1
|
Giardina BJ, Stein K, Chiang HL. The endocytosis gene END3 is essential for the glucose-induced rapid decline of small vesicles in the extracellular fraction in Saccharomyces cerevisiae. J Extracell Vesicles 2014; 3:23497. [PMID: 24665361 PMCID: PMC3963178 DOI: 10.3402/jev.v3.23497] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/28/2014] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
Background Protein secretion is a fundamental process in all living cells. Gluconeogenic enzymes are secreted when Saccharomyces cerevisiae are grown in media containing low glucose. However, when cells are transferred to media containing high glucose, they are internalized. We investigated whether or not gluconeogenic enzymes were associated with extracellular vesicles in glucose-starved cells. We also examined the role that the endocytosis gene END3 plays in the internalization of extracellular proteins/vesicles in response to glucose addition. Methods Transmission electron microscopy was performed to determine the presence of extracellular vesicles in glucose-starved wild-type cells and the dynamics of vesicle transport in cells lacking the END3 gene. Proteomics was used to identify extracellular proteins that associated with these vesicles. Results Total extracts prepared from glucose-starved cells consisted of about 95% small vesicles (30–50 nm) and 5% large structures (100–300 nm). The addition of glucose caused a rapid decline in small extracellular vesicles in wild-type cells. However, most of the extracellular vesicles were still observed in cells lacking the END3 gene following glucose replenishment. Proteomics was used to identify 72 extracellular proteins that may be associated with these vesicles. Gluconeogenic enzymes fructose-1,6-bisphosphatase, malate dehydrogenase, isocitrate lyase, and phosphoenolpyruvate carboxykinase, as well as non-gluconeogenic enzymes glyceraldehyde-3-phosphate dehydrogenase and cyclophilin A, were distributed in the vesicle-enriched fraction in total extracts prepared from cells grown in low glucose. Distribution of these proteins in the vesicle-enriched fraction required the integrity of the membranes. When glucose was added to glucose-starved wild-type cells, levels of extracellular fructose-1,6-bisphosphatase, malate dehydrogenase, isocitrate lyase, phosphoenolpyruvate carboxykinase, glyceraldehyde-3-phosphate dehydrogenase, and cyclophilin A were reduced. In contrast, in cells lacking the END3 gene, levels of these proteins in the extracellular fraction remained high. Conclusion The END3 gene is required for the rapid decline of extracellular proteins and vesicles in response to glucose addition.
Collapse
Affiliation(s)
- Bennett J Giardina
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Kathryn Stein
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Hui-Ling Chiang
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
2
|
Giardina BJ, Chiang HL. The key gluconeogenic enzyme fructose-1,6-bisphosphatase is secreted during prolonged glucose starvation and is internalized following glucose re-feeding via the non-classical secretory and internalizing pathways in Saccharomyces cerevisiae. PLANT SIGNALING & BEHAVIOR 2013; 8:24936. [PMID: 23673352 PMCID: PMC3999075 DOI: 10.4161/psb.24936] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 06/02/2023]
Abstract
In Saccharomyces cerevisia, the key gluconeogenic enzyme fructose-1,6-bisphosphatase is secreted into the periplasm during prolonged glucose starvation and is internalized into Vid/endosomes following glucose re-feeding. Fructose-1,6-bisphosphatase does not contain signal sequences required for the classical secretory and endocytic pathways. Hence, the secretion and internalization are mediated via the non-classical pathways.
