1
|
Iijima K, Kaji N, Tokeshi M, Baba Y. Micro- and nanochamber array system for single enzyme assays. Sci Rep 2023; 13:13322. [PMID: 37587179 PMCID: PMC10432523 DOI: 10.1038/s41598-023-40544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023] Open
Abstract
Arrays of small reaction containers, ranging from 624 femtoliters (10-15 L) to 270 attoliters (10-18 L), for capturing a single enzyme molecule and measuring the activity were developed along with a new reversible sealing system based on a pneumatic valve actuator made of polydimethylsiloxane (PDMS). The valve was actuated by PBS solution, effectively preventing evaporation of the solution from the micro- and nanochambers and allowing the assay to be performed over a long period of time. The hydrolysis rates of β-D-galactosidase (β-gal), kcat, were decreased according to the decrease of the chamber size, and the overall tendency seems to be symmetrically related to the specific surface area of the chambers even under the prevented condition of non-specific adsorption. The spatial localization of the protons in the chambers, which might could affect the dissociation state of the proteins, was also investigated to explain the decrease in the hydrolysis rate. The developed chamber system developed here may be useful for artificially reproducing the confined intracellular environment and molecular crowding conditions.
Collapse
Affiliation(s)
- Kazuki Iijima
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Noritada Kaji
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Manabu Tokeshi
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-Ku, Sapporo, 060-8628, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd., Kaohsiung, 807, Taiwan, ROC
| |
Collapse
|
2
|
Ge C, Feng J, Zhang J, Hu K, Wang D, Zha L, Hu X, Li R. Aptamer/antibody sandwich method for digital detection of SARS-CoV2 nucleocapsid protein. Talanta 2022; 236:122847. [PMID: 34635237 PMCID: PMC8421254 DOI: 10.1016/j.talanta.2021.122847] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022]
Abstract
Nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV2 and is highly conserved, and there are no homologous proteins in the human body, making it an ideal biomarker for the early diagnosis of SARS-CoV2. However, early detection of clinical specimens for SARS-CoV2 remains a challenge due to false-negative results with viral RNA and host antibodies based testing. In this manuscript, a microfluidic chip with femtoliter-sized wells was fabricated for the sensitive digital detection of N protein. Briefly, β-galactosidase (β-Gal)-linked antibody/N protein/aptamer immunocomplexes were formed on magnetic beads (MBs). Afterwards, the MBs and β-Gal substrate fluorescein-di-β-d-galactopyranoside (FDG) were injected into the chip together. Each well of the chip would only hold one MB as confined by the diameter of the wells. The MBs in the wells were sealed by fluorocarbon oil, which confines the fluorescent (FL) product generated from the reaction between β-Gal and FDG in the individual femtoliter-sized well and creates a locally high concentration of the FL product. The FL images of the wells were acquired using a conventional inverted FL microscope. The number of FL wells with MBs (FL wells number) and the number of wells with MBs (MBs wells number) were counted, respectively. The percentage of FL wells was calculated by dividing (FL wells number) by (MBs wells number). The higher the percentage of FL wells, the higher the N protein concentration. The detection limit of this digital method for N protein was 33.28 pg/mL, which was 300 times lower than traditional double-antibody sandwich based enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Chenchen Ge
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, PR China
| | - Juan Feng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, PR China
| | - Jiaming Zhang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, PR China
| | - Kai Hu
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, PR China
| | - Dou Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong, 518055, PR China.
| | - Ling Zha
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, PR China
| | - Xuejuan Hu
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, PR China.
| | - Rongsong Li
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, PR China.
