1
|
Lyu Y, Peng R, Liu H, Kuai H, Mo L, Han D, Li J, Tan W. Protocells programmed through artificial reaction networks. Chem Sci 2019; 11:631-642. [PMID: 34123035 PMCID: PMC8145531 DOI: 10.1039/c9sc05043d] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As the smallest unit of life, cells attract interest due to their structural complexity and functional reliability. Protocells assembled by inanimate components are created as an artificial entity to mimic the structure and some essential properties of a natural cell, and artificial reaction networks are used to program the functions of protocells. Although the bottom-up construction of a protocell that can be considered truly ‘alive’ is still an ambitious goal, these man-made constructs with a certain degree of ‘liveness’ can offer effective tools to understand fundamental processes of cellular life, and have paved the new way for bionic applications. In this review, we highlight both the milestones and recent progress of protocells programmed by artificial reaction networks, including genetic circuits, enzyme-assisted non-genetic circuits, prebiotic mimicking reaction networks, and DNA dynamic circuits. Challenges and opportunities have also been discussed. In this review, the milestones and recent progress of protocells programmed by various types of artificial reaction networks are highlighted.![]()
Collapse
Affiliation(s)
- Yifan Lyu
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha Hunan 410082 China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha Hunan 410082 China
| | - Hui Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha Hunan 410082 China
| | - Hailan Kuai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha Hunan 410082 China
| | - Liuting Mo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha Hunan 410082 China
| | - Da Han
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Juan Li
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China.,MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha Hunan 410082 China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences Hangzhou Zhejiang 310022 China
| |
Collapse
|
2
|
The Main (Glyco) Phospholipid (MPL) of Thermoplasma acidophilum. Int J Mol Sci 2019; 20:ijms20205217. [PMID: 31640225 PMCID: PMC6834173 DOI: 10.3390/ijms20205217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
The main phospholipid (MPL) of Thermoplasma acidophilum DSM 1728 was isolated, purified and physico-chemically characterized by differential scanning calorimetry (DSC)/differential thermal analysis (DTA) for its thermotropic behavior, alone and in mixtures with other lipids, cholesterol, hydrophobic peptides and pore-forming ionophores. Model membranes from MPL were investigated; black lipid membrane, Langmuir-Blodgett monolayer, and liposomes. Laboratory results were compared to computer simulation. MPL forms stable and resistant liposomes with highly proton-impermeable membrane and mixes at certain degree with common bilayer-forming lipids. Monomeric bacteriorhodopsin and ATP synthase from Micrococcus luteus were co-reconstituted and light-driven ATP synthesis measured. This review reports about almost four decades of research on Thermoplasma membrane and its MPL as well as transfer of this research to Thermoplasma species recently isolated from Indonesian volcanoes.
Collapse
|
3
|
Berhanu S, Ueda T, Kuruma Y. Artificial photosynthetic cell producing energy for protein synthesis. Nat Commun 2019; 10:1325. [PMID: 30902985 PMCID: PMC6430821 DOI: 10.1038/s41467-019-09147-4] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/26/2019] [Indexed: 12/24/2022] Open
Abstract
Attempts to construct an artificial cell have widened our understanding of living organisms. Many intracellular systems have been reconstructed by assembling molecules, however the mechanism to synthesize its own constituents by self-sufficient energy has to the best of our knowledge not been developed. Here, we combine a cell-free protein synthesis system and small proteoliposomes, which consist of purified ATP synthase and bacteriorhodopsin, inside a giant unilamellar vesicle to synthesize protein by the production of ATP by light. The photo-synthesized ATP is consumed as a substrate for transcription and as an energy for translation, eventually driving the synthesis of bacteriorhodopsin or constituent proteins of ATP synthase, the original essential components of the proteoliposome. The de novo photosynthesized bacteriorhodopsin and the parts of ATP synthase integrate into the artificial photosynthetic organelle and enhance its ATP photosynthetic activity through the positive feedback of the products. Our artificial photosynthetic cell system paves the way to construct an energetically independent artificial cell.