Collapse
|
3
|
Giardina BJ, Dunton D, Chiang HL. Vid28 protein is required for the association of vacuole import and degradation (Vid) vesicles with actin patches and the retention of Vid vesicle proteins in the intracellular fraction. J Biol Chem 2013; 288:11636-48. [PMID: 23393132 DOI: 10.1074/jbc.m112.419895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gluconeogenic enzymes are induced when Saccharomyces cerevisiae are starved of glucose. However, when glucose is added to prolonged starved cells, these enzymes are degraded in the vacuole via the vacuole import and degradation (Vid) pathway. The Vid pathway is linked to the nonclassical secretory and internalizing pathways. In prolonged starved cells, substantial amounts of the key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) are in the extracellular fraction (periplasm). However, when glucose is added to glucose-starved cells, levels of extracellular FBPase decrease rapidly. Ultrastructural studies indicate that FBPase is in Vid/endosomes following glucose addition, suggesting that FBPase is internalized in response to glucose refeeding. Under the same conditions, the majority of Vid vesicle proteins are in the intracellular fraction. In yeast, actin polymerization is involved in endocytosis. Vid vesicles associate with actin patches initially, and they dissociate later. Here, we show that VID28 plays a critical role in the association of Vid vesicles with actin patches and the retention of Vid vesicle proteins in the intracellular fraction. Vid28p was distributed to Vid vesicles and interacted with other Vid vesicle proteins. Vid28p contains an Armadillo (ARM) domain required for FBPase degradation. When VID28 was deleted or when the ARM domain was mutated, Vid vesicles failed to co-localize with actin patches, and Vid vesicle proteins appeared in the extracellular fraction. We suggest that the ARM domain is required for the association of Vid vesicles with actin patches and the retention of Vid vesicle proteins in the intracellular fraction.
Collapse
Affiliation(s)
- Bennett J Giardina
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
4
|
Alibhoy AA, Giardina BJ, Dunton DD, Chiang HL. Vid30 is required for the association of Vid vesicles and actin patches in the vacuole import and degradation pathway. Autophagy 2012; 8:29-46. [PMID: 22082961 DOI: 10.4161/auto.8.1.18104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
When Saccharomyces cerevisiae is starved of glucose, the gluconeogenic enzymes fructose-1,6-bisphosphatase (FBPase), malate dehydrogenase (MDH2), isocitrate lyase (Icl1) and phosphoenolpyruvate carboxykinase (Pck1) are induced. However, when glucose is added to prolonged starved cells, these enzymes are degraded in the vacuole via the vacuole import and degradation (Vid) pathway. Recent evidence suggests that the Vid pathway merges with the endocytic pathway at actin patches where endocytic vesicles are formed. The convergence of the Vid pathway with the endocytic pathway allows cells to remove intracellular and extracellular proteins simultaneously. However, the genes that regulate this step of the convergence have not been identified previously. Here we show that VID30 plays a critical role for the association of Vid vesicles and actin patches. Vid30 is constitutively expressed and interacts with Vid vesicle proteins Vid24 and Sec28 but not with the cargo protein FBPase. In the absence of SEC28 or VID24, Vid30 association with actin patches was prolonged. In cells lacking the VID30 gene, FBPase and Vid24 were not localized to actin patches, suggesting that Vid30 has a role in the association of Vid vesicles and actin patches. Vid30 contains a LisH and a CTLH domain, both of which are required for FBPase degradation. When these domains were deleted, FBPase trafficking to the vacuole was impaired. We suggest that Vid30 also has a role in the Vid pathway at a later step in a process that is mediated by the LisH and CTLH domains.
Collapse
Affiliation(s)
- Abbas A Alibhoy
- Department of Cellular and Molecular Physiology, Penn State University, College of Medicine, Hershey, PA, USA
| | | | | | | |
Collapse
|
5
|
Alibhoy AA, Chiang HL. Vacuole import and degradation pathway: Insights into a specialized autophagy pathway. World J Biol Chem 2011; 2:239-45. [PMID: 22125667 PMCID: PMC3224871 DOI: 10.4331/wjbc.v2.i11.239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/30/2011] [Accepted: 11/06/2011] [Indexed: 02/05/2023] Open
Abstract
Glucose deprivation induces the synthesis of pivotal gluconeogenic enzymes such as fructose-1,6-bisphosphatase, malate dehydrogenase, phosphoenolpyruvate carboxykinase and isocitrate lyase in Saccharomyces cerevisiae. However, following glucose replenishment, these gluconeogenic enzymes are inactivated and degraded. Studies have characterized the mechanisms by which these enzymes are inactivated in response to glucose. The site of degradation of these proteins has also been ascertained to be dependent on the duration of starvation. Glucose replenishment of short-term starved cells results in these proteins being degraded in the proteasome. In contrast, addition of glucose to cells starved for a prolonged period results in these proteins being degraded in the vacuole. In the vacuole dependent pathway, these proteins are sequestered in specialized vesicles termed vacuole import and degradation (Vid). These vesicles converge with the endocytic pathway and deliver their cargo to the vacuole for degradation. Recent studies have identified that internalization, as mediated by actin polymerization, is essential for delivery of cargo proteins to the vacuole for degradation. In addition, components of the target of rapamycin complex 1 interact with cargo proteins during glucose starvation. Furthermore, Tor1p dissociates from cargo proteins following glucose replenishment. Future studies will be needed to elaborate on the importance of internalization at the plasma membrane and the subsequent import of cargo proteins into Vid vesicles in the vacuole dependent degradation pathway.
