1
|
Bardales JR, Cascallana JL, Villamarín A. Differential distribution of cAMP-dependent protein kinase isoforms in various tissues of the bivalve mollusc Mytilus galloprovincialis. Acta Histochem 2011; 113:743-8. [PMID: 21131025 DOI: 10.1016/j.acthis.2010.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/07/2010] [Accepted: 11/08/2010] [Indexed: 11/29/2022]
Abstract
The cAMP signalling pathway is involved in the regulation of basic physiological processes in bivalve molluscs. We had previously identified and characterized two isoforms of cAMP-dependent protein kinase (PKA) from the sea mussel Mytilus galloprovincialis that differ at their regulatory (R) subunit, namely, R(myt1) or R(myt2). Here we investigated the immunohistochemical expression of both PKA isoforms in various mussel tissues. R(myt1) and R(myt2) displayed a complementary subcellular localization. In general, R(myt1) was found to be uniformly distributed in the cytoplasm of most cell types, whereas R(myt2) appears to be localized only in the cell periphery and associated with certain cellular structures, such as the cilia of labial palps and gill filaments. Thus, both PKA isoforms appear to be non-redundant, but they have specific functions. R(myt1) was the main isoform present in catch muscle fibers, which suggests that PKA(myt1) may be the isoform involved in the regulation of the catch state. Conversely, R(myt2) was the only isoform detected in the cilia of gill filaments, indicating that PKA(myt2) could mediate the effects of cAMP on the ciliary beat frequency.
Collapse
Affiliation(s)
- José R Bardales
- Departamento de Bioquímica e Bioloxía Molecular, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | | | | |
Collapse
|
2
|
Franzellitti S, Buratti S, Valbonesi P, Capuzzo A, Fabbri E. The β-blocker propranolol affects cAMP-dependent signaling and induces the stress response in Mediterranean mussels, Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:299-308. [PMID: 21216339 DOI: 10.1016/j.aquatox.2010.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/23/2010] [Accepted: 11/03/2010] [Indexed: 05/30/2023]
Abstract
Widespread occurrence of pharmaceuticals is reported in aquatic systems, posing concerns for the health of aquatic wildlife and a theoretical risk to humans. A recent concept was developed for the identification of highly active compounds amongst the environmental pharmaceuticals, based on their mode of action, the homology between human targets and possible targets in the environment, and the importance of the affected pathway for the target species. In line with this approach, this study investigated whether propranolol (PROP) affects the cAMP-dependent pathway in Mediterranean mussels, Mytilus galloprovincialis. PROP is a prototypical β-adrenoceptor antagonist, and these receptors exist in bivalves and show gross pharmacological properties similar to their mammalian counterparts. PROP also acts as a 5-HT1 receptor antagonist, which is the sole 5-HT receptor reported in bivalves to date. Importantly, β-adrenoceptor and 5HT-1 receptor subtypes are positively and negatively coupled to cAMP-mediated signaling, respectively. PROP was administered as either l-PROP or dl-PROP. A wide range of concentrations was tested including low (0.3, 3 and 30ng/L) and high (300ng/L) environmental ranges, and a concentration 5-fold above the maximum reported environmental level (30,000ng/L). After a 7-day exposure, mussel cAMP levels and PKA activities were significantly reduced in digestive gland, increased in mantle/gonads and unaffected in gills. Similar patterns were observed for the mRNA expression of the ABCB1 gene encoding the membrane transporter P-glycoprotein, hypothesised to be under PKA modulation. The effects on the digestive gland are consistent with PROP blocking β-adrenoceptors. The observed increased cAMP levels in the mantle/gonad tissue support PROP blocking 5-HT1 receptors. Catalase and glutathione-S tranferase were differently affected by PROP in the two tissues. Mussel haemocyte lysosome membrane stability, a sensitive biomarker of animal health status, was concentration-dependently reduced following PROP exposure. Our observations provide evidence for PROP affecting cell signaling in M. galloprovincialis. Moreover, the chemical interacts with specific and evolutionally conserved biochemical pathways for which it was designed. The mode of action of PROP in mussels is related with its therapeutic properties in humans, based upon these conserved human targets. It also induced a stress response, and all these effects were displayed at the lowest concentrations tested.
