1
|
Abstract
The enzymatic activity of Paracoccus denitrificans cytochrome c oxidase (COX) and Escherichia coli cytochrome b(o) ubiquinol oxidase (QOX) was determined in the presence of formamide, N,N-dimethyl formamide and N,N-dimethyl acetamide. Formamide was found to inhibit the enzyme activity of the oxidases most significantly, whereas the other two compounds inhibited the activity to a lesser extent. The effects of formamide and analogs on enzyme activity were very similar for COX and QOX, indicating that the mechanism of inhibition might be the same for both of these oxidases. The inhibition kinetics followed a non-competitive mechanism. Studies using proteoliposomes of COX and QOX containing the electron entry site of the enzyme directed towards the outside of the vesicles showed that the effect of inhibition by formamide was higher when the inhibitor was present on the outside of the proteoliposome compared to when it was present only in the aqueous core. This indicates that inhibition of enzyme activity by formamide possibly predominantly involves blocking of the water exit pathway in the oxidases.
Collapse
Affiliation(s)
- Sayan Gupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | | |
Collapse
|
2
|
Mielke T, Villa C, Edwards PC, Schertler GFX, Heyn MP. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8. J Mol Biol 2002; 316:693-709. [PMID: 11866527 DOI: 10.1006/jmbi.2001.5352] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used site-specific heavy-atom labelling and X-ray diffraction to localize single amino acid residues in the cytoplasmic domain of the integral membrane protein rhodopsin, the dim-light photoreceptor of retinal vertebrate rod cells. Two-dimensional orthorhombic crystals of the space group p22(1)2(1) (a=59.5(+/-1) A and b=82.7(+/-1.5) A) were produced from detergent-solubilized, partially delipidated rhodopsin. To obtain milligram amounts of two-dimensional crystals, which are required for X-ray diffraction, the yield of the crystalline material was significantly increased by reconstitution of rhodopsin in the presence of cholesterol (1:2 to 1:10 mol/mol) and by adding polar organic solvents to the dialysis buffer. The native cysteine residues C140 and C316 were then selectively labelled with mercury using the sulphydryl-specific reagent p-chloromercuribenzoate (1.6-2.1 mol Hg per mol rhodopsin). The labelling did not affect the unit cell dimensions. Optical absorption spectra of labelled and native two-dimensional rhodopsin crystals showed the characteristic 11-cis-retinal peak at 498 nm, which corresponds to the dark state of rhodopsin. The in-plane position of the mercury label was calculated at 9.5 A resolution from the intensity differences in the X-ray diffraction patterns of labelled and native crystals using Fourier difference methods and the phase information from electron crystallography. The label positions were in excellent agreement with the positions of C140 at the cytoplasmic end of helix 3 and of C316 in the cytoplasmic helix 8 recently obtained from three-dimensional rhodopsin crystals. Whereas these high-resolution diffraction studies were performed under cryogenic conditions (100 K), our results were obtained at room temperature with fully hydrated membranes and in the absence of loop-loop crystal contacts. To study the structural changes of the cytoplasmic loops involved in activation and signal transduction, our more physiological conditions offer important advantages. Furthermore, the localization of C316 is the first direct proof that the electron density on top of helix 1 observed by cryo-electron microscopy is a part of the C-terminal loop. Our approach is of particular interest for investigations of other membrane proteins, for which 3D crystals are not available. Structural constraints from heavy-atom labels at strategic sites enable the assignment of a position in the amino acid sequence to features visible in a low-resolution density map and the study of conformational changes associated with different functional states of the membrane protein.
