1
|
Li C, Zhou J, Du G, Chen J, Takahashi S, Liu S. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol Adv 2020; 44:107630. [PMID: 32919011 DOI: 10.1016/j.biotechadv.2020.107630] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
Abstract
Aspergillus niger has become one of the most important hosts for food enzyme production due to its unique food safety characteristics and excellent protein secretion systems. A series of food enzymes such as glucoamylase have been commercially produced by A. niger strains, making this species a suitable platform for the engineered of strains with improved enzyme production. However, difficulties in genetic manipulations and shortage of expression strategies limit the progress in this regard. Moreover, several mycotoxins have recently been detected in some A. niger strains, which raises the necessity for a regulatory approval process for food enzyme production. With robust strains, processing engineering strategies are also needed for producing the enzymes on a large scale, which is also challenging for A. niger, since its culture is aerobic, and non-Newtonian fluid properties are developed during submerged culture, making mixing and aeration very energy-intensive. In this article, the progress and challenges of developing A. niger for the production of food enzymes are reviewed, including its genetic manipulations, strategies for more efficient production of food enzymes, and elimination of mycotoxins for product safety.
Collapse
Affiliation(s)
- Cen Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Roth C, Moroz OV, Ariza A, Skov LK, Ayabe K, Davies GJ, Wilson KS. Structural insight into industrially relevant glucoamylases: flexible positions of starch-binding domains. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:463-470. [PMID: 29717717 DOI: 10.1107/s2059798318004989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/27/2018] [Indexed: 11/10/2022]
Abstract
Glucoamylases are one of the most important classes of enzymes in the industrial degradation of starch biomass. They consist of a catalytic domain and a carbohydrate-binding domain (CBM), with the latter being important for the interaction with the polymeric substrate. Whereas the catalytic mechanisms and structures of the individual domains are well known, the spatial arrangement of the domains with respect to each other and its influence on activity are not fully understood. Here, the structures of three industrially used fungal glucoamylases, two of which are full length, have been crystallized and determined. It is shown for the first time that the relative orientation between the CBM and the catalytic domain is flexible, as they can adopt different orientations independently of ligand binding, suggesting a role as an anchor to increase the contact time and the relative concentration of substrate near the active site. The flexibility in the orientations of the two domains presented a considerable challenge for the crystallization of the enzymes.
Collapse
Affiliation(s)
- Christian Roth
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Olga V Moroz
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Antonio Ariza
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Lars K Skov
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | | | - Gideon J Davies
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Keith S Wilson
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| |
Collapse
|
3
|
Görgens JF, Bressler DC, van Rensburg E. EngineeringSaccharomyces cerevisiaefor direct conversion of raw, uncooked or granular starch to ethanol. Crit Rev Biotechnol 2014; 35:369-91. [DOI: 10.3109/07388551.2014.888048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Enzymatic characterization of Bacillus licheniformis γ-glutamyltranspeptidase fused with N-terminally truncated forms of Bacillus sp. TS-23 α-amylase. Enzyme Microb Technol 2012; 51:86-94. [DOI: 10.1016/j.enzmictec.2012.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/18/2012] [Accepted: 04/21/2012] [Indexed: 11/17/2022]
|
5
|
Stephen P, Tseng KL, Liu YN, Lyu PC. Circular permutation of the starch-binding domain: inversion of ligand selectivity with increased affinity. Chem Commun (Camb) 2012; 48:2612-4. [PMID: 22294161 DOI: 10.1039/c2cc17376j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Proteins containing starch-binding domains (SBDs) are used in a variety of scientific and technological applications. A circularly permutated SBD (CP90) with improved affinity and selectivity toward longer-chain carbohydrates was synthesized, suggesting that a new starch-binding protein may be developed for specific scientific and industrial applications.