Collapse
Affiliation(s)
- Abbas A Alibhoy
- Abbas A Alibhoy, Hui-Ling Chiang, Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033, United States
| | | |
Collapse
|
6
|
Brown CR, Chiang HL. A selective autophagy pathway that degrades gluconeogenic enzymes during catabolite inactivation. Commun Integr Biol 2009; 2:177-83. [PMID: 19513275 PMCID: PMC2686377 DOI: 10.4161/cib.7711] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/23/2008] [Indexed: 11/19/2022] Open
Abstract
In Saccharomyces cerevisiae, glucose starvation induces key gluconeogenic enzymes such as fructose-1,6-bisphosphatase (FBPase), malate dehydrogenase (MDH2) and phosphoenolpyruvate carboxykinase, while glucose addition inactivates these enzymes. Significant progress has been made identifying mechanisms that mediate the "catabolite inactivation" of FBPase and MDH2. For example, the site of their degradation has been shown to change, depending on the duration of starvation. When glucose is added to short-termed starved cells, these proteins are degraded in the proteasome. However, when glucose is added to long-termed starved cells, they are degraded in the vacuole by a selective autophagy pathway. For the vacuole pathway, these proteins are first imported into novel vesicles called Vid (vacuole import and degradation) vesicles. Following import, Vid vesicles merge with the endocytic pathway. Future experiments will be directed at understanding the molecular mechanisms that regulate the switch from proteasomal to vacuolar degradation and determining the site of Vid vesicle biogenesis.
Collapse
Affiliation(s)
- C Randell Brown
- Department of Cellular and Molecular Physiology; Penn State College of Medicine; Hershey, Pennsylvania USA
| | | |
Collapse
|
7
|
Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 2006; 71:8587-96. [PMID: 16332851 PMCID: PMC1317465 DOI: 10.1128/aem.71.12.8587-8596.2005] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The overexpression of fructose 1,6-bisphosphatase (FBPase) in Corynebacterium glutamicum leads to significant improvement of lysine production on different sugars. Amplified expression of FBPase via the promoter of the gene encoding elongation factor TU (EFTU) increased the lysine yield in the feedback-deregulated lysine-producing strain C. glutamicum lysCfbr by 40% on glucose and 30% on fructose or sucrose. Additionally formation of the by-products glycerol and dihydroxyacetone was significantly reduced in the PEFTUfbp mutant. As revealed by 13C metabolic flux analysis on glucose the overexpression of FBPase causes a redirection of carbon flux from glycolysis toward the pentose phosphate pathway (PPP) and thus leads to increased NADPH supply. Normalized to an uptake flux of glucose of 100%, the relative flux into the PPP was 56% for C. glutamicum lysCfbr PEFTUfbp and 46% for C. glutamicum lysCfbr. The flux for NADPH supply was 180% in the PEFTUfbp strain and only 146% in the parent strain. Amplification of FBPase increases the production of lysine via an increased supply of NADPH. Comparative studies with another mutant containing the sod promoter upstream of the fbp gene indicate that the expression level of FBPase relates to the extent of the metabolic effects. The overexpression of FBPase seems useful for starch- and molasses-based industrial lysine production with C. glutamicum. The redirection of flux toward the PPP should also be interesting for the production of other NADPH-demanding compounds as well as for products directly stemming from the PPP.
