - Dörte Brandis
- TU Dortmund University, Department of Chemistry and Chemical Biology, Dortmund, Germany
| | - Yury Kutin
- TU Dortmund University, Department of Chemistry and Chemical Biology, Dortmund, Germany
| | - Vera Engelbrecht
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Photobiotechnology, Bochum, Germany
| | - Martin Winkler
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Photobiotechnology, Bochum, Germany
| | - Thomas Happe
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Photobiotechnology, Bochum, Germany
| | - Müge Kasanmascheff
- TU Dortmund University, Department of Chemistry and Chemical Biology, Dortmund, Germany
| |
Collapse
|
15
|
Birrell JA, Rodríguez-Maciá P, Reijerse EJ, Martini MA, Lubitz W. The catalytic cycle of [FeFe] hydrogenase: A tale of two sites. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214191] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Affiliation(s)
- Brandon L. Greene
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
17
|
Arizzi M, Morra S, Gilardi G, Pugliese M, Gullino ML, Valetti F. Improving sustainable hydrogen production from green waste: [FeFe]-hydrogenases quantitative gene expression RT-qPCR analysis in presence of autochthonous consortia. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:182. [PMID: 34530890 PMCID: PMC8444407 DOI: 10.1186/s13068-021-02028-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 08/28/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Bio-hydrogen production via dark fermentation of low-value waste is a potent and simple mean of recovering energy, maximising the harvesting of reducing equivalents to produce the cleanest fuel amongst renewables. Following several position papers from companies and public bodies, the hydrogen economy is regaining interest, especially in combination with circular economy and the environmental benefits of short local supply chains, aiming at zero net emission of greenhouse gases (GHG). The biomasses attracting the largest interest are agricultural and urban green wastes (pruning of trees, collected leaves, grass clippings from public parks and boulevards), which are usually employed in compost production, with some concerns over the GHG emission during the process. Here, an alternative application of green wastes, low-value compost and intermediate products (partially composted but unsuitable for completing the process) is studied, pointing at the autochthonous microbial consortium as an already selected source of implementation for biomass degradation and hydrogen production. The biocatalysts investigated as mainly relevant for hydrogen production were the [FeFe]-hydrogenases expressed in Clostridia, given their very high turnover rates. RESULTS Bio-hydrogen accumulation was related to the modulation of gene expression of multiple [FeFe]-hydrogenases from two strains (Clostridium beijerinckii AM2 and Clostridium tyrobutyricum AM6) isolated from the same waste. Reverse Transcriptase quantitative PCR (RT-qPCR) was applied over a period of 288 h and the RT-qPCR results showed that C. beijerinckii AM2 prevailed over C. tyrobutyricum AM6 and a high expression modulation of the 6 different [FeFe]-hydrogenase genes of C. beijerinckii in the first 23 h was observed, sustaining cumulative hydrogen production of 0.6 to 1.2 ml H2/g VS (volatile solids). These results are promising in terms of hydrogen yields, given that no pre-treatment was applied, and suggested a complex cellular regulation, linking the performance of dark fermentation with key functional genes involved in bio-H2 production in presence of the autochthonous consortium, with different roles, time, and mode of expression of the involved hydrogenases. CONCLUSIONS An applicative outcome of the hydrogenases genes quantitative expression analysis can be foreseen in optimising (on the basis of the acquired functional data) hydrogen production from a nutrient-poor green waste and/or low added value compost, in a perspective of circular bioeconomy.
Collapse
Affiliation(s)
- M Arizzi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
- Acea Engineering Laboratories Research Innovation SpA, Roma, Italy
| | - S Morra
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - G Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - M Pugliese
- Centre of Competence for Innovation in Agro-Environmental Field (Agroinnova) and DiSAFA, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
- AgriNewTech Srl, Via Livorno 60, 10140, Torino, Italy
| | - M L Gullino
- Centre of Competence for Innovation in Agro-Environmental Field (Agroinnova) and DiSAFA, University of Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
- AgriNewTech Srl, Via Livorno 60, 10140, Torino, Italy
| | - F Valetti
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| |
Collapse
|
18
|
Xiong D, Happe T, Hankamer B, Ross IL. Inducible high level expression of a variant ΔD19A,D58A-ferredoxin-hydrogenase fusion increases photohydrogen production efficiency in the green alga Chlamydomonas reinhardtii. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Ben-Zvi O, Grinberg I, Orr AA, Noy D, Tamamis P, Yacoby I, Adler-Abramovich L. Protection of Oxygen-Sensitive Enzymes by Peptide Hydrogel. ACS NANO 2021; 15:6530-6539. [PMID: 33844499 DOI: 10.1021/acsnano.0c09512] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Molecular oxygen (O2) is a highly reactive oxidizing agent and is harmful to many biological and industrial systems. Although O2 often interacts via metals or reducing agents, a binding mechanism involving an organic supramolecular structure has not been described to date. In this work, the prominent dipeptide hydrogelator fluorenylmethyloxycarbonyl-diphenylalanine is shown to encage O2 and significantly limit its diffusion and penetration through the hydrogel. Molecular dynamics simulations suggested that the O2 binding mechanism is governed by pockets formed between the aromatic rings in the supramolecular structure of the gel, which bind O2 through hydrophobic interactions. This phenomenon is harnessed to maintain the activity of the O2-hypersensitive enzyme [FeFe]-hydrogenase, which holds promising potential for utilizing hydrogen gas for sustainable energy applications. Hydrogenase encapsulation within the gel allows hydrogen production following exposure to ambient O2. This phenomenon may lead to utilization of this low molecular weight gelator in a wide range of O2-sensitive applications.
Collapse
Affiliation(s)
- Oren Ben-Zvi
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Asuka A Orr
- Artie McFerrin Department of Chemical Engineering. Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Dror Noy
- The Department of Molecular and Computational Biosciences and Biotechnology Migal - Galilee Research Institute, Kiryat Shmona 11016, Israel
- Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel
| | - Phanourios Tamamis
- Artie McFerrin Department of Chemical Engineering. Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | | |
Collapse
|
20
|
Laun K, Baranova I, Duan J, Kertess L, Wittkamp F, Apfel UP, Happe T, Senger M, Stripp ST. Site-selective protonation of the one-electron reduced cofactor in [FeFe]-hydrogenase. Dalton Trans 2021; 50:3641-3650. [PMID: 33629081 DOI: 10.1039/d1dt00110h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogenases are bidirectional redox enzymes that catalyze hydrogen turnover in archaea, bacteria, and algae. While all types of hydrogenase show H2 oxidation activity, [FeFe]-hydrogenases are excellent H2 evolution catalysts as well. Their active site cofactor comprises a [4Fe-4S] cluster covalently linked to a diiron site equipped with carbon monoxide and cyanide ligands. The active site niche is connected with the solvent by two distinct proton transfer pathways. To analyze the catalytic mechanism of [FeFe]-hydrogenase, we employ operando infrared spectroscopy and infrared spectro-electrochemistry. Titrating the pH under H2 oxidation or H2 evolution conditions reveals the influence of site-selective protonation on the equilibrium of reduced cofactor states. Governed by pKa differences across the active site niche and proton transfer pathways, we find that individual electrons are stabilized either at the [4Fe-4S] cluster (alkaline pH values) or at the diiron site (acidic pH values). This observation is discussed in the context of the complex interdependence of hydrogen turnover and bulk pH.