Collapse
Affiliation(s)
- Silvia Franzellitti
- University of Bologna, Interdepartment Centre for Research in Environmental Sciences (CIRSA), via S. Alberto 163, 48123 Ravenna, Italy
| | | | | | | | | |
Collapse
|
3
|
Fabbri E, Capuzzo A. Cyclic AMP signaling in bivalve molluscs: an overview. ACTA ACUST UNITED AC 2010; 313:179-200. [PMID: 20127660 DOI: 10.1002/jez.592] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cyclic AMP (cAMP)-dependent signaling accounts for the control of cellular cascades involved in many physiological functions, and a wealth of information is available on the cAMP system that operates in mammalian cells. Nevertheless, cAMP has a central role also in nonmammalian vertebrates and invertebrates. The present review aims at examining the information available on bivalve molluscs, from the first studies carried out in the early 1980s to the last progresses made in the present days. The major focus is on the structural and operational characteristics of the main actors of the signaling pathway, i.e., adenylyl cyclase, G proteins, and protein kinase A, and on the role played by the cyclic nucleotide on smooth muscle, heart, gills, gonads, and metabolism regulation. Moreover, recent evidence regarding the cAMP system as a target of environmental stress factors are discussed. It will become clear that cAMP does play a wide and important role in bivalve physiology. Several issues have been sufficiently clarified, although investigated only in a few model species. However, further fundamental aspects remain unknown, mainly regarding molecular features and interactions with other signaling pathways, thus requiring further elucidation.
Collapse
Affiliation(s)
- Elena Fabbri
- Interdepartment Centre for Research in Environmental Sciences (CIRSA), University of Bologna, Ravenna, Italy.
| | | |
Collapse
|
4
|
Bardales JR, Díaz-Enrich MJ, Villamarín A. Differential distribution of cAMP-dependent protein kinase isoforms in the mantle of the bivalve mollusc Mytilus galloprovincialis. J Mol Histol 2009; 40:251-9. [DOI: 10.1007/s10735-009-9236-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 10/25/2009] [Indexed: 10/20/2022]
|
5
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
6
|
Bardales JR, Hellman U, Villamarín JA. Identification of multiple isoforms of the cAMP-dependent protein kinase catalytic subunit in the bivalve mollusc Mytilus galloprovincialis. FEBS J 2008; 275:4479-89. [PMID: 18671732 DOI: 10.1111/j.1742-4658.2008.06591.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Several isoforms of the cAMP-dependent protein kinase catalytic subunit (C-subunit) were separated from the posterior adductor muscle and the mantle tissues of the sea mussel Mytilus galloprovincialis by cation exchange chromatography, and identified by: (a) protein kinase activity; (b) antibody recognition; and (c) peptide mass fingerprinting. Some of the isozymes seemed to be tissue-specific, and all them were phosphorylated at serine and threonine residues and showed slight but significant differences in their apparent molecular mass values, which ranged from 41.3 to 44.5 kDa. The results from the MS analysis suggest that at least some of the mussel C-subunit isoforms arise as a result of alternative splicing events. Furthermore, several peptide sequences from mussel C-subunits, determined by de novo sequencing, showed a high degree of homology with the mammalian Calpha-isoform, and contained some structural motifs that are essential for catalytic function. On the other hand, no significant differences were observed in the kinetic parameters of C-subunit isoforms, determined by using synthetic peptides as substrate and inhibitor. However, the C-subunit isoforms separated from the mantle tissue differed in their ability to phosphorylate in vitro some proteins present in a mantle extract.