Collapse
Affiliation(s)
- Thorsten Mielke
- Freie Universität Berlin, Biophysics Group, Department of Physics, Berlin, Germany
| | | | | | | | | |
Collapse
|
3
|
Hendriks JHM, Jasaitis A, Saraste M, Verkhovsky MI. Proton and electron pathways in the bacterial nitric oxide reductase. Biochemistry 2002; 41:2331-40. [PMID: 11841226 DOI: 10.1021/bi0121050] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron- and proton-transfer reactions in bacterial nitric oxide reductase (NOR) have been investigated by optical spectroscopy and electrometry. In liposomes, NOR does not show any generation of an electric potential during steady-state turnover. This electroneutrality implies that protons are taken up from the same side of the membrane as electrons during catalysis. Intramolecular electron redistribution after photolysis of the partially reduced CO-bound enzyme shows that the electron transfer in NOR has the same pathway as in the heme-copper oxidases. The electron is transferred from the acceptor site, heme c, via a low-spin heme b to the binuclear active site (heme b3/FeB). The electron-transfer rate between hemes c and b is (3 +/- 2) x 10(4) s(-1). The rate of electron transfer between hemes b and b3 is too fast to be resolved (>10(6) s(-1)). Only electron transfer between heme c and heme b is coupled to the generation of an electric potential. This implies that the topology of redox centers in NOR is comparable to that in the heme-copper cytochrome oxidases. The optical and electrometric measurements allow identification of the intermediate states formed during turnover of the fully reduced enzyme, as well as the associated proton and electron movement linked to the NO reduction. The first phase (k = 5 x 10(5) s(-1)) is electrically silent, and characterized by the disappearance of absorbance at 433 nm and the appearance of a broad peak at 410 nm. We assign this phase to the formation of a ferrous NO adduct of heme b3. NO binding is followed by a charge separation phase (k = 2.2 x 10(5) s(-1)). We suggest that the formation of this intermediate that is not linked to significant optical changes involves movement of charged side chains near the active site. The next step creates a negative potential with a rate constant of approximately 3 x 10(4) s(-1) and a weak optical signature. This is followed by an electrically silent phase with a rate constant of 5 x 10(3) s(-1) leading to the last intermediate of the first turnover (a rate constant of approximately 10(3) s(-1)). The fully reduced enzyme has four electrons, enough for two complete catalytic cycles. However, the protons for the second turnover must be taken from the bulk, resulting in the generation of a positive potential in two steps. The optical measurements also verify two phases in the oxidation of low-spin hemes. Based on these results, we present mechanistic models of NO reduction by NOR. The results can be explained with a trans mechanism rather than a cis model involving FeB. Additionally, the data open up the possibility that NOR employs a P450-type mechanism in which only heme b3 functions as the NO binding site during turnover.
Collapse
Affiliation(s)
- Janneke H M Hendriks
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Postfach 102209, D-69012 Heidelberg, Germany
| | | | | | | |
Collapse
|
4
|
Urbani A, Gemeinhardt S, Warne A, Saraste M. Properties of the detergent solubilised cytochrome c oxidase (cytochrome cbb(3)) purified from Pseudomonas stutzeri. FEBS Lett 2001; 508:29-35. [PMID: 11707262 DOI: 10.1016/s0014-5793(01)03006-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cytochrome cbb(3) is a cytochrome c-oxidising isoenzyme that belongs to the superfamily of respiratory haem/copper oxidases. We have developed a purification method yielding large amounts of pure cbb(3) complex from the soil bacterium Pseudomonas stutzeri. This cytochrome cbb(3) complex consists of three subunits (ccoNOP) in a 1:1:1 stoichiometry and contains two b-type and three c-type haems. The protein complex behaves as a monomer with an overall molecular weight of 114.0+/-8.9 kDa and a s(0)(20,w) value of 8.9+/-0.3 S as determined by analytical ultracentrifugation. Crystals diffracting to 5.0 A resolution have been grown by the vapour diffusion sitting drop method to an average size of 0.1 x 0.1 x 0.3 mm. This is the first crystallisation report of a (cbb(3))-type oxidase.