Collapse
Affiliation(s)
- Konstantin Laun
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany. sven.stripp@fu-berlin and Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Iuliia Baranova
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany. sven.stripp@fu-berlin and Faculty of Physics, St. Petersburg State University, 198504 St. Petersburg, Russian Federation
| | - Jifu Duan
- Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Leonie Kertess
- Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Florian Wittkamp
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Ulf-Peter Apfel
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany and Fraunhofer UMSICHT, 46047 Oberhausen, Germany
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Moritz Senger
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany. sven.stripp@fu-berlin and Department of Chemistry, Uppsala University, 75120 Uppsala, Sweden.
| | - Sven T Stripp
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany. sven.stripp@fu-berlin
| |
Collapse
|
21
|
Abstract
The need to safeguard our planet by reducing carbon dioxide emissions has led to a significant development of research in the field of alternative energy sources. Hydrogen has proved to be the most promising molecule, as a fuel, due to its low environmental impact. Even if various methods already exist for producing hydrogen, most of them are not sustainable. Thus, research focuses on the biological sector, studying microalgae, and other microorganisms’ ability to produce this precious molecule in a natural way. In this review, we provide a description of the biochemical and molecular processes for the production of biohydrogen and give a general overview of one of the most interesting technologies in which hydrogen finds application for electricity production: fuel cells.
Collapse
|
22
|
Abstract
Hydrogenases are metalloenzymes that catalyze proton reduction and H2 oxidation with outstanding efficiency. They are model systems for bioinorganic chemistry, including low-valent transition metals, hydride chemistry, and proton-coupled electron transfer. In this Account, we describe how photochemistry and infrared difference spectroscopy can be used to identify the dynamic hydrogen-bonding changes that facilitate proton transfer in [NiFe]- and [FeFe]-hydrogenase.[NiFe]-hydrogenase binds a heterobimetallic nickel/iron site embedded in the protein by four cysteine ligands. [FeFe]-hydrogenase carries a homobimetallic iron/iron site attached to the protein by only a single cysteine. Carbon monoxide and cyanide ligands in the active site facilitate detailed investigations of hydrogenase catalysis by infrared spectroscopy because of their strong signals and redox-dependent frequency shifts. We found that specific redox-state transitions in [NiFe]- and [FeFe]-hydrogenase can be triggered by visible light to record extremely sensitive "light-minus-dark" infrared difference spectra monitoring key amino acid residues. As these transitions are coupled to protonation changes, our data allowed investigation of dynamic hydrogen-bonding changes that go well beyond the resolution of protein crystallography.In [NiFe]-hydrogenase, photolysis of the bridging hydride ligand in the Ni-C state was followed by infrared difference spectroscopy. Our data clearly indicate the formation of a protonated cysteine residue as well as hydrogen-bonding changes involving a glutamic acid residue and a "dangling water" molecule. These findings are in excellent agreement with crystallographic analyses of [NiFe]-hydrogenase. In [FeFe]-hydrogenase, an external redox dye was used to accumulate the Hred state. Infrared difference spectra indicate hydrogen-bonding changes involving two glutamic acid residues and a conserved arginine residue. While crystallographic analyses of [FeFe]-hydrogenase in the oxidized state failed to explain the rapid proton transfer because of a breach in the succession of residues, our findings facilitated a precise molecular model of discontinued proton transfer.Comparing both systems, our data emphasize the role of the outer coordination sphere in bimetallic hydrogenases: we suggest that protonation of a nickel-ligating cysteine in [NiFe]-hydrogenase causes the notable preference toward H2 oxidation. On the contrary, proton transfer in [FeFe]-hydrogenase involves an adjacent cysteine as a relay group, promoting both H2 oxidation and proton reduction. These observations may guide the design of organometallic compounds that mimic the catalytic properties of hydrogenases.
Collapse
Affiliation(s)
- Hulin Tai
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji, Jilin 133002, China
| | - Shun Hirota
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Sven T. Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
23
|
Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel UP. [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 2021; 50:1668-1784. [DOI: 10.1039/d0cs01089h] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
[FeFe]-hydrogenases recieved increasing interest in the last decades. This review summarises important findings regarding their enzymatic reactivity as well as inorganic models applied as electro- and photochemical catalysts.
Collapse
Affiliation(s)
| | | | - Shanika Yadav
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Daniel Siegmund
- Department of Electrosynthesis
- Fraunhofer UMSICHT
- 46047 Oberhausen
- Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I
- Ruhr University Bochum
- 44801 Bochum
- Germany
- Department of Electrosynthesis
| |
Collapse
|
24
|
Water oxidation by photosystem II is the primary source of electrons for sustained H 2 photoproduction in nutrient-replete green algae. Proc Natl Acad Sci U S A 2020; 117:29629-29636. [PMID: 33168746 PMCID: PMC7703569 DOI: 10.1073/pnas.2009210117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Photosynthetic H2 production in the green alga Chlamydomonas reinhardtii is catalyzed by O2-sensitive [FeFe]-hydrogenases, which accept electrons from photosynthetically reduced ferredoxin and reduce protons to H2. Since the process occurs downstream of photosystem I, the contribution of photosystem II (PSII) in H2 photoproduction has long been a subject of debate. Indeed, water oxidation by PSII results in O2 accumulation in chloroplasts, which inhibits H2 evolution. Therefore, clear evidence for direct water biophotolysis resulting in simultaneous H2 and O2 releases in algae has never been presented. This paper demonstrates that sustained H2 photoproduction in C. reinhardtii is directly linked to PSII-dependent water oxidation and brings insights into regulation of PSII activity and H2 production by CO2/HCO3– under microoxic conditions. The unicellular green alga Chlamydomonas reinhardtii is capable of photosynthetic H2 production. H2 evolution occurs under anaerobic conditions and is difficult to sustain due to 1) competition between [FeFe]-hydrogenase (H2ase), the key enzyme responsible for H2 metabolism in algae, and the Calvin–Benson–Bassham (CBB) cycle for photosynthetic reductants and 2) inactivation of H2ase by O2 coevolved in photosynthesis. Recently, we achieved sustainable H2 photoproduction by shifting algae from continuous illumination to a train of short (1 s) light pulses, interrupted by longer (9 s) dark periods. This illumination regime prevents activation of the CBB cycle and redirects photosynthetic electrons to H2ase. Employing membrane-inlet mass spectrometry and H218O, we now present clear evidence that efficient H2 photoproduction in pulse-illuminated algae depends primarily on direct water biophotolysis, where water oxidation at the donor side of photosystem II (PSII) provides electrons for the reduction of protons by H2ase downstream of photosystem I. This occurs exclusively in the absence of CO2 fixation, while with the activation of the CBB cycle by longer (8 s) light pulses the H2 photoproduction ceases and instead a slow overall H2 uptake is observed. We also demonstrate that the loss of PSII activity in DCMU-treated algae or in PSII-deficient mutant cells can be partly compensated for by the indirect (PSII-independent) H2 photoproduction pathway, but only for a short (<1 h) period. Thus, PSII activity is indispensable for a sustained process, where it is responsible for more than 92% of the final H2 yield.