Collapse
Affiliation(s)
- José R Bardales
- Departamento de Bioquímica e Bioloxía Molecular, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | | | | |
Collapse
|
7
|
Bardales JR, Hellman U, Villamarín JA. CK2-mediated phosphorylation of a type II regulatory subunit of cAMP-dependent protein kinase from the mollusk Mytilus galloprovincialis. Arch Biochem Biophys 2007; 461:130-7. [PMID: 17379180 DOI: 10.1016/j.abb.2007.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 01/15/2007] [Accepted: 02/04/2007] [Indexed: 11/17/2022]
Abstract
Two isoforms of regulatory (R) subunit of cAMP-dependent protein kinase (PKA), named R(myt1) and R(myt2), were identified so far in the sea mussel Mytilus galloprovincialis. Out of them, only R(myt2) was phosphorylated in vitro by casein kinase 2 (CK2) using GTP as phosphate donor. CK2 catalytic subunit (CK2alpha) itself was sufficient to phosphorylate R(myt2), but phosphorylation was enhanced by the presence of the regulatory subunit CK2beta. Even in the absence of CK2, R(myt2) was phosphorylated to a certain extent when it was incubated with GTP. This basal phosphorylation was partially abolished by the known inhibitors apigenin and emodin, which suggests the presence of a residual amount of endogenous CK2 in the preparation of purified R subunit. CK2-mediated phosphorylation significantly decreases the ability of R(myt2) to inhibit PKA catalytic (C) subunit activity in the absence of cAMP. On the other hand, the sequence of several peptides obtained from the tryptic digestion of R(myt2) showed that mussel protein contains the signature sequence common to all PKA family members, within the "phosphate binding cassette" (PBC) A and B. Moreover, the degree of identity between the sequences of peptides from R(myt2), as a whole, and those from type II R subunits was 68-75%, but the global identity percentage with type I R subunits was only about 30%, so that R(myt2) can be classified as a type II R subunit.
Collapse
Affiliation(s)
- José R Bardales
- Departamento de Bioquímica e Bioloxía Molecular, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | | | | |
Collapse
|
8
|
Béjar P, Villamarín JA. Catalytic subunit of cAMP-dependent protein kinase from a catch muscle of the bivalve mollusk Mytilus galloprovincialis: purification, characterization, and phosphorylation of muscle proteins. Arch Biochem Biophys 2006; 450:133-40. [PMID: 16579959 DOI: 10.1016/j.abb.2006.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 02/23/2006] [Accepted: 02/24/2006] [Indexed: 11/17/2022]
Abstract
cAMP-dependent protein kinase (PKA) plays a crucial role in the release of the catch state of molluskan muscles, but the nature of the enzyme in such tissues is unknown. In this paper, we report the purification of the catalytic (C) subunit of PKA from the posterior adductor muscle (PAM) of the sea mussel Mytilus galloprovincialis. It is a monomeric protein with an apparent molecular mass of 40.0+/-2.0kDa and Stoke's radius 25.1+/-0.3A. The protein kinase activity of the purified enzyme was inhibited by both isoforms of the PKA regulatory (R) subunit that we had previously characterized in the mollusk, and also by the inhibitor peptide PKI(5-24). On the other hand, the main proteins of the contractile apparatus of PAM were partially purified and their ability to be phosphorylated in vitro by purified PKA C subunit was analyzed. The results showed that twitchin, a high molecular mass protein associated with thick filaments, was the better substrate for endogenous PKA. It was rapidly phosphorylated with a stoichiometry of 3.47+/-0.24mol Pmol(-1) protein. Also, catchin, paramyosin, and actin were phosphorylated, although more slowly and to a lesser extent. On the contrary, myosin heavy chain (MHC) and tropomyosin were not phosphorylated under the conditions used.
Collapse
Affiliation(s)
- Pablo Béjar
- Departamento de Bioquímica e Bioloxía Molecular, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | | |
Collapse
|
9
|
Kreiling JA, Stephens RE, Reinisch CL. A mixture of environmental contaminants increases cAMP-dependent protein kinase in Spisula embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 19:9-18. [PMID: 21783457 DOI: 10.1016/j.etap.2004.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Accepted: 02/24/2004] [Indexed: 05/31/2023]
Abstract
Using the surf clam embryo, we investigated the effects of the combination of bromoform, chloroform, and tetrachloroethylene, three pollutants found in high concentrations in the municipal water supply in Brick, New Jersey. Exposure produced an increase in an isoform of the regulatory subunit (RII) of cAMP-dependent protein kinase, demonstrated by confocal microscopy and western blotting. Embryos showed an increase in RII where the primordial gill and ciliated velar epithelium are innervated. This increase correlated with increased ciliary activity, indicating a corresponding rise in the catalytic subunit. Treatment resulted in decreased threonine phosphorylation of actin. There was no effect on neurotransmitters or receptors of the serotonergic-dopaminergic nervous system. These effects occurred only with the ternary mixture. No significant effect was seen with individual or paired components. This is the first report showing that bromoform, chloroform, and tetrachloroethylene act synergistically to alter a key regulator of neuronal development.