Collapse
Affiliation(s)
- A Urbani
- European Molecular Biology Laboratory, Structural and Computational Biology Programme, Meyerhof str. 1, D-69117 Heidelberg, Germany.
| | | | | | | |
Collapse
|
5
|
Rigaud J, Chami M, Lambert O, Levy D, Ranck J. Use of detergents in two-dimensional crystallization of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1508:112-28. [PMID: 11090821 DOI: 10.1016/s0005-2736(00)00307-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Structure determination at high resolution is actually a difficult challenge for membrane proteins and the number of membrane proteins that have been crystallized is still small and far behind that of soluble proteins. Because of their amphiphilic character, membrane proteins need to be isolated, purified and crystallized in detergent solutions. This makes it difficult to grow the well-ordered three-dimensional crystals that are required for high resolution structure analysis by X-ray crystallography. In this difficult context, growing crystals confined to two dimensions (2D crystals) and their structural analysis by electron crystallography has opened a new way to solve the structure of membrane proteins. However, 2D crystallization is one of the major bottlenecks in the structural studies of membrane proteins. Advances in our understanding of the interaction between proteins, lipids and detergents as well as development and improvement of new strategies will facilitate the success rate of 2D crystallization. This review deals with the various available strategies for obtaining 2D crystals from detergent-solubilized intrinsic membrane proteins. It gives an overview of the methods that have been applied and gives details and suggestions of the physical processes leading to the formation of the ordered arrays which may be of help for getting more proteins crystallized in a form suitable for high resolution structural analysis by electron crystallography.
Collapse
Affiliation(s)
- J Rigaud
- Institut Curie, Section de Recherche, UMR-CNRS 168 and LRC-CEA 8, 11 rue Pierre et Marie Curie, 75231, Paris, France.
| | | | | | | | | |
Collapse
|
6
|
Prutsch A, Lohaus C, Green B, Meyer HE, Lübben M. Multiple posttranslational modifications at distinct sites contribute to heterogeneity of the lipoprotein cytochrome bo(3). Biochemistry 2000; 39:6554-63. [PMID: 10828972 DOI: 10.1021/bi992193c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heme-copper cytochrome oxidase of Escherichia coli (cytochrome bo(3)) was tagged with oligohistidine at the C-terminus of the small noncatalytic subunit IV. After detergent solubilization, the enzyme was purified by a one-step procedure with immobilized metal affinity chromatography. Using different cytochrome bo(3) constructs as reference, the products were investigated by mass spectroscopical and immunological methods. Several posttranslational modifications of subunits II, III, and IV were observed: (1) N-terminal methionines of subunits III and IV are split off. (2) Fifty percent of subunit III polypeptides are acetylated, presumably at the N-terminal alanine. (3) Lipoprotein processing of subunit II involves cleavage of the signal peptide. (4) Maturation of subunit II [Ma, J., Katsonouri, A., and Gennis, R. B. (1997) Biochemistry 36, 11298-11303] alters the structure of the N-terminal cysteine by N-palmitoylation and S-glyceryldipalmitoylation. (5) A hexapeptide is split off from the C-terminus of subunit II. This happens subsequently to the N-terminal lipoprotein processing step and is dependent on the growth state of cells.