Collapse
|
25
|
Land H, Sekretareva A, Huang P, Redman HJ, Németh B, Polidori N, Mészáros LS, Senger M, Stripp ST, Berggren G. Characterization of a putative sensory [FeFe]-hydrogenase provides new insight into the role of the active site architecture. Chem Sci 2020; 11:12789-12801. [PMID: 34094474 PMCID: PMC8163306 DOI: 10.1039/d0sc03319g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022] Open
Abstract
[FeFe]-hydrogenases are known for their high rates of hydrogen turnover, and are intensively studied in the context of biotechnological applications. Evolution has generated a plethora of different subclasses with widely different characteristics. The M2e subclass is phylogenetically distinct from previously characterized members of this enzyme family and its biological role is unknown. It features significant differences in domain- and active site architecture, and is most closely related to the putative sensory [FeFe]-hydrogenases. Here we report the first comprehensive biochemical and spectroscopical characterization of an M2e enzyme, derived from Thermoanaerobacter mathranii. As compared to other [FeFe]-hydrogenases characterized to-date, this enzyme displays an increased H2 affinity, higher activation enthalpies for H+/H2 interconversion, and unusual reactivity towards known hydrogenase inhibitors. These properties are related to differences in active site architecture between the M2e [FeFe]-hydrogenase and "prototypical" [FeFe]-hydrogenases. Thus, this study provides new insight into the role of this subclass in hydrogen metabolism and the influence of the active site pocket on the chemistry of the H-cluster.
Collapse
Affiliation(s)
- Henrik Land
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Alina Sekretareva
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Ping Huang
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Holly J Redman
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Brigitta Németh
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Nakia Polidori
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Lívia S Mészáros
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| | - Moritz Senger
- Physical Chemistry, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin Arnimallee 14 DE-14195 Berlin Germany
| | - Sven T Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin Arnimallee 14 DE-14195 Berlin Germany
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 SE-75120 Uppsala Sweden
| |
Collapse
|
26
|
|
27
|
Stairs CW, Dharamshi JE, Tamarit D, Eme L, Jørgensen SL, Spang A, Ettema TJG. Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. SCIENCE ADVANCES 2020; 6:eabb7258. [PMID: 32923644 PMCID: PMC7449678 DOI: 10.1126/sciadv.abb7258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The origin of eukaryotes is a major open question in evolutionary biology. Multiple hypotheses posit that eukaryotes likely evolved from a syntrophic relationship between an archaeon and an alphaproteobacterium based on H2 exchange. However, there are no strong indications that modern eukaryotic H2 metabolism originated from archaea or alphaproteobacteria. Here, we present evidence for the origin of H2 metabolism genes in eukaryotes from an ancestor of the Anoxychlamydiales-a group of anaerobic chlamydiae, newly described here, from marine sediments. Among Chlamydiae, these bacteria uniquely encode genes for H2 metabolism and other anaerobiosis-associated pathways. Phylogenetic analyses of several components of H2 metabolism reveal that Anoxychlamydiales homologs are the closest relatives to eukaryotic sequences. We propose that an ancestor of the Anoxychlamydiales contributed these key genes during the evolution of eukaryotes, supporting a mosaic evolutionary origin of eukaryotic metabolism.
Collapse
Affiliation(s)
- Courtney W. Stairs
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Jennah E. Dharamshi
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
| | - Daniel Tamarit
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, Netherlands
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Laura Eme
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Unité d’Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Orsay, France
| | - Steffen L. Jørgensen
- Department of Earth Science, Centre for Deep Sea Research, University of Bergen, N-5020 Bergen, Norway
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, NL-1790 AB Den Burg, Netherlands
| | - Thijs J. G. Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, 6708 WE Wageningen, Netherlands
| |
Collapse
|
28
|
Holá K, Pavliuk MV, Németh B, Huang P, Zdražil L, Land H, Berggren G, Tian H. Carbon Dots and [FeFe] Hydrogenase Biohybrid Assemblies for Efficient Light-Driven Hydrogen Evolution. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02474] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kateřina Holá
- Department of Chemistry—Ångström Laboratory, Physical Chemistry, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Mariia V. Pavliuk
- Department of Chemistry—Ångström Laboratory, Physical Chemistry, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| | - Brigitta Németh
- Department of Chemistry—Ångström Laboratory, Molecular Biomimetic, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| | - Ping Huang
- Department of Chemistry—Ångström Laboratory, Molecular Biomimetic, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| | - Lukáš Zdražil
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Henrik Land
- Department of Chemistry—Ångström Laboratory, Molecular Biomimetic, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| | - Gustav Berggren
- Department of Chemistry—Ångström Laboratory, Molecular Biomimetic, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| | - Haining Tian
- Department of Chemistry—Ångström Laboratory, Physical Chemistry, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden
| |
Collapse
|
29
|
Land H, Senger M, Berggren G, Stripp ST. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01614] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Henrik Land
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Moritz Senger
- Physical Chemistry, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Sven T. Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
30
|
Kannchen D, Zabret J, Oworah-Nkruma R, Dyczmons-Nowaczyk N, Wiegand K, Löbbert P, Frank A, Nowaczyk MM, Rexroth S, Rögner M. Remodeling of photosynthetic electron transport in Synechocystis sp. PCC 6803 for future hydrogen production from water. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148208. [PMID: 32339488 DOI: 10.1016/j.bbabio.2020.148208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/16/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
Photosynthetic microorganisms such as the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis) can be exploited for the light-driven synthesis of valuable compounds. Thermodynamically, it is most beneficial to branch-off photosynthetic electrons at ferredoxin (Fd), which provides electrons for a variety of fundamental metabolic pathways in the cell, with the ferredoxin-NADP+ Oxido-Reductase (FNR, PetH) being the main target. In order to re-direct electrons from Fd to another consumer, the high electron transport rate between Fd and FNR has to be reduced. Based on our previous in vitro experiments, corresponding FNR-mutants at position FNR_K190 (Wiegand, K., et al.: "Rational redesign of the ferredoxin-NADP-oxido-reductase/ferredoxin-interaction for photosynthesis-dependent H2-production". Biochim Biophys Acta, 2018) have been generated in Synechocystis cells to study their impact on the cellular metabolism and their potential for a future hydrogen-producing design cell. Out of two promising candidates, mutation FNR_K190D proved to be lethal due to oxidative stress, while FNR_K190A was successfully generated and characterized: The light induced NADPH formation is clearly impaired in this mutant and it shows also major metabolic adaptations like a higher glucose metabolism as evidenced by quantitative mass spectrometric analysis. These results indicate a high potential for the future use of photosynthetic electrons in engineered design cells - for instance for hydrogen production. They also show substantial differences of interacting proteins in an in vitro environment vs. physiological conditions in whole cells.