Collapse
Affiliation(s)
- Samuel Berhanu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bldg. FSB-401, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Takuya Ueda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bldg. FSB-401, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| | - Yutetsu Kuruma
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan. .,JST, PRESTO, Saitama, 332-0012, Japan.
| |
Collapse
|
4
|
Harder D, Hirschi S, Ucurum Z, Goers R, Meier W, Müller DJ, Fotiadis D. Engineering a Chemical Switch into the Light-driven Proton Pump Proteorhodopsin by Cysteine Mutagenesis and Thiol Modification. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel Harder
- Institute of Biochemistry and Molecular Medicine; University of Bern; 3012 Bern Switzerland
| | - Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine; University of Bern; 3012 Bern Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine; University of Bern; 3012 Bern Switzerland
| | - Roland Goers
- Department of Chemistry; University of Basel; 4056 Basel Switzerland
- Department of Biosystems Science and Engineering; ETH Zürich; 4058 Basel Switzerland
| | - Wolfgang Meier
- Department of Chemistry; University of Basel; 4056 Basel Switzerland
| | - Daniel J. Müller
- Department of Biosystems Science and Engineering; ETH Zürich; 4058 Basel Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine; University of Bern; 3012 Bern Switzerland
| |
Collapse
|
5
|
Harder D, Hirschi S, Ucurum Z, Goers R, Meier W, Müller DJ, Fotiadis D. Engineering a Chemical Switch into the Light-driven Proton Pump Proteorhodopsin by Cysteine Mutagenesis and Thiol Modification. Angew Chem Int Ed Engl 2016; 55:8846-9. [PMID: 27294681 DOI: 10.1002/anie.201601537] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/27/2016] [Indexed: 12/20/2022]
Abstract
For applications in synthetic biology, for example, the bottom-up assembly of biomolecular nanofactories, modules of specific and controllable functionalities are essential. Of fundamental importance in such systems are energizing modules, which are able to establish an electrochemical gradient across a vesicular membrane as an energy source for powering other modules. Light-driven proton pumps like proteorhodopsin (PR) are excellent candidates for efficient energy conversion. We have extended the versatility of PR by implementing an on/off switch based on reversible chemical modification of a site-specifically introduced cysteine residue. The position of this cysteine residue in PR was identified by structure-based cysteine mutagenesis combined with a proton-pumping assay using E. coli cells overexpressing PR and PR proteoliposomes. The identified PR mutant represents the first light-driven proton pump that can be chemically switched on/off depending on the requirements of the molecular system.
Collapse
Affiliation(s)
- Daniel Harder
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Roland Goers
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland.
| |
Collapse
|
6
|
Zanotti F, Gnoni A, Mangiullo R, Papa S. Effect of the ATPase inhibitor protein IF1 on H+ translocation in the mitochondrial ATP synthase complex. Biochem Biophys Res Commun 2009; 384:43-8. [PMID: 19379707 DOI: 10.1016/j.bbrc.2009.04.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 04/10/2009] [Indexed: 11/19/2022]
Abstract
The H(+) F(o)F(1)-ATP synthase complex of coupling membranes converts the proton-motive force into rotatory mechanical energy to drive ATP synthesis. The F(1) moiety of the complex protrudes at the inner side of the membrane, the F(o) sector spans the membrane reaching the outer side. The IF(1) component of the mitochondrial complex is a basic 10 kDa protein, which inhibits the F(o)F(1)-ATP hydrolase activity. The mitochondrial matrix pH is the critical factor for the inhibitory binding of the central segment of IF(1) (residue 42-58) to the F(1)-alpha/beta subunits. We have analyzed the effect of native purified IF(1) the IF(1)-(42-58) synthetic peptide and its mutants on proton conduction, driven by ATP hydrolysis or by [K(+)] gradients, in bovine heart inside-out submitochondrial particles and in liposome-reconstituted F(o)F(1) complex. The results show that IF(1), and in particular its central 42-58 segment, displays different inhibitory affinity for proton conduction from the F(1) to the F(o) side and in the opposite direction. Cross-linking of IF(1) to F(1)-alpha/beta subunits inhibits the ATP-driven H(+) translocation but enhances H(+) conduction in the reverse direction. These observation are discussed in terms of the rotary mechanism of the F(o)F(1) complex.