Collapse
Affiliation(s)
- Preyesh Stephen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd, Hsinchu, 30013, Taiwan ROC
| | | | | | | |
Collapse
|
6
|
Kumar P, Satyanarayana T. Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 2009; 29:225-55. [DOI: 10.1080/07388550903136076] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Christiansen C, Abou Hachem M, Janecek S, Viksø-Nielsen A, Blennow A, Svensson B. The carbohydrate-binding module family 20--diversity, structure, and function. FEBS J 2009; 276:5006-29. [PMID: 19682075 DOI: 10.1111/j.1742-4658.2009.07221.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Starch-active enzymes often possess starch-binding domains (SBDs) mediating attachment to starch granules and other high molecular weight substrates. SBDs are divided into nine carbohydrate-binding module (CBM) families, and CBM20 is the earliest-assigned and best characterized family. High diversity characterizes CBM20s, which occur in starch-active glycoside hydrolase families 13, 14, 15, and 77, and enzymes involved in starch or glycogen metabolism, exemplified by the starch-phosphorylating enzyme glucan, water dikinase 3 from Arabidopsis thaliana and the mammalian glycogen phosphatases, laforins. The clear evolutionary relatedness of CBM20s to CBM21s, CBM48s and CBM53s suggests a common clan hosting most of the known SBDs. This review surveys the diversity within the CBM20 family, and makes an evolutionary comparison with CBM21s, CBM48s and CBM53s, discussing intrafamily and interfamily relationships. Data on binding to and enzymatic activity towards soluble ligands and starch granules are summarized for wild-type, mutant and chimeric fusion proteins involving CBM20s. Noticeably, whereas CBM20s in amylolytic enzymes confer moderate binding affinities, with dissociation constants in the low micromolar range for the starch mimic beta-cyclodextrin, recent findings indicate that CBM20s in regulatory enzymes have weaker, low millimolar affinities, presumably facilitating dynamic regulation. Structures of CBM20s, including the first example of a full-length glucoamylase featuring both the catalytic domain and the SBD, are summarized, and distinct architectural and functional features of the two SBDs and roles of pivotal amino acids in binding are described. Finally, some applications of SBDs as affinity or immobilization tags and, recently, in biofuel and in planta bioengineering are presented.
Collapse
Affiliation(s)
- Camilla Christiansen
- VKR Research Centre Pro-Active Plants, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | | | |
Collapse
|
8
|
Christiansen C, Hachem MA, Glaring MA, Viksø-Nielsen A, Sigurskjold BW, Svensson B, Blennow A. A CBM20 low-affinity starch-binding domain from glucan, water dikinase. FEBS Lett 2009; 583:1159-63. [PMID: 19275898 DOI: 10.1016/j.febslet.2009.02.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/11/2009] [Accepted: 02/27/2009] [Indexed: 11/20/2022]
Abstract
The family 20 carbohydrate-binding module (CBM20) of the Arabidopsis starch phosphorylator glucan, water dikinase 3 (GWD3) was heterologously produced and its properties were compared to the CBM20 from a fungal glucoamylase (GA). The GWD3 CBM20 has 50-fold lower affinity for cyclodextrins than that from GA. Homology modelling identified possible structural elements responsible for this weak binding of the intracellular CBM20. Differential binding of fluorescein-labelled GWD3 and GA modules to starch granules in vitro was demonstrated by confocal laser scanning microscopy and yellow fluorescent protein-tagged GWD3 CBM20 expressed in tobacco confirmed binding to starch granules in planta.
Collapse
Affiliation(s)
- Camilla Christiansen
- VKR Research Centre, Pro-Active Plants, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | | | | | |
Collapse
|
9
|
Recent advances in microbial raw starch degrading enzymes. Appl Biochem Biotechnol 2009; 160:988-1003. [PMID: 19277485 DOI: 10.1007/s12010-009-8579-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 02/18/2009] [Indexed: 11/27/2022]
Abstract
Raw starch degrading enzymes (RSDE) refer to enzymes that can directly degrade raw starch granules below the gelatinization temperature of starch. These promising enzymes can significantly reduce energy and simplify the process in starch industry. RSDE are ubiquitous and produced by plants, animals, and microorganisms. However, microbial sources are the most preferred one for large-scale production. During the past few decades, RSDE have been studied extensively. This paper reviews the recent development in the production, purification, properties, and application of microbial RSDE. This is the first review on microbial RSDE to date.