Collapse
Affiliation(s)
- Daniela Kannchen
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Jure Zabret
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Regina Oworah-Nkruma
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Nina Dyczmons-Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Katrin Wiegand
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Pia Löbbert
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Anna Frank
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Marc Michael Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Sascha Rexroth
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Matthias Rögner
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
31
|
Birrell JA, Pelmenschikov V, Mishra N, Wang H, Yoda Y, Tamasaku K, Rauchfuss TB, Cramer SP, Lubitz W, DeBeer S. Spectroscopic and Computational Evidence that [FeFe] Hydrogenases Operate Exclusively with CO-Bridged Intermediates. J Am Chem Soc 2019; 142:222-232. [PMID: 31820961 PMCID: PMC6956316 DOI: 10.1021/jacs.9b09745] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
[FeFe] hydrogenases are extremely active H2-converting
enzymes. Their mechanism remains highly controversial, in particular,
the nature of the one-electron and two-electron reduced intermediates
called HredH+ and HsredH+. In one model, the HredH+ and HsredH+ states contain a semibridging CO, while in the other
model, the bridging CO is replaced by a bridging hydride. Using low-temperature
IR spectroscopy and nuclear resonance vibrational spectroscopy, together
with density functional theory calculations, we show that the bridging
CO is retained in the HsredH+ and HredH+ states in the [FeFe] hydrogenases from Chlamydomonas
reinhardtii and Desulfovibrio desulfuricans, respectively. Furthermore, there is no evidence for a bridging
hydride in either state. These results agree with a model of the catalytic
cycle in which the HredH+ and HsredH+ states are integral, catalytically competent components.
We conclude that proton-coupled electron transfer between the two
subclusters is crucial to catalysis and allows these enzymes to operate
in a highly efficient and reversible manner.
Collapse
Affiliation(s)
- James A Birrell
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Vladimir Pelmenschikov
- Institut für Chemie , Technische Universität Berlin , Strasse des 17 Juni 135 , 10623 Berlin , Germany
| | - Nakul Mishra
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Hongxin Wang
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Yoshitaka Yoda
- JASRI Spring-8, 1-1-1 Kouto, Mikazuki-cho , Sayo-gun , Hyogo 679-5198 , Japan
| | - Kenji Tamasaku
- JASRI Spring-8, 1-1-1 Kouto, Mikazuki-cho , Sayo-gun , Hyogo 679-5198 , Japan
| | - Thomas B Rauchfuss
- School of Chemical Sciences , University of Illinois , 600 S. Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Stephen P Cramer
- SETI Institute , Mountain View , California 94043 , United States
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
32
|
Xu L, Fan J, Wang Q. Omics Application of Bio-Hydrogen Production Through Green Alga Chlamydomonas reinhardtii. Front Bioeng Biotechnol 2019; 7:201. [PMID: 31497598 PMCID: PMC6712067 DOI: 10.3389/fbioe.2019.00201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022] Open
Abstract
This article summarizes the current knowledge regarding omics approaches, which include genomics, transcriptomics, proteomics and metabolomics, in the context of bio-hydrogen production in Chlamydomonas reinhardtii. In this paper, critical genes (HydA1, Hyd A2, Sulp, Tla1, Sta7, PFL1) involved in H2 metabolism were identified and analyzed for their function in H2 accumulation. Furthermore, the advantages of gene microarrays and RNA-seq were compared, as well as their applications in transcriptomic analysis of H2 production. Moreover, as a useful tool, proteomic analysis could identify different proteins that participate in H2 metabolism. This review provides fundamental theory and an experimental basis for H2 production, and further research effort is needed in this field.
Collapse
Affiliation(s)
- Lili Xu
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jianhua Fan
- State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou, China.,State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Quanxi Wang
- Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
33
|
Zimorski V, Mentel M, Tielens AGM, Martin WF. Energy metabolism in anaerobic eukaryotes and Earth's late oxygenation. Free Radic Biol Med 2019; 140:279-294. [PMID: 30935869 PMCID: PMC6856725 DOI: 10.1016/j.freeradbiomed.2019.03.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Eukaryotes arose about 1.6 billion years ago, at a time when oxygen levels were still very low on Earth, both in the atmosphere and in the ocean. According to newer geochemical data, oxygen rose to approximately its present atmospheric levels very late in evolution, perhaps as late as the origin of land plants (only about 450 million years ago). It is therefore natural that many lineages of eukaryotes harbor, and use, enzymes for oxygen-independent energy metabolism. This paper provides a concise overview of anaerobic energy metabolism in eukaryotes with a focus on anaerobic energy metabolism in mitochondria. We also address the widespread assumption that oxygen improves the overall energetic state of a cell. While it is true that ATP yield from glucose or amino acids is increased in the presence of oxygen, it is also true that the synthesis of biomass costs thirteen times more energy per cell in the presence of oxygen than in anoxic conditions. This is because in the reaction of cellular biomass with O2, the equilibrium lies very far on the side of CO2. The absence of oxygen offers energetic benefits of the same magnitude as the presence of oxygen. Anaerobic and low oxygen environments are ancient. During evolution, some eukaryotes have specialized to life in permanently oxic environments (life on land), other eukaryotes have remained specialized to low oxygen habitats. We suggest that the Km of mitochondrial cytochrome c oxidase of 0.1-10 μM for O2, which corresponds to about 0.04%-4% (avg. 0.4%) of present atmospheric O2 levels, reflects environmental O2 concentrations that existed at the time that the eukaryotes arose.