Collapse
Affiliation(s)
- Judith Becker
- Biochemical Engineering, Saarland University, Im Stadtwald, 66041 Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
8
|
Hung GC, Brown CR, Wolfe AB, Liu J, Chiang HL. Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events. J Biol Chem 2004; 279:49138-50. [PMID: 15358789 DOI: 10.1074/jbc.m404544200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is subjected to catabolite inactivation and degradation when glucose-starved cells are replenished with fresh glucose. In various studies, the proteasome and the vacuole have each been reported to be the major site of FBPase degradation. Because different growth conditions were used in these studies, we examined whether variations in growth conditions could alter the site of FBPase degradation. Here, we demonstrated that FBPase was degraded outside the vacuole (most likely in the proteasome), when glucose was added to cells that were grown in low glucose media for a short period of time. By contrast, cells that were grown in the same low glucose media for longer periods of time degraded FBPase in the vacuole in response to glucose. Another gluconeogenic enzyme malate dehydrogenase (MDH2) showed the same degradation characteristics as FBPase in that the short term starvation of cells led to a non-vacuolar degradation, whereas long term starvation resulted in the vacuolar degradation of this protein. The N-terminal proline is required for the degradation of FBPase and MDH2 for both the vacuolar and non-vacuolar proteolytic pathways. The cAMP signaling pathway and the phosphorylation of glucose were needed for the vacuolar-dependent degradation of FBPase and MDH2. By contrast, the cAMP-dependent signaling pathway was not involved in the non-vacuolar degradation of these proteins, although the phosphorylation of glucose was required.
Collapse
Affiliation(s)
- Guo-Chiuan Hung
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
9
|
López ML, Redruello B, Valdés E, Moreno F, Heinisch JJ, Rodicio R. Isocitrate lyase of the yeast Kluyveromyces lactis is subject to glucose repression but not to catabolite inactivation. Curr Genet 2003; 44:305-16. [PMID: 14569415 DOI: 10.1007/s00294-003-0453-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 09/13/2003] [Accepted: 09/19/2003] [Indexed: 10/26/2022]
Abstract
KlICL1, encoding the isocitrate lyase of Kluyveromyces lactis, was isolated by complementation of the Saccharomyces cerevisiae icl1 deletion mutant. Sequence analysis revealed an open reading frame of 1626 nucleotides encoding a protein with 542 amino acids. The deduced protein shows extensive homologies to isocitrate lyases from various organisms, with an overall identity of 69% to the enzyme from S. cerevisiae. The KlICL1 gene has two major transcription start-points, located at -113 bp and -95 bp relative to the ATG translation start codon. The gene is expressed on ethanol medium only in respiratory-competent cells. Transcription is repressed by glucose. Mutants carrying a Klcat8 deletion lack the ability to derepress KlICL1 transcription. A Klicl1 deletion mutant does not grow on ethanol medium and lacks any isocitrate lyase activity. A strain lacking the gene KlFBP1, which encodes the gluconeogenic enzyme fructose 1,6-bisphosphatase, lacks the ability to grow on non-fermentable carbon sources. This implies that K. lactis does not contain additional isoenzymes catalyzing either of the reactions. Enzyme assays revealed that neither KlIcl1p nor KlFbp1p are subject to catabolite inactivation. However, the respective enzymes from S. cerevisiae are efficiently inactivated when expressed in K. lactis. Thus, despite the extensive sequence similarities of the enzymes involved, non-fermentative carbohydrate metabolism in the two yeasts displays distinct regulatory properties.
Collapse
Affiliation(s)
- M Luz López
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Edificio Santiago Gascón, 33006 Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Rodríguez C, Sanz P, Gancedo C. New mutations of Saccharomyces cerevisiae that partially relieve both glucose and galactose repression activate the protein kinase Snf1. FEMS Yeast Res 2003; 3:77-84. [PMID: 12702249 DOI: 10.1111/j.1567-1364.2003.tb00141.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We isolated from Saccharomyces cerevisiae two mutants, esc1-1 and ESC3-1, in which genes FBP1, ICL1 or GDH2 were partially derepressed during growth in glucose or galactose. The isolation was done starting with a triple mutant pyc1 pyc2 mth1 unable to grow in glucose-ammonium medium and selecting for mutants able to grow in the non-permissive medium. HXT1 and HXT2 which encode glucose transporters were expressed at high glucose concentrations in both esc1-1 and ESC3-1 mutants, while derepression of invertase at low glucose concentrations was impaired. REG1, cloned as a suppressor of ESC3-1, was not allelic to ESC3-1. Two-hybrid analysis showed an increased interaction of the protein kinase Snf1 with Snf4 in the ESC3-1 mutant; this was not due to mutations in SNF1 or SNF4. ESC3-1 did not bypass the requirement of Snf1 for derepression. We hypothesize that ESC3-1 either facilitates activation of Snf1 or interferes with its glucose-dependent inactivation.