Collapse
Affiliation(s)
- A Prutsch
- Lehrstuhl Biophysik and Institut für Physiologische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
7
|
Pereira MM, Santana M, Soares CM, Mendes J, Carita JN, Fernandes AS, Saraste M, Carrondo MA, Teixeira M. The caa3 terminal oxidase of the thermohalophilic bacterium Rhodothermus marinus: a HiPIP:oxygen oxidoreductase lacking the key glutamate of the D-channel. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1413:1-13. [PMID: 10524259 DOI: 10.1016/s0005-2728(99)00073-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The respiratory chain of the thermohalophilic bacterium Rhodothermus marinus contains a novel complex III and a high potential iron-sulfur protein (HiPIP) as the main electron shuttle (Pereira et al., Biochemistry 38 (1999) 1268-1275 and 1276-1283). In this paper, one of the terminal oxidases expressed in this bacterium is extensively characterised. It is a caa3-type oxidase, isolated with four subunits (apparent molecular masses of 42, 19 and 15 kDa and a C-haem containing subunit of 35 kDa), which has haems of the A(s) type. This oxidase is capable of using TMPD and horse heart cytochrome c as substrates, but has a higher turnover with HiPIP, being the first example of a HiPIP:oxygen oxidoreductase. The oxidase has unusually low reduction potentials of 260 (haem C), 255 (haem A) and 180 mV (haem A3). Subunit I of R. marinus caa3 oxidase has an overall significant homology with the subunits I of the COX type oxidases, namely the metal binding sites and most residues considered to be functionally important for proton uptake and pumping (K- and D-channels). However, a major difference is present: the putative essential glutamate (E278 in Paraccocus denitrificans) of the D-channel is missing in the R. marinus oxidase. Homology modelling of the R. marinus oxidase shows that the phenol group of a tyrosine residue may occupy a similar spatial position as the glutamate carboxyl, in relation to the binuclear centre. Moreover, sequence comparisons reveal that several enzymes lacking that glutamate have a conserved substitution pattern in helix VI: -YSHPXV- instead of -XGHPEV-. These observations are discussed in terms of the mechanisms for proton uptake and it is suggested that, in these enzymes, tyrosine may play the role of the glutamate in the proton channel.
Collapse
Affiliation(s)
- M M Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hendriks J, Warne A, Gohlke U, Haltia T, Ludovici C, Lübben M, Saraste M. The active site of the bacterial nitric oxide reductase is a dinuclear iron center. Biochemistry 1998; 37:13102-9. [PMID: 9748316 DOI: 10.1021/bi980943x] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel, improved method for purification of nitric oxide reductase (NOR) from membranes of Paracoccus denitrificans has been developed. The purified enzyme is a cytochrome bc complex which, according to protein chemical and hydrodynamic data, contains two subunits in a 1:1 stoichiometry. The purified NorBC complex binds 0.87 g of dodecyl maltoside/g of protein and forms a dimer in solution. Similarly, it is dimeric in two-dimensional crystals. Images of these crystals have been processed at 8 A resolution in projection to the membrane. The NorB subunit is homologous to the main catalytic subunit of cytochrome oxidase and is predicted to contain the active bimetallic center in which two NO molecules are turned over to N2O. Metal analysis and heme composition implies that it binds two B-type hemes and a nonheme iron but no copper. NorC is a membrane-anchored cytochrome c. Fourier transform infrared spectroscopy shows that carbon monoxide dissociates from the reduced heme in light and associates with another metal center which is distinct from the copper site of heme/copper oxidases. Electron paramagnetic resonance spectroscopy reveals that NO binds to the reduced enzyme under turnover conditions giving rise to signals near g = 2 and g = 4. The former represents a typical nitrosyl-ferroheme signal whereas the latter is a fingerprint of a nonheme iron/NO adduct. We conclude that the active site of NOR is a dinuclear iron center.
Collapse
Affiliation(s)
- J Hendriks
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Hasler L, Heymann JB, Engel A, Kistler J, Walz T. 2D crystallization of membrane proteins: rationales and examples. J Struct Biol 1998; 121:162-71. [PMID: 9615435 DOI: 10.1006/jsbi.1998.3960] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The difficulty in crystallizing channel proteins in three dimensions limits the use of X-ray crystallography in solving their structures. In contrast, the amphiphilic character of integral membrane proteins promotes their integration into artificial lipid bilayers. Protein-protein interactions may lead to ordering of the proteins within the lipid bilayer into two-dimensional crystals that are amenable to structural studies by electron crystallography and atomic force microscopy. While reconstitution of membrane proteins with lipids is readily achieved, the mechanisms for crystal formation during or after reconstitution are not well understood. The nature of the detergent and lipid as well as pH and counter-ions is known to influence the crystal type and quality. Protein-protein interactions may also promote crystal stacking and aggregation of the sheet-like crystals, posing problems in data collection. Although highly promising, the number of well-studied examples is still too small to draw conclusions that would be applicable to any membrane protein of interest. Here we discuss parameters influencing the outcome of two-dimensional crystallization trials using prominent examples of channel protein crystals and highlight areas where further improvements to crystallization protocols can be made.