Collapse
|
10
|
van der Kaaij RM, Yuan XL, Franken A, Ram AFJ, Punt PJ, van der Maarel MJEC, Dijkhuizen L. Two novel, putatively cell wall-associated and glycosylphosphatidylinositol-anchored alpha-glucanotransferase enzymes of Aspergillus niger. EUKARYOTIC CELL 2007; 6:1178-88. [PMID: 17496125 PMCID: PMC1951109 DOI: 10.1128/ec.00354-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the genome sequence of Aspergillus niger CBS 513.88, three genes were identified with high similarity to fungal alpha-amylases. The protein sequences derived from these genes were different in two ways from all described fungal alpha-amylases: they were predicted to be glycosylphosphatidylinositol anchored, and some highly conserved amino acids of enzymes in the alpha-amylase family were absent. We expressed two of these enzymes in a suitable A. niger strain and characterized the purified proteins. Both enzymes showed transglycosylation activity on donor substrates with alpha-(1,4)-glycosidic bonds and at least five anhydroglucose units. The enzymes, designated AgtA and AgtB, produced new alpha-(1,4)-glycosidic bonds and therefore belong to the group of the 4-alpha-glucanotransferases (EC 2.4.1.25). Their reaction products reached a degree of polymerization of at least 30. Maltose and larger maltooligosaccharides were the most efficient acceptor substrates, although AgtA also used small nigerooligosaccharides containing alpha-(1,3)-glycosidic bonds as acceptor substrate. An agtA knockout of A. niger showed an increased susceptibility towards the cell wall-disrupting compound calcofluor white, indicating a cell wall integrity defect in this strain. Homologues of AgtA and AgtB are present in other fungal species with alpha-glucans in their cell walls, but not in yeast species lacking cell wall alpha-glucan. Possible roles for these enzymes in the synthesis and/or maintenance of the fungal cell wall are discussed.
Collapse
Affiliation(s)
- R M van der Kaaij
- Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
Juge N, Nøhr J, Le Gal-Coëffet MF, Kramhøft B, Furniss CSM, Planchot V, Archer DB, Williamson G, Svensson B. The activity of barley α-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:275-84. [PMID: 16403494 DOI: 10.1016/j.bbapap.2005.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/20/2005] [Accepted: 11/14/2005] [Indexed: 11/25/2022]
Abstract
High affinity for starch granules of certain amylolytic enzymes is mediated by a separate starch binding domain (SBD). In Aspergillus niger glucoamylase (GA-I), a 70 amino acid O-glycosylated peptide linker connects SBD with the catalytic domain. A gene was constructed to encode barley alpha-amylase 1 (AMY1) fused C-terminally to this SBD via a 37 residue GA-I linker segment. AMY1-SBD was expressed in A. niger, secreted using the AMY1 signal sequence at 25 mg x L(-1) and purified in 50% yield. AMY1-SBD contained 23% carbohydrate and consisted of correctly N-terminally processed multiple forms of isoelectric points in the range 4.1-5.2. Activity and apparent affinity of AMY1-SBD (50 nM) for barley starch granules of 0.034 U x nmol(-1) and K(d) = 0.13 mg x mL(-1), respectively, were both improved with respect to the values 0.015 U x nmol(-1) and 0.67 mg x mL(-1) for rAMY1 (recombinant AMY1 produced in A. niger). AMY1-SBD showed a 2-fold increased activity for soluble starch at low (0.5%) but not at high (1%) concentration. AMY1-SBD hydrolysed amylose DP440 with an increased degree of multiple attack of 3 compared to 1.9 for rAMY1. Remarkably, at low concentration (2 nM), AMY1-SBD hydrolysed barley starch granules 15-fold faster than rAMY1, while higher amounts of AMY-SBD caused molecular overcrowding of the starch granule surface.