Collapse
Affiliation(s)
- Franco Zanotti
- Dept of Medical Biochemistry, Biology and Physics, University of Bari, Bari, Italy
| | | | | | | |
Collapse
|
7
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652049409034997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Abstract
Hypoxia and reoxygenation were studied in rat hearts and ischemia and reperfusion in rat hindlimbs. Free radicals are known to be generated through these events and to propagate complications. In order to reduce hypoxic/ischemic and especially reoxygenation/reperfusion injury the (re)perfusion conditions were ameliorated including the treatment with antioxidants (lipoate or dihydrolipoate). In isolated working rat hearts cardiac and mitochondrial parameters are impaired during hypoxia and partially recover in reoxygenation. Dihydrolipoate, if added into the perfusion buffer at 0.3 microM concentration, keeps the pH higher (7. 15) during hypoxia as compared to controls (6.98). The compound accelerates the recovery of the aortic flow and stabilizes it during reoxygenation. With dihydrolipoate, ATPase activity is reduced, ATP synthesis is increased and phosphocreatine contents are higher than in controls. Creatine kinase activity is maintained during reoxygenation in the dihydrolipoate series. Isolated rat hindlimbs were stored for 4 h in a moist chamber at 18 degrees C. Controls were perfused for 30 min with a modified Krebs-Henseleit buffer at 60 mmHg followed by 30 min Krebs-Henseleit perfusion at 100 mmHg. The dihydrolipoate group contained 8.3 microM in the modified reperfusate (controlled reperfusion). With dihydrolipoate, recovery of the contractile function was 49% (vs. 34% in controls) and muscle flexibility was maintained whereas it decreased by 15% in the controls. Release of creatine kinase was significantly lower with dihydrolipoate treatment. Dihydrolipoate effectively reduces reoxygenation injury in isolated working rat hearts. Controlled reperfusion, including lipoate, prevents reperfusion syndrome after extended ischemia in exarticulated rat hindlimbs and in an in vivo pig hindlimbs model.
Collapse
Affiliation(s)
- H J Freisleben
- Faculty of Medicine, University of Indonesia, Pascasarjana-Fakultas Kedokteran, Salemba Raya No. 4, Jakarta 10430, Indonesia
| |
Collapse
|
9
|
Knowles AF, Penefsky HS. Reconstitution of beef heart mitochondrial F0F1 in reverse phase evaporation vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1329:311-20. [PMID: 9371423 DOI: 10.1016/s0005-2736(97)00123-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Beef heart mitochondrial F0F1 was reconstituted in proteoliposomes by a new procedure. MF0F1 was inserted in preformed reverse phase evaporation vesicles of large diameters prepared from asolectin (MF0F1-REV). Reconstitution was mediated by Triton X-100, which was subsequently removed by treatment with Bio-Beads. Parameters which resulted in optimal reconstitution were described. The MF0F1-REV proteoliposomes catalyzed an exchange between Pi and ATP and were capable of proton pumping. Both reactions were inhibited by oligomycin and uncoupler of oxidative phosphorylation. The range of Pi-ATP exchange activity of the proteoliposomes (70-110 nmol min[-1] mg[-1]) compared favorably with activities obtained in vesicles reconstituted by cholate dialysis or cholate dilution. The most important aspect of this method is that, unlike other reconstitution methods, exogenous F1 and other coupling factors are not required to obtain high Pi-ATP exchange activity by MF0F1-REV. This simple and rapid reconstitution procedure should be useful for future studies dealing with functional analysis of MF0F1.