| |
Collapse
|
3
|
Miguel-Ruano V, Rivera I, Rajkovic J, Knapik K, Torrado A, Otero JM, Beneventi E, Becerra M, Sánchez-Costa M, Hidalgo A, Berenguer J, González-Siso MI, Cruces J, Rúa ML, Hermoso JA. Biochemical and Structural Characterization of a novel thermophilic esterase EstD11 provide catalytic insights for the HSL family. Comput Struct Biotechnol J 2021; 19:1214-1232. [PMID: 33680362 PMCID: PMC7905190 DOI: 10.1016/j.csbj.2021.01.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/31/2022] Open
Abstract
A novel esterase, EstD11, has been discovered in a hot spring metagenomic library. It is a thermophilic and thermostable esterase with an optimum temperature of 60°C. A detailed substrate preference analysis of EstD11 was done using a library of chromogenic ester substrate that revealed the broad substrate specificity of EstD11 with significant measurable activity against 16 substrates with varied chain length, steric hindrance, aromaticity and flexibility of the linker between the carboxyl and the alcohol moiety of the ester. The tridimensional structures of EstD11 and the inactive mutant have been determined at atomic resolutions. Structural and bioinformatic analysis, confirm that EstD11 belongs to the family IV, the hormone-sensitive lipase (HSL) family, from the α/β-hydrolase superfamily. The canonical α/β-hydrolase domain is completed by a cap domain, composed by two subdomains that can unmask of the active site to allow the substrate to enter. Eight crystallographic complexes were solved with different substrates and reaction products that allowed identification of the hot-spots in the active site underlying the specificity of the protein. Crystallization and/or incubation of EstD11 at high temperature provided unique information on cap dynamics and a first glimpse of enzymatic activity in vivo. Very interestingly, we have discovered a unique Met zipper lining the active site and the cap domains that could be essential in pivotal aspects as thermo-stability and substrate promiscuity in EstD11.
Collapse
Key Words
- CHCA, cyclohexane carboxylic acid
- CMC, critical micellar concentration
- CV, column volume
- Crystal structure
- DMSO, dimethyl sulfoxide
- DSF, Differential scanning fluorimetry
- Enzyme-substrate complex
- FLU, fluorescein
- HSL, hormone-sensitive lipase
- LDAO, N,N-dimethyldodecylamine N-oxide
- MNP, methyl-naproxen
- Metagenomic
- NP, naproxen
- PPL, Porcine Pancreatic Lipase
- Thermophilic esterase
- pNP, 4-nitrophenol
- α/β hydrolase fold
Collapse
Affiliation(s)
- Vega Miguel-Ruano
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry “Rocasolano”, Spanish National Research Council (CSIC), Madrid, Spain
| | - Ivanna Rivera
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry “Rocasolano”, Spanish National Research Council (CSIC), Madrid, Spain
| | - Jelena Rajkovic
- Biochemistry Laboratory, CITACA-Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, Ourense, Spain
| | - Kamila Knapik
- EXPRELA Group, University A Coruña, Science Faculty, Advanced Scientific Research Center (CICA), A Coruña, Spain
| | - Ana Torrado
- Biochemistry Laboratory, CITACA-Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, Ourense, Spain
| | | | | | - Manuel Becerra
- EXPRELA Group, University A Coruña, Science Faculty, Advanced Scientific Research Center (CICA), A Coruña, Spain
| | - Mercedes Sánchez-Costa
- Department of Molecular Biology, Center for Molecular Biology “Severo Ochoa” (UAM-CSIC), Autonomous University of Madrid, Madrid, Spain
| | - Aurelio Hidalgo
- Department of Molecular Biology, Center for Molecular Biology “Severo Ochoa” (UAM-CSIC), Autonomous University of Madrid, Madrid, Spain
| | - José Berenguer
- Department of Molecular Biology, Center for Molecular Biology “Severo Ochoa” (UAM-CSIC), Autonomous University of Madrid, Madrid, Spain
| | - María-Isabel González-Siso
- EXPRELA Group, University A Coruña, Science Faculty, Advanced Scientific Research Center (CICA), A Coruña, Spain
| | | | - María L. Rúa
- Biochemistry Laboratory, CITACA-Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, Ourense, Spain
| | - Juan A. Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry “Rocasolano”, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
4
|