Collapse
Affiliation(s)
- Nathalie Juge
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Norouzian D, Akbarzadeh A, Scharer JM, Moo Young M. Fungal glucoamylases. Biotechnol Adv 2005; 24:80-5. [PMID: 16091302 DOI: 10.1016/j.biotechadv.2005.06.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Accepted: 06/22/2005] [Indexed: 11/28/2022]
Abstract
Fungi are employed to produce industrially important glucoamylases. Most glucoamylases are glycosylated. Glycosylation enhances the enzyme stability. Glucoamylases contain both starch binding and catalytic binding domains, the former being responsible for activity on raw (insoluble) starch. Proteases may act on this domain causing the enzyme to lose its activity on insoluble starch. Optimal activity is observed at pH 4.5 to 6.5 and 50 to 70 degrees C. Glucoamylases contain up to 7 sub-sites with highly varying affinity. They can be produced by different methods including submerged, solid state and semi-solid state fermentation processes.
Collapse
Affiliation(s)
- Dariush Norouzian
- Department of Chemical Engineering, University of Waterloo, Ontario, Canada.
| | | | | | | |
Collapse
|
13
|
Huang HB, Chi MC, Hsu WH, Liang WC, Lin LL. Construction and one-step purification of Bacillus kaustophilus leucine aminopeptidase fused to the starch-binding domain of Bacillus sp. strain TS-23 α-amylase. Bioprocess Biosyst Eng 2005; 27:389. [PMID: 16041515 DOI: 10.1007/s00449-005-0001-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 04/14/2005] [Indexed: 11/25/2022]
Abstract
The starch-binding domain of Bacillus sp. strain TS-23 alpha-amylase was introduced into the C-terminal end of Bacillus kaustophilus leucine aminopeptidase (BkLAP) to generate a chimeric enzyme (BkLAPsbd) with raw-starch-binding activity. BkLAPsbd, with an apparent molecular mass of approximately 65 kDa, was overexpressed in Escherichia coli M15 cells and purified to homogeneity by nickel-chelate chromatography. Native PAGE and chromatographic analyses revealed that the purified fusion protein has a hexameric structure. The half-life for BkLAPsbd was 12 min at 70 degrees C, while less than 20% of wild-type enzyme activity retained at the same heating condition. Compared with the wild-type enzyme, the 60% decrease in the catalytic efficiency of BkLAPsbd was due to a 91% increase in K (m) value. Starch-binding assays showed that the K (d) and B (max) values for the fusion enzyme were 2.3 microM and 0.35 micromol/g, respectively. The adsorption of the crude BkLAPsbd onto raw starch was affected by starch concentration, pH, and temperature. The adsorbed enzyme could be eluted from the adsorbent by 2% soluble starch in 20 mM Tris-HCl buffer (pH 8.0). About 49% of BkLAPsbd in the crude extract was recovered through one adsorption-elution cycle with a purification of 11.4-fold.
Collapse
Affiliation(s)
- Hsien-Bin Huang
- Department of Life Sciences and Institute of Molecular Biology, National Chung Cheng University, Chiayi, 621, Taiwan
| | - Meng-Chun Chi
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, 621, Taiwan
| | - Wen-Hwei Hsu
- Institute of Molecular Biology, National Chung Hsing University, 402-27, Taichung, Taiwan
| | - Wan-Chi Liang
- Department of Applied Chemistry, National Chaiyi University, 300 University Road, Chiayi, 60083, Taiwan
| | - Long-Liu Lin
- Department of Applied Chemistry, National Chaiyi University, 300 University Road, Chiayi, 60083, Taiwan.