Collapse
Affiliation(s)
- A F Knowles
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center, Syracuse, NY 13210, USA.
| | | |
Collapse
|
10
|
Nurani G, Franzén LG. Isolation and characterization of the mitochondrial ATP synthase from Chlamydomonas reinhardtii. cDNA sequence and deduced protein sequence of the alpha subunit. PLANT MOLECULAR BIOLOGY 1996; 31:1105-1116. [PMID: 8914527 DOI: 10.1007/bf00040828] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have isolated the F0F1-ATP synthase complex from oligomycin-sensitive mitochondria of the green alga Chlamydomonas reinhardtii. A pure and active ATP synthase was obtained by means of sonication, extraction with dodecyl maltoside and ion exchange and gel permeation chromatography in the presence of glycerol, DTT, ATP and PMSF [corrected]. The enzyme consists of 14 subunits as judged by SDS-PAGE. A cDNA clone encoding the ATP synthase alpha subunit has been sequenced. The deduced protein sequence contains a presequence of 45 amino acids which is not present in the mature protein. The mature protein is 58-70% identical to corresponding mitochondrial proteins from other organisms. In contrast to the ATP synthase beta subunit from C. reinhardtii (Franzen and Falk, Plant Mol Biol 19 (1992) 771-780), the protein does not have a C-terminal extension. However, the N-terminal domain of the mature protein is 15-18 residues longer than in ATP synthase alpha subunits from other organisms. Southern blot analysis indicates that the protein is encoded by a single-copy gene.
Collapse
Affiliation(s)
- G Nurani
- Department of Biochemistry, Arrhenius laboratories, Stockholm University, Sweden
| | | |
Collapse
|
11
|
Groth G, Walker JE. ATP synthase from bovine heart mitochondria: reconstitution into unilamellar phospholipid vesicles of the pure enzyme in a functional state. Biochem J 1996; 318 ( Pt 1):351-7. [PMID: 8761492 PMCID: PMC1217628 DOI: 10.1042/bj3180351] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A highly purified and monodisperse preparation of proton-translocating F1F0-ATPase from bovine heart mitochondria is an assembly of 16 unlike polypeptides. This preparation has been reconstituted in the presence of various detergents into unilamellar phospholipid vesicles. Incorporation of the enzyme into vesicles increases the ATP hydrolase activity of the enzyme by 10-20-fold, depending on the detergent, and the highest activities of ATP hydrolysis, 70 units/mg, were obtained by reconstitution from dodecylmaltoside or CHAPS. This activity is mostly sensitive to inhibitors that act on the F0 membrane sector of the complex. From the quenching of the pH-sensitive probe, 9-amino-6-chloro-2-methoxyacridine, it was shown that the reconstituted enzyme was able to form a transmembrane proton gradient in an ATP-dependent manner. By co-reconstitution of the enzyme with bacteriorhodopsin, it was demonstrated that in the presence of a light-induced proton gradient the enzyme can synthesize ATP from ADP and phosphate. Therefore, the characteristic biological functions of the F1F0-ATPase in mitochondria have been demonstrated with the purified enzyme. Thus, in terms of both its physical and biochemical properties, the purified enzyme fulfils important pre-requisites for formation of two- and three-dimensional crystals.