Collapse
Affiliation(s)
- Jill A Kreiling
- Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Obstetrics and Gynecology, Brown University School of Medicine, Women and Infants Hospital, Box G-B187, 171 Meeting St., Providence, RI 02912, USA
| | | | | |
Collapse
|
10
|
Bardales JR, Díaz-Enrich MJ, Ibarguren I, Villamarín JA. Isoforms of cAMP-dependent protein kinase in the bivalve mollusk Mytilus galloprovincialis: activation by cyclic nucleotides and effect of temperature. Arch Biochem Biophys 2004; 432:71-8. [PMID: 15519298 DOI: 10.1016/j.abb.2004.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 09/06/2004] [Indexed: 11/15/2022]
Abstract
Two different isoforms of cAMP-dependent protein kinase (PKA) have been partially purified from the posterior adductor muscle and the mantle tissue of the sea mussel Mytilus galloprovincialis. The holoenzymes contain as regulatory subunit (R) the previously identified isoforms Rmyt1 and Rmyt2, and were named PKAmyt1 and PKAmyt2, respectively. Both cAMP and cGMP can activate these PKA isoforms completely, although they exhibit a sensitivity approximately 100-fold higher for cAMP than for cGMP. When compared to PKAmyt2, the affinity of PKAmyt1 for cAMP and cGMP is 2- and 3.5-fold higher, respectively. The effect of temperature on the protein kinase activity of both PKA isoforms was examined. Temperature changes did not affect significantly the apparent activation constants (Ka) for cAMP. However, the protein kinase activity was clearly modified and a remarkable difference was observed between both PKA isoforms. PKAmyt1 showed a linear Arrhenius plot over the full range of temperature tested, with an activation energy of 15.3+/-1.5 kJ/mol. By contrast, PKAmyt2 showed a distinct break in the Arrhenius plot at 15 degrees C; the activation energy when temperature was above 15 degrees C was 7-fold higher than that of lower temperatures (70.9+/-8.1 kJ/mol vs 10.6+/-6.5 kJ/mol). These data indicate that, above 15 degrees C, PKAmyt2 activity is much more temperature-dependent than that of PKAmyt1. This different behavior would be related to the different role that these isoforms may play in the tissues where they are located.
Collapse
Affiliation(s)
- José R Bardales
- Departamento de Bioquímica e Bioloxía Molecular, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | | | | | | |
Collapse
|
11
|
Díaz-Enrich MJ, Ibarguren I, Hellman U, Villamarín JA. Characterization of a type I regulatory subunit of cAMP-dependent protein kinase from the bivalve mollusk Mytilus galloprovincialis. Arch Biochem Biophys 2003; 416:119-27. [PMID: 12859988 DOI: 10.1016/s0003-9861(03)00259-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two isoforms of the regulatory subunit (R) of cAMP-dependent protein kinase (PKA), named R(myt1) and R(myt2), had been purified in our laboratory from two different tissues of the sea mussel Mytilus galloprovincialis. In this paper, we report the sequences of several peptides obtained from tryptic digestion of R(myt1). As a whole, these sequences showed high homology with regions of type I R subunits from invertebrate and also from mammalian sources, but homology with those of fungal and type II R subunits was much lower, which indicates that R(myt1) can be considered as a type I R isoform. This conclusion is also supported by the following biochemical properties: (1) R(myt1) was proved to have interchain disulfide bonds stabilizing its dimeric structure; (2) it failed to be phosphorylated by the catalytic (C) subunit purified from mussel; (3) it has a higher pI value than that of the R(myt2) isoform; and (4) it showed cross-reactivity with mammalian anti-RIbeta antibody.