Collapse
Affiliation(s)
- Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 851 04, Bratislava, Slovakia.
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, The Netherlands; Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| |
Collapse
|
34
|
Bai Y, Chen T, Happe T, Lu Y, Sawyer A. Iron-sulphur cluster biogenesis via the SUF pathway. Metallomics 2019; 10:1038-1052. [PMID: 30019043 DOI: 10.1039/c8mt00150b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Iron-sulphur (Fe-S) clusters are versatile cofactors, which are essential for key metabolic processes in cells, such as respiration and photosynthesis, and which may have also played a crucial role in establishing life on Earth. They can be found in almost all living organisms, from unicellular prokaryotes and archaea to multicellular animals and plants, and exist in diverse forms. This review focuses on the most ancient Fe-S cluster assembly system, the sulphur utilization factor (SUF) mechanism, which is crucial in bacteria for cell survival under stress conditions such as oxidation and iron starvation, and which is also present in the chloroplasts of green microalgae and plants, where it is responsible for plastidial Fe-S protein maturation. We explain the SUF Fe-S cluster assembly process, the proteins involved, their regulation and provide evolutionary insights. We specifically focus on examples from Fe-S cluster synthesis in the model organisms Escherichia coli and Arabidopsis thaliana and discuss in an in vivo context the assembly of the [FeFe]-hydrogenase H-cluster from Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Y Bai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|
35
|
Baffert C, Kpebe A, Avilan L, Brugna M. Hydrogenases and H 2 metabolism in sulfate-reducing bacteria of the Desulfovibrio genus. Adv Microb Physiol 2019; 74:143-189. [PMID: 31126530 DOI: 10.1016/bs.ampbs.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hydrogen metabolism plays a central role in sulfate-reducing bacteria of the Desulfovibrio genus and is based on hydrogenases that catalyze the reversible conversion of protons into dihydrogen. These metabolically versatile microorganisms possess a complex hydrogenase system composed of several enzymes of both [FeFe]- and [NiFe]-type that can vary considerably from one Desulfovibrio species to another. This review covers the molecular and physiological aspects of hydrogenases and H2 metabolism in Desulfovibrio but focuses particularly on our model bacterium Desulfovibrio fructosovorans. The search of hydrogenase genes in more than 30 sequenced genomes provides an overview of the distribution of these enzymes in Desulfovibrio. Our discussion will consider the significance of the involvement of electron-bifurcation in H2 metabolism.
Collapse
Affiliation(s)
- Carole Baffert
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Arlette Kpebe
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Luisana Avilan
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Myriam Brugna
- Aix-Marseille University, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| |
Collapse
|
36
|
Affiliation(s)
- Eric S. Wiedner
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999,
K2-57, Richland, Washington 99352, United States
| |
Collapse
|
37
|
Salomaki ED, Lane CE. Molecular phylogenetics supports a clade of red algal parasites retaining native plastids: taxonomy and terminology revised. JOURNAL OF PHYCOLOGY 2019; 55:279-288. [PMID: 30537065 DOI: 10.1111/jpy.12823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Parasitism is a life strategy that has repeatedly evolved within the Florideophyceae. Historically, the terms adelphoparasite and alloparasite have been used to distinguish parasites based on the relative phylogenetic relationship of host and parasite. However, analyses using molecular phylogenetics indicate that nearly all red algal parasites infect within their taxonomic family, and a range of relationships exist between host and parasite. To date, all investigated adelphoparasites have lost their plastid, and instead, incorporate a host-derived plastid when packaging spores. In contrast, a highly reduced plastid lacking photosynthesis genes was sequenced from the alloparasite Choreocolax polysiphoniae. Here we present the complete Harveyella mirabilis plastid genome, which has also lost genes involved in photosynthesis, and a partial plastid genome from Leachiella pacifica. The H. mirabilis plastid shares more synteny with free-living red algal plastids than that of C. polysiphoniae. Phylogenetic analysis demonstrates that C. polysiphoniae, H. mirabilis, and L. pacifica form a robustly supported clade of parasites, which retain their own plastid genomes, within the Rhodomelaceae. We therefore transfer all three genera from the exclusively parasitic family, Choreocolacaceae, to the Rhodomelaceae. Additionally, we recommend applying the terms archaeplastic parasites (formerly alloparasites), and neoplastic parasites (formerly adelphoparasites) to distinguish red algal parasites using a biological framework rather than taxonomic affiliation with their hosts.
Collapse
Affiliation(s)
- Eric D Salomaki
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02879, USA
| | - Christopher E Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02879, USA
| |
Collapse
|
38
|
Rodríguez-Maciá P, Kertess L, Burnik J, Birrell JA, Hofmann E, Lubitz W, Happe T, Rüdiger O. His-Ligation to the [4Fe–4S] Subcluster Tunes the Catalytic Bias of [FeFe] Hydrogenase. J Am Chem Soc 2018; 141:472-481. [DOI: 10.1021/jacs.8b11149] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Patricia Rodríguez-Maciá
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Leonie Kertess
- Photobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Jan Burnik
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - James A. Birrell
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Happe
- Photobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
39
|
Abstract
Over the past two decades, the bioinorganic chemistry of hydrogenases has attracted much interest from basic and applied research. Hydrogenases are highly efficient metalloenzymes that catalyze the reversible reduction of protons to molecular hydrogen (H2) in all domains of life. Their iron- and nickel-based cofactors represent promising blueprints for the design of biomimetic, synthetic catalysts. In this Account, we address the molecular proceedings of hydrogen turnover with [FeFe]-hydrogenases. The active site cofactor of [FeFe]-hydrogenases ("H-cluster") comprises a unique diiron complex linked to a [4Fe-4S] cluster via a single cysteine. Since it was discovered that a synthetic analogue of the diiron site can be incorporated into apoprotein in vitro to yield active enzyme, significant progress has been made toward a comprehensive understanding of hydrogenase catalysis. The diiron site carries three to four carbon monoxide (CO) and two cyanide (CN-) ligands that give rise to intense infrared (IR) absorption bands. These bands are sensitive reporters of the electron density across the H-cluster, which can be addressed by infrared spectroscopy to follow redox and protonation changes at the cofactor. Synthetic variation of the metal-bridging dithiolate ligand at the diiron site, as well as site-directed mutagenesis of amino acids, provides access to the proton pathways toward the cofactor. Quantum chemical calculations are employed to specifically assign IR bands to vibrational modes of the diatomic ligands and yield refined H-cluster geometries. Here, we provide an overview of recent research on [FeFe]-hydrogenases with emphasis on experimental and computational IR studies. We describe advances in attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) and protein film electrochemistry, as well as density functional theory (DFT) calculations. Key cofactor species are discussed in terms of molecular geometry, redox state, and protonation. Isotope editing is introduced as a tool to evaluate the cofactor geometry beyond the limits of protein crystallography. In particular, the role of proton-coupled electron transfer (PCET) in the generation of catalytically relevant redox species is addressed. We propose that site-selective protonation of the H-cluster biases surplus electrons either to the [4Fe-4S] cluster or to the diiron site. Protonation of the [4Fe-4S] cluster prevents premature reduction at the diiron site and stabilizes a reactive, terminal hydride. The observed H-cluster species are assigned to rapid H2 conversion or to reactions possibly involved in activity regulation and cellular H2 sensing. In the catalytic cycle of [FeFe]-hydrogenases, an H-cluster geometry is preserved that features a bridging CO ligand. PCET levels the redox potential for two steps of sequential cofactor reduction. The concept of consecutive PCET at a geometrically inert cofactor with tight control of electron and proton localization may inspire the design of a novel generation of biomimetic catalysts for the production of H2 as a fuel.