Collapse
Affiliation(s)
- Cristina Rodríguez
- Instituto de Investigaciones Biomédicas 'Alberto Sols' CSIC-UAM, Unidad de Bioquímica y Genética de Levaduras, C/Arturo Duperier 4, 28029, Madrid, Spain
| | | | | |
Collapse
|
11
|
Andrade RP, Casal M. Expression of the Lactate Permease Gene JEN1 from the Yeast Saccharomyces cerevisiae. Fungal Genet Biol 2001; 32:105-11. [PMID: 11352531 DOI: 10.1006/fgbi.2001.1254] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Saccharomyces cerevisiae, lactate permease induction by lactic acid took place after transcription of JEN1. JEN1 transcripts were undetectable 10 min after the addition of a pulse of glucose to YP-lactic acid exponentially growing cells, while the permease activity ceased after 50 min. A value of 15.1 min was found for the half-life of JEN1 mRNA, showing the involvement of a glucose-induced mechanism of mRNA degradation. The rapid decline of the carrier activity upon glucose addition points to the existence of an irreversible carbon catabolite inactivation process. Isogenic strains, deleted in genes encoding enzymes involved in lactic acid metabolism, did not express JEN1, indicating an association of the intracellular metabolism of the acid to the transcription of the permease gene. The carbon sources capable of inducing JEN1 transcription were dependent on the strain. Distinct posttranslation mechanisms appeared to be involved in the lactate carrier activity.
Collapse
Affiliation(s)
- R P Andrade
- Centro de Ciências do Ambiente Departamento de Biologia, Universidade do Minho, Braga, 4710-057, Portugal
| | | |
Collapse
|
12
|
Hämmerle M, Bauer J, Rose M, Szallies A, Thumm M, Düsterhus S, Mecke D, Entian KD, Wolf DH. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. J Biol Chem 1998; 273:25000-5. [PMID: 9737955 DOI: 10.1074/jbc.273.39.25000] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Addition of glucose to cells of the yeast Saccharomyces cerevisiae growing on a non-fermentable carbon source leads to selective and rapid degradation of fructose-1,6-bisphosphatase. This so called catabolite inactivation of the enzyme is brought about by the ubiquitin-proteasome system. To identify additional components of the catabolite inactivation machinery, we isolated three mutant strains, gid1, gid2, and gid3, defective in glucose-induced degradation of fructose-1,6-bisphospha-tase. All mutant strains show in addition a defect in catabolite inactivation of three other gluconeogenic enzymes: cytosolic malate dehydrogenase, isocitrate lyase, and phosphoenolpyruvate carboxykinase. These findings indicate a common mechanism for the inactivation of all four enzymes. The mutants were also impaired in degradation of short-lived N-end rule substrates, which are degraded via the ubiquitin-proteasome system. Site-directed mutagenesis of the amino-terminal proline residue yielded fructose-1,6-bisphosphatase forms that were no longer degraded via the ubiquitin-proteasome pathway. All amino termini other than proline made fructose-1,6-bisphosphatase inaccessible to degradation. However, the exchange of the amino-terminal proline had no effect on the phosphorylation of the mutated enzyme. Our findings suggest an essential function of the amino-terminal proline residue for the degradation process of fructose-1,6-bisphosphatase. Phosphorylation of the enzyme was not necessary for degradation to occur.