Ghéczy N, Sasaki K, Yoshimoto M, Pour-Esmaeil S, Kröger M, Stano P, Walde P. A two-enzyme cascade reaction consisting of two reaction pathways. Studies in bulk solution for understanding the performance of a flow-through device with immobilised enzymes. RSC Adv 2020; 10:18655-18676. [PMID: 35518281 PMCID: PMC9053938 DOI: 10.1039/d0ra01204a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Enzyme-catalysed cascade reactions in flow-through systems with immobilised enzymes currently are of great interest for exploring their potential for biosynthetic and bioanalytical applications. Basic studies in this field often aim at understanding the stability of the immobilised enzymes and their catalytic performance, for example, in terms of yield of a desired reaction product, analyte detection limit, enzyme stability or reaction reproducibility. In the work presented, a cascade reaction involving the two enzymes bovine carbonic anhydrase (BCA) and horseradish peroxidase (HRP) – with hydrogen peroxide (H2O2) as HRP “activator” – was first investigated in great detail in bulk solution at pH = 7.2. The reaction studied is the hydrolysis and oxidation of 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA) to 2′,7′-dichlorofluorescein (DCF), which was found to proceed along two reaction pathways. This two-enzyme cascade reaction was then applied for analysing the performance of BCA and HRP immobilised in glass fiber filters which were placed inside a filter holder device through which a DCFH2-DA/H2O2 substrate solution was pumped. Comparison was made between (i) co-immobilised and (ii) sequentially immobilised enzymes (BCA first, HRP second). Significant differences for the two arrangements in terms of measured product yield (DCF) could be explained based on quantitative UV/vis absorption measurements carried out in bulk solution. We found that the lower DCF yield observed for sequentially immobilised enzymes originates from a change in one of the two possible reaction pathways due to enzyme separation, which was not the case for enzymes that were co-immobilised (or simultaneously present in the bulk solution experiments). The higher DCF yield observed for co-immobilised enzymes did not originate from a molecular proximity effect (no increased oxidation compared to sequential immobilisation). A cascade reaction catalysed by bovine carbonic anhydrase (BCA) and horseradish peroxidase (HRP) proceeds over two possible pathways, which explains differences in product formation for differently immobilised enzymes in flow-through reactions.![]()
Collapse
Affiliation(s)
- Nicolas Ghéczy
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| | - Kai Sasaki
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| | - Makoto Yoshimoto
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland .,Department of Applied Chemistry, Yamaguchi University Tokiwadai 2-16-1 Ube 755-8611 Japan
| | - Sajad Pour-Esmaeil
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zürich Leopold-Ruzicka-Weg 4 CH-8093 Zürich Switzerland
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento Ecotekne 73100 Lecce Italy
| | - Peter Walde
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| |
Collapse
|
5
|
Zisis T, Freddolino PL, Turunen P, van Teeseling MCF, Rowan AE, Blank KG. Interfacial Activation of Candida antarctica Lipase B: Combined Evidence from Experiment and Simulation. Biochemistry 2015; 54:5969-79. [PMID: 26346632 PMCID: PMC4697882 DOI: 10.1021/acs.biochem.5b00586] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipase immobilization is frequently used for altering the catalytic properties of these industrially used enzymes. Many lipases bind strongly to hydrophobic surfaces where they undergo interfacial activation. Candida antarctica lipase B (CalB), one of the most commonly used biocatalysts, is frequently discussed as an atypical lipase lacking interfacial activation. Here we show that CalB displays an enhanced catalytic rate for large, bulky substrates when adsorbed to a hydrophobic interface composed of densely packed alkyl chains. We attribute this increased activity of more than 7-fold to a conformational change that yields a more open active site. This hypothesis is supported by molecular dynamics simulations that show a high mobility for a small "lid" (helix α5) close to the active site. Molecular docking calculations confirm that a highly open conformation of this helix is required for binding large, bulky substrates and that this conformation is favored in a hydrophobic environment. Taken together, our combined approach provides clear evidence for the interfacial activation of CalB on highly hydrophobic surfaces. In contrast to other lipases, however, the conformational change only affects large, bulky substrates, leading to the conclusion that CalB acts like an esterase for small substrates and as a lipase for substrates with large alcohol substituents.