Collapse
Affiliation(s)
- Michael Haumann
- Department of Physics, Biophysics of Metalloenzymes, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sven T. Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
40
|
Kertess L, Wittkamp F, Sommer C, Esselborn J, Rüdiger O, Reijerse EJ, Hofmann E, Lubitz W, Winkler M, Happe T, Apfel UP. Chalcogenide substitution in the [2Fe] cluster of [FeFe]-hydrogenases conserves high enzymatic activity. Dalton Trans 2018; 46:16947-16958. [PMID: 29177350 DOI: 10.1039/c7dt03785f] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[FeFe]-Hydrogenases efficiently catalyze the uptake and evolution of H2 due to the presence of an inorganic [6Fe-6S]-cofactor (H-cluster). This cofactor is comprised of a [4Fe-4S] cluster coupled to a unique [2Fe] cluster where the catalytic turnover of H2/H+ takes place. We herein report on the synthesis of a selenium substituted [2Fe] cluster [Fe2{μ(SeCH2)2NH}(CO)4(CN)2]2- (ADSe) and its successful in vitro integration into the native protein scaffold of [FeFe]-hydrogenases HydA1 from Chlamydomonas reinhardtii and CpI from Clostridium pasteurianum yielding fully active enzymes (HydA1-ADSe and CpI-ADSe). FT-IR spectroscopy and X-ray structure analysis confirmed the presence of structurally intact ADSe at the active site. Electrochemical assays reveal that the selenium containing enzymes are more biased towards hydrogen production than their native counterparts. In contrast to previous chalcogenide exchange studies, the S to Se exchange herein is not based on a simple reconstitution approach using ionic cluster constituents but on the in vitro maturation with a pre-synthesized selenium-containing [2Fe] mimic. The combination of biological and chemical methods allowed for the creation of a novel [FeFe]-hydrogenase with a [2Fe2Se]-active site which confers individual catalytic features.
Collapse
Affiliation(s)
- L Kertess
- Ruhr-Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstraße 150, 44801 Bochum, Germany.
| | - F Wittkamp
- Ruhr-Universität Bochum, Anorganische Chemie I/Bioanorganische Chemie, Universitätsstraße 150, 44801 Bochum, Germany.
| | - C Sommer
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - J Esselborn
- Ruhr-Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstraße 150, 44801 Bochum, Germany.
| | - O Rüdiger
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - E J Reijerse
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - E Hofmann
- Ruhr-Universität Bochum, Lehrstuhl für Biophysik, AG Röntgenstrukturanalyse an Proteinen, Universitätsstraße 150, 44801 Bochum, Germany
| | - W Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - M Winkler
- Ruhr-Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstraße 150, 44801 Bochum, Germany.
| | - T Happe
- Ruhr-Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Universitätsstraße 150, 44801 Bochum, Germany.
| | - U-P Apfel
- Ruhr-Universität Bochum, Anorganische Chemie I/Bioanorganische Chemie, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
41
|
Nikolova D, Heilmann C, Hawat S, Gäbelein P, Hippler M. Absolute quantification of selected photosynthetic electron transfer proteins in Chlamydomonas reinhardtii in the presence and absence of oxygen. PHOTOSYNTHESIS RESEARCH 2018; 137:281-293. [PMID: 29594952 DOI: 10.1007/s11120-018-0502-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/22/2018] [Indexed: 05/10/2023]
Abstract
The absolute amount of plastocyanin (PC), ferredoxin-NADP+-oxidoreductase (FNR), hydrogenase (HYDA1), and ferredoxin 5 (FDX5) were quantified in aerobic and anaerobic Chlamydomonas reinhardtii whole cells using purified (recombinant) proteins as internal standards in a mass spectrometric approach. Quantified protein amounts were related to the estimated amount of PSI. The ratios of PC to FNR to HYDA1 to FDX5 in aerobic cells were determined to be 1.4:1.2:0.003:0. In anaerobic cells, the ratios changed to 1.1:1.3:0.019:0.027 (PC:FNR:HYDA1:FDX5). Employing sodium dithionite and methyl viologen as electron donors, the specific activity of hydrogenase in whole cells was calculated to be 382 ± 96.5 μmolH2 min-1 mg-1. Importantly, these data reveal an about 70-fold lower abundance of HYDA1 compared to FNR. Despite this great disproportion between both proteins, which might further enhance the competition for electrons, the alga is capable of hydrogen production under anaerobic conditions, thus pointing to an efficient channeling mechanism of electrons from FDX1 to the HYDA1.
Collapse
Affiliation(s)
- Denitsa Nikolova
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Claudia Heilmann
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Susan Hawat
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Philipp Gäbelein
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany.
| |
Collapse
|
42
|
Spectroscopical Investigations on the Redox Chemistry of [FeFe]-Hydrogenases in the Presence of Carbon Monoxide. Molecules 2018; 23:molecules23071669. [PMID: 29987246 PMCID: PMC6100070 DOI: 10.3390/molecules23071669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
[FeFe]-hydrogenases efficiently catalyzes hydrogen conversion at a unique [4Fe⁻4S]-[FeFe] cofactor, the so-called H-cluster. The catalytic reaction occurs at the diiron site, while the [4Fe⁻4S] cluster functions as a redox shuttle. In the oxidized resting state (Hox), the iron ions of the diiron site bind one cyanide (CN−) and carbon monoxide (CO) ligand each and a third carbonyl can be found in the Fe⁻Fe bridging position (µCO). In the presence of exogenous CO, A fourth CO ligand binds at the diiron site to form the oxidized, CO-inhibited H-cluster (Hox-CO). We investigated the reduced, CO-inhibited H-cluster (Hred´-CO) in this work. The stretching vibrations of the diatomic ligands were monitored by attenuated total reflection Fourier-transform infrared spectroscopy (ATR FTIR). Density functional theory (DFT) at the TPSSh/TZVP level was employed to analyze the cofactor geometry, as well as the redox and protonation state of the H-cluster. Selective 13CO isotope editing, spectro-electrochemistry, and correlation analysis of IR data identified a one-electron reduced, protonated [4Fe⁻4S] cluster and an apical CN− ligand at the diiron site in Hred´-CO. The reduced, CO-inhibited H-cluster forms independently of the sequence of CO binding and cofactor reduction, which implies that the ligand rearrangement at the diiron site upon CO inhibition is independent of the redox and protonation state of the [4Fe⁻4S] cluster. The relation of coordination dynamics to cofactor redox and protonation changes in hydrogen conversion catalysis and inhibition is discussed.