| |
Collapse
|
14
|
Morris VJ, Gunning AP, Faulds CB, Williamson G, Svensson B. AFM Images of Complexes between Amylose andAspergillus niger Glucoamylase Mutants, Native and Mutant Starch Binding Domains: A Model for the Action of Glucoamylase. STARCH-STARKE 2005. [DOI: 10.1002/star.200400333] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Paldi T, Levy I, Shoseyov O. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization. Biochem J 2003; 372:905-10. [PMID: 12646045 PMCID: PMC1223447 DOI: 10.1042/bj20021527] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Revised: 03/13/2003] [Accepted: 03/19/2003] [Indexed: 11/17/2022]
Abstract
Carbohydrate-binding modules (CBMs) are protein domains located within a carbohydrate-active enzyme, with a discrete fold that can be separated from the catalytic domain. Starch-binding domains (SBDs) are CBMs that are usually found at the C-terminus in many amylolytic enzymes. The SBD from Aspergillus niger B1 (CMI CC 324262) was cloned and expressed in Escherichia coli as an independent domain and the recombinant protein was purified on starch. The A. niger B1 SBD was found to be similar to SBD from A. kawachii, A. niger var. awamori and A. shirusami (95-96% identity) and was classified as a member of the CBM family 20. Characterization of SBD binding to starch indicated that it is essentially irreversible and that its affinity to cationic or anionic starch, as well as to potato or corn starch, does not differ significantly. These observations indicate that the fundamental binding area on these starches is essentially the same. Natural and chemically modified starches are among the most useful biopolymers employed in the industry. Our study demonstrates that SBD binds effectively to both anionic and cationic starch.
Collapse
Affiliation(s)
- Tzur Paldi
- The Institute of Plant Science and Genetics in Agriculture, The Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | | | | |
Collapse
|
16
|
Giardina T, Gunning AP, Juge N, Faulds CB, Furniss CS, Svensson B, Morris VJ, Williamson G. Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. J Mol Biol 2001; 313:1149-59. [PMID: 11700070 DOI: 10.1006/jmbi.2001.5097] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction of the two binding sites of the starch-binding domain (SBD) of Aspergillus niger glucoamylase 1 (GA-I) with substrate has been investigated by using atomic force microscopy (AFM) and UV difference spectroscopy in combination with site-specific mutants of both SBD and GA-I. The SBD possesses two binding sites with distinct affinities towards the soluble linear substrate maltoheptaose; dissociation constants (K(d)) of 17 and 0.95 microM were obtained for W563 K (binding site 2 mutant) and W590 K (binding site 1 mutant), respectively, compared to an apparent K(d) of 23 microM for the wild-type SBD. Further, the two sites are almost but not totally independent of each other for binding, since abolishing one site does not prevent the amylose chain binding to the other site. Using AFM, we show that the amylose chains undergo a conformational change to form loops upon binding to the SBD, using either the recombinant wild-type SBD or a catalytically inactive mutant of GA-I. This characteristic conformation of amylose is lost when one of the SBD binding sites is eliminated by site-directed mutagenesis, as seen with the mutants W563 K or W590 K. Therefore, although each binding site is capable of simple binding to a ligand, both sites must be functional in order to induce a gross conformational change of the amylose molecules. Taken together these data suggest that for the complex with soluble amylose, SBD binds to a single amylose chain, site 1 being responsible for the initial recognition of the chain and site 2 being involved in tighter binding, leading to the circularisation of the amylose chain observed by AFM. Binding of the SBD to the amylose chain results in a novel two-turn helical amylose complex structure. The binding of parallel amylosic chains to the SBD may provide a basis for understanding the role of the SBD in facilitating enzymatic degradation of crystalline starches by glucoamylase 1.
Collapse
Affiliation(s)
- T Giardina
- Nutrition, Health and Consumer Science Division, Institute of Food Research, Colney, Norwich, UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ngiam C, Jeenes DJ, Punt PJ, Van Den Hondel CA, Archer DB. Characterization of a foldase, protein disulfide isomerase A, in the protein secretory pathway of Aspergillus niger. Appl Environ Microbiol 2000; 66:775-82. [PMID: 10653750 PMCID: PMC91895 DOI: 10.1128/aem.66.2.775-782.2000] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein disulfide isomerase (PDI) is important in assisting the folding and maturation of secretory proteins in eukaryotes. A gene, pdiA, encoding PDIA was previously isolated from Aspergillus niger, and we report its functional characterization here. Functional analysis of PDIA showed that it catalyzes the refolding of denatured and reduced RNase A. pdiA also complemented PDI function in a Saccharomyces cerevisiae Deltapdi1 mutant in a yeast-based killer toxin assay. Levels of pdiA mRNA and PDIA protein were raised by the accumulation of unfolded proteins in the endoplasmic reticulum. This response of pdiA mRNA levels was slower and lower in magnitude than that of A. niger bipA, suggesting that the induction of pdiA is not part of the primary stress response. An increased level of pdiA transcripts was also observed in two A. niger strains overproducing a heterologous protein, hen egg white lysozyme (HEWL). Although overexpression of PDI has been successful in increasing yields of some heterologous proteins in S. cerevisiae, overexpression of PDIA did not increase secreted yields of HEWL in A. niger, suggesting that PDIA itself is not limiting for secretion of this protein. Downregulation of pdiA by antisense mRNA reduced the levels of microsomal PDIA activity by up to 50%, lowered the level of PDIA as judged by Western blots, and lowered the secreted levels of glucoamylase by 60 to 70%.