Collapse
Affiliation(s)
- L Hasler
- Maurice E. Müller Institute for Microscopy, Biozentrum, University of Basel, Switzerland
| | | | | | | | | |
Collapse
|
10
|
Saiki K, Mogi T, Tsubaki M, Hori H, Anraku Y. Exploring subunit-subunit interactions in the Escherichia coli bo-type ubiquinol oxidase by extragenic suppressor mutation analysis. J Biol Chem 1997; 272:14721-6. [PMID: 9169436 DOI: 10.1074/jbc.272.23.14721] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytochrome bo-type ubiquinol oxidase is a four-subunit heme-copper terminal oxidase and functions as a redox-coupled proton pump in the aerobic respiratory chain of Escherichia coli. On the basis of deletion and chemical cross-linking analyses on subunit IV, we proposed that subunit IV is essential for CuB binding to subunit I and that it is present in a cleft between subunits I and III (Saiki, K., Nakamura, H., Mogi, T., and Anraku, Y. (1996) J. Biol. Chem. 271, 15336-15340). To extend previous studies, we carried out alanine-scanning mutagenesis for selected 16-amino acid residues in subunit IV to explore subunit-subunit interactions in bo-type ubiquinol oxidase. We found that only the replacement of Phe83 in helix III resulted in the reduction of the catalytic activity but that this did not significantly affect the UV-visible spectroscopic properties and the copper content. This suggests that individual amino acid substitutions, including the six invariant residues, are not enough to alter such properties of the metal centers. Extragenic suppressor mutations were isolated for the Phe83 --> Ala mutation of subunit IV and identified as missense mutations in helices VII and VIII in subunit I. These observations provide further support for specific interactions of subunit IV with helix VII and/or VIII, the CuB binding domain, of subunit I and suggest that subunit IV functions as a domain-specific molecular chaperon in the oxidase complex.
Collapse
Affiliation(s)
- K Saiki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | |
Collapse
|
11
|
Young HS, Rigaud JL, Lacapère JJ, Reddy LG, Stokes DL. How to make tubular crystals by reconstitution of detergent-solubilized Ca2(+)-ATPase. Biophys J 1997; 72:2545-58. [PMID: 9168030 PMCID: PMC1184452 DOI: 10.1016/s0006-3495(97)78898-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In an attempt to better define the parameters governing reconstitution and two-dimensional crystallization of membrane proteins, we have studied Ca2(+)-ATPase from rabbit sarcoplasmic reticulum. This ion pump forms vanadate-induced crystals in its native membrane and has previously been reconstituted at high lipid-to-protein ratios for functional studies. We have characterized the reconstitution of purified Ca2(+)-ATPase at low lipid-to-protein ratios and discovered procedures that produce long, tubular crystals suitable for helical reconstruction. C12E8 (n-dodecyl-octaethylene-glycol monoether) was used to fully solubilize various mixtures of lipid and purified Ca2(+)-ATPase, and BioBeads were then used to remove the C12E8. Slow removal resulted in two populations of vesicles, and the proteoliposome population was separated from the liposome population on a sucrose density gradient. These proteoliposomes had a lipid-to-protein ratio of 1:2, and virtually 100% of molecules faced the outside of vesicles, as determined by fluorescein isothiocyanate labeling. Cycles of freeze-thaw caused considerable aggregation of these proteoliposomes, and, if phosphatidyl ethanolamine and phosphatidic acid were included, or if the bilayers were doped with small amounts of C12E8, vanadate-induced tubular crystals grew from the aggregates. Thus our procedure comprised two steps-reconstitution followed by crystallization-allowing us to consider mechanisms of bilayer formation separately from those of crystallization and tube formation.