Collapse
Affiliation(s)
- M Hämmerle
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
de Jong-Gubbels P, van Dijken JP, Pronk JT. Metabolic fluxes in chemostat cultures of Schizosaccharomyces pombe grown on mixtures of glucose and ethanol. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 6):1399-1407. [PMID: 8704980 DOI: 10.1099/13500872-142-6-1399] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Simultaneous utilization of glucose and ethanol by the yeast Schizosaccharomyces pombe CBS 356 was studied in aerobic chemostat cultures. In glucose-limited cultures, respirofermentative metabolism occurred at growth rates above 0.16 h-1. Although Sch. pombe lacks a functional glyoxylate cycle and therefore cannot utilize ethanol as a sole carbon source, ethanol was co-consumed by glucose-limited chemostat cultures. As a result, biomass yields increased, but not up to the theoretical value [0.92 g biomass (g glucose)-1] expected if all of the acetyl-CoA produced from glucose was instead synthesized from ethanol. When ethanol accounted for more than 30% of the substrate carbon in the mixed feed, it was incompletely utilized. In mixed-substrate cultures with a saturating ethanol fraction in the feed, the increase of the biomass yield as a result of ethanol consumption was highest at low dilution rates. This was not due to an increased specific rate of ethanol consumption at low growth rates; rather, the longer residence times at low dilution rates allowed Sch. pombe to utilize a larger fraction of the available ethanol, part of which was oxidized to acetate. Activities of gluconeogenic and glyoxylate-cycle enzymes were not detected in cell-free extracts of any of the cultures. Activities of acetaldehyde dehydrogenase and acetyl-CoA synthetase were low and of the same order of magnitude as the in vivo rates of acetate activation to acetyl-CoA. The results show that ethanol is a poor substrate for Sch. pombe, even as an auxiliary energy source.
Collapse
Affiliation(s)
- Patricia de Jong-Gubbels
- Department of Microbiology and Enzymology, Kluyver Laboratory of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Johannes P van Dijken
- Department of Microbiology and Enzymology, Kluyver Laboratory of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jack T Pronk
- Department of Microbiology and Enzymology, Kluyver Laboratory of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
14
|
Navas MA, Gancedo JM. The regulatory characteristics of yeast fructose-1,6-bisphosphatase confer only a small selective advantage. J Bacteriol 1996; 178:1809-12. [PMID: 8606152 PMCID: PMC177873 DOI: 10.1128/jb.178.7.1809-1812.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The question of how the loss of regulatory mechanisms for a metabolic enzyme would affect the fitness of the corresponding organism has been addressed. For this, the fructose-1,6-bisphosphatase (FbPase) from Saccharomyces cerevisiae has been taken as a model. Yeast strains in which different controls on FbPase (catabolite repression and inactivation; inhibition by fructose-2,6-bisphosphate and AMP) have been removed have been constructed. These strains express during growth on glucose either the native yeast FbPase, the Escherichia coli FbPase which is insensitive to inhibition by fructose-2,6-bisphosphate, or a mutated E. coli FbPase with low sensitivity to AMP. Expression of the heterologous FbPases increases the fermentation rate of the yeast and its generation time, while it decreases its growth yield. In the strain containing high levels of an unregulated bacterial FbPase, cycling between fructose-6-phosphate and fructose-1,6-bisphosphate reaches 14%. It is shown that the regulatory mechanisms of FbPase provide a slight but definite competitive advantage during growth in mixed cultures.
Collapse
Affiliation(s)
- M A Navas
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
15
|
Ordiz I, Herrero P, Rodicio R, Moreno F. Glucose-induced inactivation of isocitrate lyase in Saccharomyces cerevisiae is mediated by an internal decapeptide sequence. FEBS Lett 1995; 367:219-22. [PMID: 7607310 DOI: 10.1016/0014-5793(95)00538-k] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this work we have investigated the role of specific peptide sequences for glucose-inactivation of the yeast isocitrate lyase. Thus, different fragments of the ICL1 coding region were fused to the lacZ gene of E. coli to provide a reporter construction. Determinations of beta-galactosidase activities indicated that the decapeptide sequence KTKRNYSARD, located between amino acid residues 37 and 46 of isocitrate lyase, is important for glucose induced proteolytic inactivation. Further experimental evidence was provided by insertion of this sequence into a glucokinase-beta-galactosidase fusion protein, which is not sensitive to glucose regulation. The decapeptide inserted conferred glucose inactivation to this construct, confirming that it is both necessary and sufficient as a signal.
Collapse
Affiliation(s)
- I Ordiz
- Departamento de Biología Functional (Bioquímica), Universidad de Oviedo, Spain
| | | | | | | |
Collapse
|