Collapse
|
43
|
Weiner I, Atar S, Schweitzer S, Eilenberg H, Feldman Y, Avitan M, Blau M, Danon A, Tuller T, Yacoby I. Enhancing heterologous expression in Chlamydomonas reinhardtii by transcript sequence optimization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:22-31. [PMID: 29383789 DOI: 10.1111/tpj.13836] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 05/11/2023]
Abstract
Various species of microalgae have recently emerged as promising host-organisms for use in biotechnology industries due to their unique properties. These include efficient conversion of sunlight into organic compounds, the ability to grow in extreme conditions and the occurrence of numerous post-translational modification pathways. However, the inability to obtain high levels of nuclear heterologous gene expression in microalgae hinders the development of the entire field. To overcome this limitation, we analyzed different sequence optimization algorithms while studying the effect of transcript sequence features on heterologous expression in the model microalga Chlamydomonas reinhardtii, whose genome consists of rare features such as a high GC content. Based on the analysis of genomic data, we created eight unique sequences coding for a synthetic ferredoxin-hydrogenase enzyme, used here as a reporter gene. Following in silico design, these synthetic genes were transformed into the C. reinhardtii nucleus, after which gene expression levels were measured. The empirical data, measured in vivo show a discrepancy of up to 65-fold between the different constructs. In this work we demonstrate how the combination of computational methods and our empirical results enable us to learn about the way gene expression is encoded in the C. reinhardtii transcripts. We describe the deleterious effect on overall expression of codons encoding for splicing signals. Subsequently, our analysis shows that utilization of a frequent subset of preferred codons results in elevated transcript levels, and that mRNA folding energy in the vicinity of translation initiation significantly affects gene expression.
Collapse
Affiliation(s)
- Iddo Weiner
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shimshi Atar
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shira Schweitzer
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Haviva Eilenberg
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Yael Feldman
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| | - Meital Avitan
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Mor Blau
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Avihai Danon
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Iftach Yacoby
- The George S. Wise Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
| |
Collapse
|
44
|
Li H, Liu Y, Wang Y, Chen M, Zhuang X, Wang C, Wang J, Hu Z. Improved photobio-H 2 production regulated by artificial miRNA targeting psbA in green microalga Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:36. [PMID: 29449884 PMCID: PMC5808451 DOI: 10.1186/s13068-018-1030-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/23/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Sulfur-deprived cultivation of Chlamydomonas reinhardtii, referred as "two-stage culture" transferring the cells from regular algal medium to sulfur-deplete one, has been extensively studied to improve photobio-H2 production in this green microalga. During sulfur-deprivation treatment, the synthesis of a key component of photosystem II complex, D1 protein, was inhibited and improved photobio-H2 production could be established in C. reinhardtii. However, separation of algal cells from a regular liquid culture medium to a sulfur-deprived one is not only a discontinuous process, but also a cost- and time-consuming operation. More applicable and economic alternatives for sustained H2 production by C. reinhardtii are still highly required. RESULTS In the present study, a significant improvement in photobio-H2 production was observed in the transgenic green microalga C. reinhardtii, which employed a newly designed strategy based on a heat-inducible artificial miRNA (amiRNA) expression system targeting D1-encoded gene, psbA. A transgenic algal strain referred as "amiRNA-D1" has been successfully obtained by transforming the expression vector containing a heat-inducible promoter. After heat shock conducted in the same algal cultures, the expression of amiRNA-D1 was detected increased 15-fold accompanied with a 73% decrease of target gene psbA. More interestingly, this transgenic alga accumulated about 60% more H2 content than the wild-type strain CC-849 at the end of 7-day cultivation. CONCLUSIONS The photobio-H2 production in the engineered transgenic alga was significantly improved. Without imposing any nutrient-deprived stress, this novel strategy provided a convenient and efficient way for regulation of photobio-H2 production in green microalga by simply "turn on" the expression of a designed amiRNA.
Collapse
Affiliation(s)
- Hui Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Yanmei Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Yuting Wang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Meirong Chen
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Xiaoshan Zhuang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Chaogang Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Jiangxin Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|
45
|
Roles of the F-domain in [FeFe] hydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:69-77. [DOI: 10.1016/j.bbabio.2017.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/16/2017] [Accepted: 08/19/2017] [Indexed: 12/31/2022]
|
46
|
Wiegand K, Winkler M, Rumpel S, Kannchen D, Rexroth S, Hase T, Farès C, Happe T, Lubitz W, Rögner M. Rational redesign of the ferredoxin-NADP +-oxido-reductase/ferredoxin-interaction for photosynthesis-dependent H 2-production. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:253-262. [PMID: 29378161 DOI: 10.1016/j.bbabio.2018.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 01/11/2023]
Abstract
Utilization of electrons from the photosynthetic water splitting reaction for the generation of biofuels, commodities as well as application in biotransformations requires a partial rerouting of the photosynthetic electron transport chain. Due to its rather negative redox potential and its bifurcational function, ferredoxin at the acceptor side of Photosystem 1 is one of the focal points for such an engineering. With hydrogen production as model system, we show here the impact and potential of redox partner design involving ferredoxin (Fd), ferredoxin-oxido-reductase (FNR) and [FeFe]‑hydrogenase HydA1 on electron transport in a future cyanobacterial design cell of Synechocystis PCC 6803. X-ray-structure-based rational design and the allocation of specific interaction residues by NMR-analysis led to the construction of Fd- and FNR-mutants, which in appropriate combination enabled an about 18-fold enhanced electron flow from Fd to HydA1 (in competition with equimolar amounts of FNR) in in vitro assays. The negative impact of these mutations on the Fd-FNR electron transport which indirectly facilitates H2 production (with a contribution of ≤42% by FNR variants and ≤23% by Fd-variants) and the direct positive impact on the Fd-HydA1 electron transport (≤23% by Fd-mutants) provide an excellent basis for the construction of a hydrogen-producing design cell and the study of photosynthetic efficiency-optimization with cyanobacteria.