Collapse
Affiliation(s)
- Themistoklis Zisis
- Radboud University, Institute for Molecules and Materials,
Department of Molecular Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The
Netherlands
| | - Peter L. Freddolino
- University of Michigan Medical School, Department of
Biological Chemistry, Ann Arbor, MI 48109, USA
| | - Petri Turunen
- Radboud University, Institute for Molecules and Materials,
Department of Molecular Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The
Netherlands
| | - Muriel C. F. van Teeseling
- Radboud University, Institute for Molecules and Materials,
Department of Molecular Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The
Netherlands
| | - Alan E. Rowan
- Radboud University, Institute for Molecules and Materials,
Department of Molecular Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The
Netherlands
| | - Kerstin G. Blank
- Radboud University, Institute for Molecules and Materials,
Department of Molecular Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The
Netherlands
| |
Collapse
|
6
|
Dreier J, Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol 2015; 6:660. [PMID: 26217310 PMCID: PMC4495556 DOI: 10.3389/fmicb.2015.00660] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/16/2015] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa infections are becoming increasingly difficult to treat due to intrinsic antibiotic resistance and the propensity of this pathogen to accumulate diverse resistance mechanisms. Hyperexpression of efflux pumps of the Resistance-Nodulation-Cell Division (RND)-type multidrug efflux pumps (e.g., MexAB-OprM), chromosomally encoded by mexAB-oprM, mexCD-oprJ, mexEF-oprN, and mexXY (-oprA) is often detected in clinical isolates and contributes to worrying multi-drug resistance phenotypes. Not all antibiotics are affected to the same extent by the aforementioned RND efflux pumps. The impact of efflux on antibiotic activity varies not only between different classes of antibiotics but also between members of the same family of antibiotics. Subtle differences in physicochemical features of compound-pump and compound-solvent interactions largely determine how compounds are affected by efflux activity. The combination of different high-resolution techniques helps to gain insight into the functioning of these molecular machineries. This review discusses substrate recognition patterns based on experimental evidence and computer simulations with a focus on MexB, the pump subunit of the main RND transporter in P. aeruginosa.
Collapse
Affiliation(s)
- Jürg Dreier
- Basilea Pharmaceutica International Ltd.,Basel, Switzerland
| | - Paolo Ruggerone
- Dipartimento di Fisica, Università di Cagliari – Cittadella UniversitariaMonserrato, Italy
| |
Collapse
|
7
|
Shim JU, Ranasinghe RT, Smith CA, Ibrahim SM, Hollfelder F, Huck WTS, Klenerman D, Abell C. Ultrarapid generation of femtoliter microfluidic droplets for single-molecule-counting immunoassays. ACS NANO 2013; 7:5955-64. [PMID: 23805985 DOI: 10.1021/nn401661d] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report a microfluidic droplet-based approach enabling the measurement of chemical reactions of individual enzyme molecules and its application to a single-molecule-counting immunoassay. A microfluidic device is used to generate and manipulate <10 fL droplets at rates of up to 1.3 × 10(6) per second, about 2 orders of magnitude faster than has previously been reported. The femtodroplets produced with this device can be used to encapsulate single biomolecular complexes tagged with a reporter enzyme; their small volume enables the fluorescent product of a single enzyme molecule to be detected within 10 min of on-chip incubation. Our prototype system is validated by detection of a biomarker for prostate cancer in buffer, down to a concentration of 46 fM. This work demonstrates a highly flexible and sensitive diagnostic platform that exploits extremely high-speed generation of monodisperse femtoliter droplets for the counting of individual analyte molecules.
Collapse
Affiliation(s)
- Jung-uk Shim
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK, CB2 1EW.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Buchegger W, Haller A, van den Driesche S, Kraft M, Lendl B, Vellekoop M. Studying enzymatic bioreactions in a millisecond microfluidic flow mixer. BIOMICROFLUIDICS 2012; 6:12803-128039. [PMID: 22662071 PMCID: PMC3365323 DOI: 10.1063/1.3665717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/14/2011] [Indexed: 05/04/2023]
Abstract
In this study, the pre-steady state development of enzymatic bioreactions using a microfluidic mixer is presented. To follow such reactions fast mixing of reagents (enzyme and substrate) is crucial. By using a highly efficient passive micromixer based on multilaminar flow, mixing times in the low millisecond range are reached. Four lamination layers in a shallow channel reduce the diffusion lengths to a few micrometers only, enabling very fast mixing. This was proven by confocal fluorescence measurements in the channel's cross sectional area. Adjusting the overall flow rate in the 200 μm wide and 900 μm long mixing and observation channel makes it possible to investigate enzyme reactions over several seconds. Further, the device enables changing the enzyme/substrate ratio from 1:1 up to 3:1, while still providing high mixing efficiency, as shown for the enzymatic hydrolysis using β-galactosidase. This way, the early kinetics of the enzyme reaction at multiple enzyme/substrate concentrations can be collected in a very short time (minutes). The fast and easy handling of the mixing device makes it a very powerful and convenient instrument for millisecond temporal analysis of bioreactions.