Collapse
Affiliation(s)
- C Ngiam
- Division of Food Safety Sciences, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Southall SM, Simpson PJ, Gilbert HJ, Williamson G, Williamson MP. The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett 1999; 447:58-60. [PMID: 10218582 DOI: 10.1016/s0014-5793(99)00263-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The full-length glucoamylase from Aspergillus niger, G1, consists of an N-terminal catalytic domain followed by a semi-rigid linker (which together constitute the G2 form) and a C-terminal starch-binding domain (SBD). G1 and G2 both liberate glucose from insoluble corn starch, although G2 has a rate 80 times slower than G1. Following pre-incubation of the starch with SBD, the activity of G1 is uniformly reduced with increasing concentrations of SBD because of competition for binding sites. However, increasing concentrations of SBD produce an initial increase in the catalytic rate of G2, followed by a decrease at higher SBD concentrations. The results show that SBD has two functions: it binds to the starch, but it also disrupts the surface, thereby enhancing the amylolytic rate.
Collapse
Affiliation(s)
- S M Southall
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Western Bank, UK
| | | | | | | | | |
Collapse
|
19
|
MacKenzie DA, Kraunsoe JA, Chesshyre JA, Lowe G, Komiyama T, Fuller RS, Archer DB. Aberrant processing of wild-type and mutant bovine pancreatic trypsin inhibitor secreted by Aspergillus niger. J Biotechnol 1998; 63:137-46. [PMID: 9772752 DOI: 10.1016/s0168-1656(98)00081-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bovine pancreatic trypsin inhibitor (BPTI) was secreted by Aspergillus niger at yields of up to 23 mg l-1 using a protein fusion strategy. BPTI was linked to part of the fungal glucoamylase protein (GAM) with a dibasic amino acid (KEX2) processing site at the fusion junction. Electrospray ionisation mass spectrometry and N-terminal protein sequencing revealed that, although biologically active in vitro, the purified products from a number of independent transformants consisted of a mixture of BPTI molecules differing at the N-terminus. Approximately 35-60% of this mixture was processed correctly. Aberrant processing of the GAM-BPTI fusion protein by the A. niger KEX2-like endoprotease was the most likely cause of this variation although the involvement of other fungal endoproteases could not be ruled out. In vitro studies have highlighted a weak interaction between BPTI and the Saccharomyces cerevisiae KEX2 endoprotease, suggesting that BPTI is not a potent inhibitor of KEX2p. A small proportion of the recombinant BPTI (10%) showed 'nicking' of the K15-A16 bond, indicating an interaction with a fungal trypsin-like enzyme. Mutant BPTI homologues designed to have anti-elastase activity, BPTI(K15V), BPTI(K15V,P13I) and BPTI(K15V,G12A), have also been expressed and secreted by A. niger. They also showed a similar spectrum of aberrant N-terminal processing but no 'nicking' of the K15-V16 bond was observed. Comparison of A. niger with other expression systems showed that it is an effective system for producing BPTI and its homologues, although not all molecules were correctly processed. This variation in processing efficiency may be useful in understanding the important determinants of protein processing in this fungus.