Collapse
Affiliation(s)
- H S Young
- Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York 10016, USA
| | | | | | | | | |
Collapse
|
12
|
Gohlke U, Warne A, Saraste M. Projection structure of the cytochrome bo ubiquinol oxidase from Escherichia coli at 6 A resolution. EMBO J 1997; 16:1181-8. [PMID: 9135135 PMCID: PMC1169717 DOI: 10.1093/emboj/16.6.1181] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The haem-copper cytochrome oxidases are terminal catalysts of the respiratory chains in aerobic organisms. These integral membrane protein complexes catalyse the reduction of molecular oxygen to water and utilize the free energy of this reaction to generate a transmembrane proton gradient. Quinol oxidase complexes such as the Escherichia coli cytochrome bo belong to this superfamily. To elucidate the similarities as well as differences between ubiquinol and cytochrome c oxidases, we have analysed two-dimensional crystals of cytochrome bo by cryo-electron microscopy. The crystals diffract beyond 5 A. A projection map was calculated to a resolution of 6 A. All four subunits can be identified and single alpha-helices are resolved within the density for the protein complex. The comparison with the three-dimensional structure of cytochrome c oxidase shows the clear structural similarity within the common functional core surrounding the metal-binding sites in subunit I. It also indicates subtle differences which are due to the distinct subunit composition. This study can be extended to a three-dimensional structure analysis of the quinol oxidase complex by electron image processing of tilted crystals.
Collapse
Affiliation(s)
- U Gohlke
- European Molecular Biology Laboratory, Biological Structures Programme, Germany
| | | | | |
Collapse
|
13
|
|
14
|
Lübben M, Gerwert K. Redox FTIR difference spectroscopy using caged electrons reveals contributions of carboxyl groups to the catalytic mechanism of haem-copper oxidases. FEBS Lett 1996; 397:303-7. [PMID: 8955368 DOI: 10.1016/s0014-5793(96)01174-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Redox spectra of the haem-copper oxidases cytochrome aa3 of Rhodobacter sphaeroides and cytochrome bo3 of Escherichia coli were recorded in the visible and infrared spectral regions. The reduction of oxidases was initiated after light activation of the 'caged electron' donor riboflavin. Infrared redox difference spectra exhibit absorbance changes in the amide I region, which are indicative of very small redox-linked conformational movements in the polypeptide backbone. A reproducible redox-dependent pattern of positive and negative absorption changes is found in the carbonyl region (1680-1750 cm(-1)). The carbonyl bands shift to lower frequencies due to isotope exchange of the solvent H2O to D2O. This common feature of cytochrome c and quinol oxidases indicates that at least (i) one redox-sensitive carboxyl group is in the protonated state in the oxidized form and (ii) one carboxylic acid is involved at a catalytic step--presumably in proton translocation--of haem-copper oxidase.
Collapse
Affiliation(s)
- M Lübben
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Germany.
| | | |
Collapse
|
15
|
Zickermann I, Anemüller S, Richter OM, Tautu OS, Link TA, Ludwig B. Biochemical and spectroscopic properties of the four-subunit quinol oxidase (cytochrome ba3) from Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1277:93-102. [PMID: 8950374 DOI: 10.1016/s0005-2728(96)00086-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ba3 quinol oxidase from Paracoccus denitrificans has been purified by a new protocol leading to significantly higher yields than previously reported (Richter et al. (1994) J. Biol. Chem. 269, 23079-23086). In an SDS PAG an additional protein band compared with the previous preparation appears, which can be identified as the major form of subunit II. All protein bands can be assigned to genes of the qox operon by N-terminal sequencing, indicating that the oxidase consists of four subunits. In addition to one heme A, one heme B, and one copper atom, the preparation contains two ubiquinone molecules per enzyme. The oxidase is further characterized by electron paramagnetic resonance (EPR), circular dichroism (CD) and magnetic circular dichroism (MCD) spectroscopy.
Collapse
Affiliation(s)
- I Zickermann
- Institute of Biochemistry/Molecular Genetics, University of Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|