Collapse
Affiliation(s)
- G Groth
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, U.K
| | | |
Collapse
|
12
|
Beharry S, Bragg PD. The bound adenine nucleotides of purified bovine mitochondrial ATP synthase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:165-72. [PMID: 8797850 DOI: 10.1111/j.1432-1033.1996.0165h.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The experiments in this study were directed towards defining the nucleotide content of purified beef-heart mitochondrial F1F0 ATP synthase during binding and hydrolysis of ATP. The purified, soluble synthase as prepared contained 2 mol ATP and 2 mol ADP/mol enzyme. Three of these four nucleotides were exchangeable on incubation with radiolabelled MgATP. Passage of the ATP synthase through a column of Sephadex G-50 readily removed 1 mol ADP/mol. The remaining bound nucleotides were not displaced by incubation with 1 mM GTP or 5 mM sodium sulfite, the latter an activator of the ATPase activity of the synthase. Incubation of the synthase with 250 microM MgATP in the presence of 3 mM sodium azide, an inhibitor of the ATPase, resulted in the transitory formation of a form of the enzyme in which 5-6 nucleotide-binding sites were loaded with ATP and/or ADP, thus showing that the ATP synthase, like the soluble F1 ATPase, contained a minimum of six nucleotide-binding sites. The presence of an ATP-regenerating system during incubation with MgATP resulted in the loading of 5-6 sites to yield a form of the enzyme containing 3-4 mol ATP and 2 mol ADP/mol synthase even after passage through a centrifuged column. Following hydrolysis of the medium MgATP, the enzyme reached a stable form containing 2 mol ATP and 2 mol ADP/mol synthase. Like the form of the enzyme originally prepared, 1 mol ADP/mol synthase was readily released. However, this ADP remained bound to the synthase in the presence of GTP if azide was present. These results are discussed in the context of current ideas about nucleotide-binding sites on the F1 ATPase portion of the F1F0 ATP synthase. It is concluded that the properties of the sites on the F1F0 synthase show some differences from those on the F1 ATPase.
Collapse
Affiliation(s)
- S Beharry
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
13
|
Freisleben HJ, Zwicker K, Jezek P, John G, Bettin-Bogutzki A, Ring K, Nawroth T. Reconstitution of bacteriorhodopsin and ATP synthase from Micrococcus luteus into liposomes of the purified main tetraether lipid from Thermoplasma acidophilum: proton conductance and light-driven ATP synthesis. Chem Phys Lipids 1995; 78:137-47. [PMID: 8565113 DOI: 10.1016/0009-3084(95)02491-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The archaebacterium Thermoplasma acidophilum is cultivated at 59 degrees C in a medium containing sulfuric acid of pH 2. The purified bipolar membrane spanning main phospholipid (MPL) of this organism can be used to produce stable liposomes of 100-500 nm in diameter either using a French pressure cell detergent dialysis or sonication. Despite a potassium diffusion potential of 186 mV very low ionic permeability of sonicated MPL liposomes was measured using the potassium binding fluorescent indicator benzofuran isophthalate PBF1, which measures net K+ uptake. The latter also remained very low, in the presence of the K(+) ionophore valinomycin and palmitic acid. Addition of valinomycin and the potent uncoupler carbonylcyanid-p-trifluormehoxyphenyl-hydrazone (FCCP), led to a stimulation in potassium uptake. The rate of proton flux can be calculated from the net K(+) uptake. Under these conditions MPL liposomes are 1-2 orders of magnitude less permeable than egg yolk lecithin vesicles. The difference in proton permeability becomes even more pronounced with increasing temperature, examined using the fluorescent pH indicator pyranine. Purified bacteriorhodopsin from Halobacterium halobium was reconstituted into MPL liposomes in order to study the light-driven proton uptake in 150 mM KCl following addition of valinomycin, gramicidin, FCCP and Triton X-100. The light-driven proton transport into the liposomes was increased 30-fold by addition of valinomycin decreased by gramicidin and FCCP, and abolished by Triton X-100. Co-reconstituted MPL proteoliposomes containing bacteriorhodopsin and ATP synthase from Micrococcus luteus were capable of light-driven ATP synthesis demonstrating the functional coupling of proton transport and nucleotide generation in liposomal MPL membranes.
Collapse
Affiliation(s)
- H J Freisleben
- Klinikum der Johann Wolfgang Goether-Universität, Gustav-Embden-Zentrum der Biologischen Chemie, Laboratorium für Mikrobiologische Chemie, Frankfurt/M, Germany
| | | | | | | | | | | | | |
Collapse
|