Collapse
Affiliation(s)
- D A MacKenzie
- Institute of Food Research, Norwich Research Park, Colney, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Enzymes from filamentous fungi are already widely exploited, but new applications for known enzymes and new enzymic activities continue to be found. In addition, enzymes from less amenable non-fungal sources require heterologous production and fungi are being used as the production hosts. In each case there is a need to improve production and to ensure quality of product. While conventional, mutagenesis-based, strain improvement methods will continue to be applied to enzyme production from filamentous fungi the application of recombinant DNA techniques is beginning to reveal important information on the molecular basis of fungal enzyme production and this knowledge is now being applied both in the laboratory and commercially. We review the current state of knowledge on the molecular basis of enzyme production by filamentous fungi. We focus on transcriptional and post-transcriptional regulation of protein production, the transit of proteins through the secretory pathway and the structure of the proteins produced including glycosylation.
Collapse
Affiliation(s)
- D B Archer
- Genetics and Microbiology Department, Institute of Food Research, Norwich, UK
| | | |
Collapse
|
21
|
JAMES JENNYLYNDA, LEE BYONGH. GLUCOAMYLASES: MICROBIAL SOURCES, INDUSTRIAL APPLICATIONS AND MOLECULAR BIOLOGY ? A REVIEW. J Food Biochem 1997. [DOI: 10.1111/j.1745-4514.1997.tb00223.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Abstract
To correlate structural features with glucoamylase properties, a structure-based multisequence alignment was constructed using information from catalytic and starch-binding domain models. The catalytic domain is composed of three hydrophobic folding units, the most labile and least hydrophobic of them being missing in the most stable glucoamylase. The role of O-glycosylation in stabilizing the most hydrophobic folding unit, the only one where thermostabilizing mutations with unchanged activity have been made, is described. Differences in both length and composition of interhelical loops are correlated with stability and selectivity characteristics. Two new glucoamylase subfamilies are defined by using homology criteria. Protein parsimony analysis suggests an ancient bacterial origin for the glucoamylase gene. Increases in length of the belt surrounding the active site, degree of O-glycosylation, and length of the linker probably correspond to evolutionary steps that increase stability and secretion levels of Aspergillus-related glucoamylases.
Collapse
Affiliation(s)
- P M Coutinho
- Department of Chemical Engineering, Iowa State University, Ames 50011-2230, USA
| | | |
Collapse
|
23
|
Sorimachi K, Le Gal-Coëffet MF, Williamson G, Archer DB, Williamson MP. Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure 1997; 5:647-61. [PMID: 9195884 DOI: 10.1016/s0969-2126(97)00220-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Carbohydrate-binding domains are usually small and physically separate from the catalytic domains of hydrolytic enzymes. Glucoamylase 1 (G1) from Aspergillus niger, an enzyme used widely in the food and brewing industries, contains a granular starch binding domain (SBD) which is separated from the catalytic domain by a semi-rigid linker. The aim of this study was to determine how the SBD binds to starch, and thereby more generally to throw light on the role of carbohydrate-binding domains in the hydrolysis of insoluble polysaccharides. RESULTS The solution structure of the SBD of A. niger G1 bound to beta-cyclodextrin (betaCD), a cyclic starch analogue, shows that the well-defined beta-sheet structure seen in the free SBD is maintained in the SBD-betaCD complex. The main differences between the free and bound states of the SBD are observed in loop regions, in or near the two starch-binding sites. The two binding sites, each of which binds one molecule of betaCD, are structurally different. Binding site 1 is small and accessible, and its structure changes very little upon ligand binding. Site 2 is longer and undergoes a significant structural change on binding. Part of this site comprises a flexible loop, which appears to allow the SBD to bind to starch strands in a range of orientations. CONCLUSIONS The two starch-binding sites of the SBD probably differ functionally as well as structurally; site 1 probably acts as the initial starch recognition site, whereas site 2 is involved in specific recognition of appropriate regions of starch. The two starch strands are bound at approximately 90 degrees to each other. This may be functionally important, as it may force starch strands apart thus increasing the hydrolyzable surface, or alternatively it may localize the enzyme to noncrystalline (more hydrolyzable) areas of starch. The region of the SBD where the linker to the catalytic domain is attached is flexible, allowing the catalytic site to access a large surface area of the starch granules.