Collapse
|
9
|
Iino R, Nishino K, Noji H, Yamaguchi A, Matsumoto Y. A microfluidic device for simple and rapid evaluation of multidrug efflux pump inhibitors. Front Microbiol 2012; 3:40. [PMID: 22347225 PMCID: PMC3274760 DOI: 10.3389/fmicb.2012.00040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/26/2012] [Indexed: 12/03/2022] Open
Abstract
Recently, multidrug-resistant pathogens have disseminated widely owing essentially to their increased multidrug efflux pump activity. Presently, there is a scarcity of new antibacterial agents, and hence, inhibitors of multidrug efflux pumps belonging to the resistance–nodulation–cell division (RND) family appear useful in the treatment of infections by multidrug-resistant pathogens. Moreover, recent progress in microfabrication technologies has expanded the application of nano/micro-devices to the field of human healthcare, such as the detection of infections and diagnosis of diseases. We developed a microfluidic channel device for a simple and rapid evaluation of bacterial drug efflux activity. By combining the microfluidic device with a fluorogenic compound, fluorescein-di-β-D-galactopyranoside, which is hydrolyzed to a fluorescent dye in the cytoplasm of Escherichia coli, we successfully evaluated the effects of inhibitors on the RND-type multidrug efflux pumps MexAB–OprM and MexXY–OprM from Pseudomonas aeruginosa in E. coli. Our new method successfully detected the MexB-specific inhibitory effect of D13-9001 and revealed an unexpected membrane-permeabilizing effect of Phe-Arg-β-naphthylamide, which has long been used as an efflux pump inhibitor.
Collapse
Affiliation(s)
- Ryota Iino
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
10
|
Evaluation of multidrug efflux pump inhibitors by a new method using microfluidic channels. PLoS One 2011; 6:e18547. [PMID: 21533264 PMCID: PMC3075257 DOI: 10.1371/journal.pone.0018547] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/03/2011] [Indexed: 11/19/2022] Open
Abstract
Fluorescein-di-β-d-galactopyranoside (FDG), a fluorogenic compound, is hydrolyzed by β-galactosidase in the cytoplasm of Escherichia coli to produce a fluorescent dye, fluorescein. We found that both FDG and fluorescein were substrates of efflux pumps, and have developed a new method to evaluate efflux-inhibitory activities in E. coli using FDG and a microfluidic channel device. We used E. coli MG1655 wild-type, ΔacrB (ΔB), ΔtolC (ΔC) and ΔacrBΔtolC (ΔBC) harboring plasmids carrying the mexAB-oprM (pABM) or mexXY-oprM (pXYM) genes of Pseudomonas aeruginosa. Two inhibitors, MexB-specific pyridopyrimidine (D13-9001) and non-specific Phe-Arg-β-naphthylamide (PAβN) were evaluated. The effects of inhibitors on pumps were observed using the microfluidic channel device under a fluorescence microscope. AcrAB-TolC and analogous pumps effectively prevented FDG influx in wild-type cells, resulting in no fluorescence. In contrast, ΔB or ΔC easily imported and hydrolyzed FDG to fluorescein, which was exported by residual pumps in ΔB. Consequently, fluorescent medium in ΔB and fluorescent cells of ΔC and ΔBC were observed in the microfluidic channels. D13-9001 substantially increased fluorescent cell number in ΔBC/pABM but not in ΔBC/pXYM. PAβN increased medium fluorescence in all strains, especially in the pump deletion mutants, and caused fluorescein accumulation to disappear in ΔC. The checkerboard method revealed that D13-9001 acts synergistically with aztreonam, ciprofloxacin, and erythromycin only against the MexAB-OprM producer (ΔBC/pABM), and PAβN acts synergistically, especially with erythromycin, in all strains including the pump deletion mutants. The results obtained from PAβN were similar to the results from membrane permeabilizer, polymyxin B or polymyxin B nonapeptide by concentration. The new method clarified that D13-9001 specifically inhibited MexAB-OprM in contrast to PAβN, which appeared to be a substrate of the pumps and permeabilized the membranes in E. coli.