Collapse
Affiliation(s)
- K Wiegand
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - M Winkler
- Photobiotechnology, Faculty of Biology & Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - S Rumpel
- Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim, Germany
| | - D Kannchen
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - S Rexroth
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - T Hase
- Institute for Protein Research, Osaka University, Suita 565-0871, Osaka, Japan
| | - C Farès
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim, Germany
| | - T Happe
- Photobiotechnology, Faculty of Biology & Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - W Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim, Germany
| | - M Rögner
- Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
47
|
Wang Y, Zhuang X, Chen M, Zeng Z, Cai X, Li H, Hu Z. An endogenous microRNA (miRNA1166.1) can regulate photobio-H 2 production in eukaryotic green alga Chlamydomonas reinhardtii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:126. [PMID: 29743954 PMCID: PMC5930490 DOI: 10.1186/s13068-018-1126-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/20/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Hydrogen photoproduction from green microalgae is regarded as a promising alternative solution for energy problems. However, the simultaneous oxygen evolution from microalgae can prevent continuous hydrogen production due to the hypersensitivity of hydrogenases to oxygen. Sulfur deprivation can extend the duration of algal hydrogen production, but it is uneconomical to alternately culture algal cells in sulfur-sufficient and sulfur-deprived media. RESULTS In this study, we developed a novel way to simulate sulfur-deprivation treatment while constantly maintaining microalgal cells in sulfur-sufficient culture medium by overexpressing an endogenous microRNA (miR1166.1). Based on our previous RNA-seq analysis in the model green alga Chlamydomonas reinhardtii, three endogenous miRNAs responsive to sulfur deprivation (cre-miR1166.1, cre-miR1150.3, and cre-miR1158) were selected. Heat-inducible expression vectors containing the selected miRNAs were constructed and transformed into C. reinhardtii. Comparison of H2 production following heat induction in the three transgenic strains and untransformed control group identified miR1166.1 as the best candidate for H2 production regulation. Moreover, enhanced photobio-H2 production was observed with repeated induction of miR1166.1 expression. CONCLUSIONS This study is the first to identify a physiological function of endogenous miR1166.1 and to show that a natural miRNA can regulate hydrogen photoproduction in the unicellular model organism C. reinhardtii.
Collapse
Affiliation(s)
- Yuting Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Xiaoshan Zhuang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Meirong Chen
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhiyong Zeng
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Xiaoqi Cai
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Hui Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetic, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|
48
|
|
49
|
Kertess L, Adamska-Venkatesh A, Rodríguez-Maciá P, Rüdiger O, Lubitz W, Happe T. Influence of the [4Fe-4S] cluster coordinating cysteines on active site maturation and catalytic properties of C. reinhardtii [FeFe]-hydrogenase. Chem Sci 2017; 8:8127-8137. [PMID: 29568461 PMCID: PMC5855289 DOI: 10.1039/c7sc03444j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/05/2017] [Indexed: 11/24/2022] Open
Abstract
Alteration of the [4Fe–4S] cluster coordinating cysteines reveals their individual importance for [4Fe–4S] cluster binding, [2Fe] insertion and catalytic turnover.
[FeFe]-Hydrogenases catalyze the evolution and oxidation of hydrogen using a characteristic cofactor, termed the H-cluster. This comprises an all cysteine coordinated [4Fe–4S] cluster and a unique [2Fe] moiety, coupled together via a single cysteine. The coordination of the [4Fe–4S] cluster in HydA1 from Chlamydomonas reinhardtii was altered by single exchange of each cysteine (C115, C170, C362, and C366) with alanine, aspartate, or serine using site-directed mutagenesis. In contrast to cysteine 115, the other three cysteines were found to be dispensable for stable [4Fe–4S] cluster incorporation based on iron determination, UV/vis spectroscopy and electron paramagnetic resonance. However, the presence of a preformed [4Fe–4S] cluster alone does not guarantee stable incorporation of the [2Fe] cluster. Only variants C170D, C170S, C362D, and C362S showed characteristic signals for an inserted [2Fe] cluster in Fourier-transform infrared spectroscopy. Hydrogen evolution and oxidation were observed for these variants in solution based assays and protein-film electrochemistry. Catalytic activity was lowered for all variants and the ability to operate in either direction was also influenced.
Collapse
Affiliation(s)
- Leonie Kertess
- AG Photobiotechnologie , Lehrstuhl für Biochemie der Pflanzen , Ruhr Universität Bochum , Universitätsstr. 150 , 44801 Bochum , Germany .
| | - Agnieszka Adamska-Venkatesh
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Patricia Rodríguez-Maciá
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Thomas Happe
- AG Photobiotechnologie , Lehrstuhl für Biochemie der Pflanzen , Ruhr Universität Bochum , Universitätsstr. 150 , 44801 Bochum , Germany .
| |
Collapse
|
50
|
Sawyer A, Winkler M. Evolution of Chlamydomonas reinhardtii ferredoxins and their interactions with [FeFe]-hydrogenases. PHOTOSYNTHESIS RESEARCH 2017; 134:307-316. [PMID: 28620699 DOI: 10.1007/s11120-017-0409-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/30/2017] [Indexed: 05/10/2023]
Abstract
Ferredoxins are soluble iron sulphur proteins which function as electron donors in a number of metabolic pathways in a broad range of organisms. In photosynthetic organisms, PETF, or ferredoxin 1 (FDX1), is the most studied ferredoxin due to its essential role in photosynthesis, where it transfers electrons from photosystem I to ferredoxin-NADP+ oxidoreductase. However, PETF can also transfer electrons to a large number of other proteins. One important PETF electron acceptor found in green microalgae is the biologically and biotechnologically important [FeFe]-hydrogenase HYDA, which catalyses the production of molecular hydrogen (H2) from protons and electrons. The interaction between PETF and HYDA is of considerable interest, as PETF is the primary electron donor to HYDA and electron supply is one of the main limiting factors for H2 production on a commercial scale. Although there is no three dimensional structure of the PETF-HYDA complex available, protein variants, nuclear magnetic resonance titration studies, molecular dynamics and modelling have provided considerable insight into the residues essential for forming and maintaining the interaction. In this review, we discuss the most recent findings with regard to ferredoxin-HYDA interactions and the evolution of the various Chlamydomonas reinhardtii ferredoxin isoforms. Finally, we provide an outlook on new PETF-based biotechnological approaches for improved H2 production efficiencies.
Collapse
Affiliation(s)
- Anne Sawyer
- Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Martin Winkler
- Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801, Bochum, Germany.
| |
Collapse
|