Collapse
Affiliation(s)
- K Sorimachi
- Krebs Institute for Biomolecular Research Department of Molecular Biology and Biotechnology University of Sheffield Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | | | | | | | | |
Collapse
|
24
|
Mikosch T, Klemm P, Gassen HG, van den Hondel CA, Kemme M. Secretion of active human mucus proteinase inhibitor by Aspergillus niger after KEX2-like processing of a glucoamylase-inhibitor fusion protein. J Biotechnol 1996; 52:97-106. [PMID: 9084209 DOI: 10.1016/s0168-1656(96)01634-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report the production of human mucus proteinase inhibitor (MPI) by the filamentous fungus Aspergillus niger to test the ability of this host organism to secrete low molecular weight, highly disulfide-bonded proteins in biologically active conformation. Fungal transformants have been obtained with an expression cassette consisting of a chimeric gene founded on a mpi cDNA, encoding mature MPI, fused in frame to sequences encoding A. niger glucoamylase (glaA), separated by a KEX2-like processing sequence. Expression of the glucoamylase fusion gene in these transformants resulted in secretion of MPI into the growth medium with yields up to 3 mg 1-1. N-terminal sequence analysis of the purified inhibitor confirmed that the glucoamylase-MPI fusion protein was correctly processed to mature MPI by a KEX2-type endopeptidase present in A. niger. Furthermore, recombinant MPI retains full inhibitory activity against chymotrypsin and leukocyte elastase indicating that the protein was folded properly.
Collapse
Affiliation(s)
- T Mikosch
- Institut für Biochemie, Technische Hochschule Darmstadt, Germany
| | | | | | | | | |
Collapse
|
25
|
MacKenzie DA, Spencer JA, Le Gal-Coëffet MF, Archer DB. Efficient production from Aspergillus niger of a heterologous protein and an individual protein domain, heavy isotope-labelled, for structure-function analysis. J Biotechnol 1996; 46:85-93. [PMID: 8672288 DOI: 10.1016/0168-1656(95)00179-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aspergillus niger has been used successfully to secrete proteins labelled with 13C and/or 15N to a specific activity of > 99% for high resolution NMR analysis. In the case of a heterologous protein, hen egg-white lysozyme, 15N single-labelled and 13C, 15N double-labelled forms were secreted at yields of 100-200 mg l-1 by optimising the type of carbon source used and the ratio of carbon to nitrogen. Another protein, the glucoamylase starch-binding domain from A. niger, was also produced as the 15N single-labelled form at 20-40 mg l-1.
Collapse
Affiliation(s)
- D A MacKenzie
- Institute of Food Research, Norwich Research Park, Colney, UK
| | | | | | | |
Collapse
|
26
|
Jacks AJ, Sorimachi K, Le Gal-Coëffet MF, Williamson G, Archer DB, Williamson MP. 1H and 15N assignments and secondary structure of the starch-binding domain of glucoamylase from Aspergillus niger. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:568-78. [PMID: 7588803 DOI: 10.1111/j.1432-1033.1995.568_2.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1H and 15N NMR resonance assignments of the granular starch-binding domain (SBD) of glucoamylase from Aspergillus niger have been made by multi-dimensional homonuclear and heteronuclear NMR techniques. Secondary structure analysis based on chemical shifts, 1H-1H NOEs, coupling constants and backbone amide exchange data indicates the presence of a well-defined beta-sheet structure. This consists of one parallel and five antiparallel pairs of beta-strands forming two beta-sheets. Cis-trans isomerisation of proline residues and O-glycosylation of threonine residues are observed and compared between the proteolytically derived SBD fragment and the recombinant protein. Structural features of the SBD in solution were compared to the X-ray crystal structure of a homologous domain of cyclodextrin glycosyltransferase from Bacillus circulans. There are some differences in the locations of the start and end of beta-strands but overall the two structures are very similar. This study will form the basis for the structure determination of the granular SBD and of its complexes.
Collapse
Affiliation(s)
- A J Jacks
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | | | | | | | | | |
Collapse
|