Collapse
|
11
|
Sanchez-Martin RM, Alexander L, Muzerelle M, Cardenas-Maestre JM, Tsakiridis A, Brickman JM, Bradley M. Microsphere-mediated protein delivery into cells. Chembiochem 2009; 10:1453-6. [PMID: 19444829 DOI: 10.1002/cbic.200900136] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Indexed: 11/10/2022]
Abstract
AbstractDelivering the goods: By coupling proteins to varyingly sized polymeric microspheres, it is possible to deliver them to cells in an easy and effective way. For this study a fluorescent protein (EGFP) and a functional enzyme (β‐galactosidase) were coupled to these particles. Evaluation of the cellular uptake after “beadfection” shows that the functionality and activity of these proteins were not adversely affected through coupling to the carrier system; this shows that their functional structure is retained.magnified image
Collapse
Affiliation(s)
- Rosario M Sanchez-Martin
- School of Chemistry, Chemical Biology Section, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH93JJ, UK
| | | | | | | | | | | | | |
Collapse
|
12
|
Tachi T, Kaji N, Tokeshi M, Baba Y. Microchip-based homogeneous immunoassay using a cloned enzyme donor. ANAL SCI 2009; 25:149-51. [PMID: 19212044 DOI: 10.2116/analsci.25.149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have realized a cloned enzyme donor immunoassay (CEDIA) on a microchip in 96 s. CEDIA is a homogeneous immunoassay, based on the bacterial enzyme beta-galactosidase, which was genetically engineered into two inactive fragments: an enzyme donor and an enzyme acceptor. A model analyte was theophylline, and the detectable concentration range was from 0 to 40 microg mL(-1). Our CEDIA using a microfluidic device was very simple and rapid, unlike microchip-based heterogeneous immunoassays and CEDIA on a well-type microchip.
Collapse
Affiliation(s)
- Tomoya Tachi
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | | | | | | |
Collapse
|
13
|
Abstract
beta-Amylase (EC 3.2.1.2) produces maltose (dimer) from the nonreducing ends of alpha-1,4 glucosidic bonds of substrates like maltooligosaccharides, amylose, and amylopectin. The enzyme releases several maltose molecules from a single enzyme-substrate complex without dissociation by multiple or repetitive attack containing many branching reaction paths. The Monte Carlo method was applied to the simulation of the beta-amylase-catalyzed reaction including the multiple attack mechanism. The simulation starts from a single enzyme molecule and a finite number of substrate molecules. The selection of the substrate by the enzyme and degree of multiple attack proceeds by random numbers produced from a computer. The simulation was carried out until the whole substrate and the intermediate molecules were consumed. The simulated data were compared with experimental data of sweet potato beta-amylase using heptamer, octamer, nanomer, and 11-mer as substrates. The only adjustable parameter for odd-numbered substrates was the probability of multiple attack, while an additional adjustable parameter (a correction factor due to low reactivity of tetramer) was needed for even-numbered substrates.
Collapse
Affiliation(s)
- H Nakatani
- Faculty of Agriculture, Kyoto University, Japan
| |
Collapse
|
14
|
Abstract
A rectangular channel electrophoresis system and a cylindrical sampling capillary combination allows chemical changes in nanoliter-volume samples to be monitored as a function of time. The electrophoretic microseparation is carried out in a rectangular channel with a 7 -cm-long, 40-microm x 2.5-cm geometry and is coupled to a 50-microm-i.d. cylindrical sample introduction capillary. The channel width dimension is used as a time axis by moving the outlet of the sampling capillary across the entrance of the separation channel. Detection of the separated analyte bands is achieved with laser-induced fluorescence and spatially resolved detection based on a charge-coupled device. The system is characterized with a series of fluorescein thiocarbamyl amino acid derivatives; limits of detection are < 10(-8) M for amino acids and 10(-9)M (425 zmol) for fluorescein. The ability to achieve a time-based dynamic microseparation is demonstrated by monitoring fluorescent product formation during the enzyme-catalyzed hydrolysis of fluorescein di-beta-D-galactopyranoside (FDG), a commonly used fluorescent substrate for enzymological studies.
Collapse
Affiliation(s)
- Y M Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign 61801, USA
| | | |
Collapse
|