Collapse
Affiliation(s)
- María J Díaz-Enrich
- Departamento de Bioqui;mica e Bioloxi;a Molecular, Facultade de Veterinaria, Universidade de Santiago de Compostela, Campus de Lugo, 27002, Lugo, Spain
| | | | | | | |
Collapse
|
12
|
Díaz Enrich MJ, Villamarín JA, Ramos Martínez JI, Ibarguren I. Measurement of adenosine 3',5'-cyclic monophosphate and guanosine 3', 5'-cyclic monophosphate in mussel (Mytilus galloprovincialis lmk.) by high-performance liquid chromatography with diode array detection. Anal Biochem 2000; 285:105-12. [PMID: 10998269 DOI: 10.1006/abio.2000.4731] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two fast and sensitive methods for the determination of cAMP and cGMP levels in mantle tissue of the sea mussel Mytilus galloprovincialis Lmk. are described. Both methods use ion-pair high-performance liquid chromatography with diode array detection. The use of the diode array detector permitted the simultaneous detection of the absorbance at two different wavelengths and the obtaining of the UV absorption spectrum for each detected peak, confirming peak purity and identity. Method precision was good. The detection limit for both nucleotides was 2.5 pmol (signal-to-noise ratio = 4 at 254 nm). Previous to the injection onto the chromatograph, both nucleotides were purified by precipitation of the adenine and guanine 5'-ribonucleotides with ZnSO(4)-Na(2)CO(3). The supernatant obtained was subsequently passed over an anion-exchange column (AG l-X8 formate form resin). Early results seem to indicate that there is a seasonal variation in the contents of both cyclic nucleotides in mantle tissue. Such variation is probably related to the annual gametogenic cycle.
Collapse
Affiliation(s)
- M J Díaz Enrich
- Departamento de Bioquímica y Biología Molecular, Universidad de Santiago de Compostela, Lugo, 27002-, Spain
| | | | | | | |
Collapse
|
13
|
Ibarguren I, Diaz-Enrich MJ, Cao J, Fernandez M, Barcia R, Villamarin JA, Ramos-Martinez JI. Regulation of the futile cycle of fructose phosphate in sea mussel. Comp Biochem Physiol B Biochem Mol Biol 2000; 126:495-501. [PMID: 11026661 DOI: 10.1016/s0305-0491(00)00211-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Carbohydrate metabolism in mussels shows two phases separated seasonally. During summer and linked to food supply, carbohydrates, mainly glycogen, are accumulated in the mantle tissue. During winter, mantle glycogen decreases concomitantly with an increase in triglyceride synthesis. In spring, after spawning, the animals go in to metabolic rest until the beginning of a new cycle. This cycle is regulated by the futile cycle of fructose phosphate that implicates PFK-1 and FBPase-1 activities. These enzymes and the bifunctional PFK-2/FBPase-2 that regulates the Fru-2,6-P2 levels, are seasonally modulated by covalent phosphorylation/dephosphorylation mechanisms, as a response to unknown factors. The futile cycle of the fructose phosphates also controls the transition from physiological aerobiosis to hypoxia. The process is independent of the phosphorylation state. In this sense, a pH decrease triggers a small Pasteur effect during the first 24 h of aerial exposure. Variations in the concentration of Fru-2,6-P2 and AMP are the sole factor responsible for this effect. Longer periods of hypoxia induce a metabolic depression characterized by a decrease in Fru-2,6-P2 which is hydrolyzed by drop in the pH. In this review, the authors speculate on the two regulation processes.
Collapse
Affiliation(s)
- I Ibarguren
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Cao J, Fernández M, Villamarín JA. A method for the purification of cAMP-dependent protein kinase using immunoaffinity chromatography. Protein Expr Purif 1998; 14:418-24. [PMID: 9882577 DOI: 10.1006/prep.1998.0967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A rapid and efficient method for purifying cAMP-dependent protein kinase (PKA) holoenzyme based on immunoaffinity chromatography was developed. The affinity column was prepared by coupling a polyclonal antibody raised against the PKA regulatory subunit to NHS-activated Sepharose. The holoenzyme purified by this procedure from the bivalve mollusk Mytilus galloprovincialis was shown to be fully active as judged by (1) its cAMP-binding activity, (2) its cAMP-dependent protein kinase activity, and (3) its autophosphorylation ability. Moreover, together with both regulatory and catalytic subunits, which constitute the PKA holoenzyme, a protein with a molecular mass of approximately 200 kDa was copurified, and results from gel-filtration chromatography showed that it was associated with a fraction of PKA. Therefore, this immunoaffinity purification technique could also be useful to isolate such proteins as interact with PKA in vivo.
Collapse
Affiliation(s)
- J Cao
- Faculty of Veterinary Science, University of Santiago de Compostela, Lugo, 27002, Spain
| | | | | |
Collapse
|
15
|
Rodríguez JL, Barcia R, Ramos-Martínez JI, Villamarín JA. Purification of a novel isoform of the regulatory subunit of cAMP-dependent protein kinase from the bivalve mollusk Mytilus galloprovincialis. Arch Biochem Biophys 1998; 359:57-62. [PMID: 9799560 DOI: 10.1006/abbi.1998.0879] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytosolic extracts from the posterior adductor muscle of the bivalve mollusk Mytilus galloprovincialis contain significant amounts of both cGMP-binding and cGMP-stimulated protein kinase activities. However, photoaffinity labeling with 8-azido-[32P]cGMP revealed only a major cGMP-binding protein with an apparent molecular mass of 54 kDa (p54), lacking protein kinase activity itself. Instead, the purified and cGMP-free p54 protein has the ability to inhibit a mussel protein kinase homologous to the mammalian cAMP-dependent protein kinase (cAPK) catalytic subunit, the inhibition being relieved by cAMP or cGMP, which suggests that it can act as a regulatory subunit of cAPK. However, p54 failed to be recognized by a specific antibody against the regulatory subunit (type RII) previously isolated from mussel. Therefore, p54 must be a novel isoform of cAPK regulatory subunit that seems to have high affinity for both cGMP and cAMP.
Collapse
Affiliation(s)
- J L Rodríguez
- Faculty of Veterinary, University of Santiago de Compostela, Lugo, 27002, Spain
| | | | | | | |
Collapse
|
16
|
Fernández M, Cao J, Villamarín JA. In vivo phosphorylation of phosphofructokinase from the bivalve mollusk Mytilus galloprovincialis. Arch Biochem Biophys 1998; 353:251-6. [PMID: 9606959 DOI: 10.1006/abbi.1998.0631] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The phosphorylation state of phosphofructokinase from the mantle tissue of the facultative anaerobe mollusk Mytilus galloprovincialis was determined by a back-phosphorylation technique. The incubation of intact mantle tissue with 8-bromoadenosine 3':5'-cyclic monophosphate increased significantly the phosphate content of phosphofructokinase, which indicates that the enzyme can be phosphorylated in vivo by endogenous cAMP-dependent protein kinase. The phosphate content of mussel phosphofructokinase changes significantly during the year, in agreement with the kinetic data that show a more active enzyme form in earlier autumn. These results suggest that cAMP-dependent phosphorylation of phosphofructokinase can be partially responsible for the observed glycolytic changes associated with the annual gametogenic cycle that takes place in the mantle tissue of the mollusk. On the contrary, no differences were observed between aerobic and 24-h hypoxic mussels with regard to the phosphorylation state and the kinetic constants of phosphofructokinase. This result is inconsistent with the hypothesis that phosphorylation of phosphofructokinase is involved in the glycolytic depression that takes place during the long-term environmental hypoxia that the mollusk can undergo.
Collapse
Affiliation(s)
- M Fernández
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | | | | |
Collapse
|
17
|
Cao J, Fernández M, Ramos-Martínez JI, Villamarín JA. Identification of RII-binding proteins in the mollusc Mytilus galloprovincialis. FEBS Lett 1996; 382:93-6. [PMID: 8612771 DOI: 10.1016/0014-5793(96)00158-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several proteins with M(r) > 70 kDa from various tissues of the sea mussel Mytilus galloprovincialis were specifically recognized in vitro by the regulatory subunit (type RII alpha) of cAMP-dependent protein kinase (cAPK) from porcine heart. However, none of these proteins interacted with the regulatory subunit of cAPK from the mollusc itself. The results suggest that, unlike mammalian RII, regulatory subunit from mussel lacks the specific residues responsible for interaction with R-binding proteins. Consequently, the identified molluscan RII alpha-binding proteins should play a distinct role from cAPK anchoring.
Collapse
Affiliation(s)
- J Cao
- Departamento de Bioquímica e Bioloxía Molecular, Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | | | | | | |
Collapse
|