1
|
Zarin T, Strome B, Peng G, Pritišanac I, Forman-Kay JD, Moses AM. Identifying molecular features that are associated with biological function of intrinsically disordered protein regions. eLife 2021; 10:e60220. [PMID: 33616531 PMCID: PMC7932695 DOI: 10.7554/elife.60220] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
In previous work, we showed that intrinsically disordered regions (IDRs) of proteins contain sequence-distributed molecular features that are conserved over evolution, despite little sequence similarity that can be detected in alignments (Zarin et al., 2019). Here, we aim to use these molecular features to predict specific biological functions for individual IDRs and identify the molecular features within them that are associated with these functions. We find that the predictable functions are diverse. Examining the associated molecular features, we note some that are consistent with previous reports and identify others that were previously unknown. We experimentally confirm that elevated isoelectric point and hydrophobicity, features that are positively associated with mitochondrial localization, are necessary for mitochondrial targeting function. Remarkably, increasing isoelectric point in a synthetic IDR restores weak mitochondrial targeting. We believe feature analysis represents a new systematic approach to understand how biological functions of IDRs are specified by their protein sequences.
Collapse
Affiliation(s)
- Taraneh Zarin
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Bob Strome
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Gang Peng
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Iva Pritišanac
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Alan M Moses
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| |
Collapse
|
2
|
Ben-Menachem R, Tal M, Shadur T, Pines O. A third of the yeast mitochondrial proteome is dual localized: A question of evolution. Proteomics 2011; 11:4468-76. [DOI: 10.1002/pmic.201100199] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 08/22/2011] [Accepted: 08/30/2011] [Indexed: 11/09/2022]
|
3
|
Van Dorland HA, Bruckmaier RM. Regional mRNA expression of key gluconeogenic enzymes in the liver of dairy cows. J Anim Physiol Anim Nutr (Berl) 2010; 94:505-8. [PMID: 19906140 DOI: 10.1111/j.1439-0396.2009.00935.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liver tissue was collected from eight random dairy cows at a slaughterhouse to test if gene expression of pyruvate carboxylase (PC), mitochondrial phosphoenolpyruvate carboxykinase (PEPCKm) and cytosolic phosphoenolpyruvate carboxykinase (PEPCKc) is different at different locations in the liver. Obtained liver samples were analysed for mRNA expression levels of PC, PEPCKc and PEPCKm and subjected to the MIXED procedure of SAS to test for the sampled locations with cow liver as repeated subject. Additionally, the general linear model procedure (GLM) for analysis of variance was applied to test for significant differences for mRNA abundance of PEPCKm, PEPCKc and bPC between the livers. In conclusion, this study demonstrated that mRNA abundance of PC, PEPCKc and PEPCKm is not different between locations in the liver but may differ between individual cows.
Collapse
Affiliation(s)
- H A Van Dorland
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | |
Collapse
|
4
|
Anandatheerthavarada HK, Sepuri NBV, Avadhani NG. Mitochondrial targeting of cytochrome P450 proteins containing NH2-terminal chimeric signals involves an unusual TOM20/TOM22 bypass mechanism. J Biol Chem 2009; 284:17352-17363. [PMID: 19401463 DOI: 10.1074/jbc.m109.007492] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we showed that xenobiotic inducible cytochrome P450 (CYP) proteins are bimodally targeted to the endoplasmic reticulum and mitochondria. In this study, we investigated the mechanism of delivery of chimeric signal containing CYP proteins to the peripheral and channel-forming mitochondrial outer membrane translocases (TOMs). CYP+33/1A1 and CYP2B1 did not require peripheral TOM70, TOM20, or TOM22 for translocation through the channel-forming TOM40 protein. In contrast, CYP+5/1A1 and CYP2E1 were able to bypass TOM20 and TOM22 but required TOM70. CYP27, which contains a canonical cleavable mitochondrial signal, required all of the peripheral TOMs for its mitochondrial translocation. We investigated the underlying mechanisms of bypass of peripheral TOMs by CYPs with chimeric signals. The results suggested that interaction of CYPs with Hsp70, a cytosolic chaperone involved in the mitochondrial import, alone was sufficient for the recognition of chimeric signals by peripheral TOMs. However, sequential interaction of chimeric signal containing CYPs with Hsp70 and Hsp90 resulted in the bypass of peripheral TOMs, whereas CYP27A1 interacted only with Hsp70 and was not able to bypass peripheral TOMs. Our results also show that delivery of a chimeric signal containing client protein by Hsp90 required the cytosol-exposed NH(2)-terminal 143 amino acids of TOM40. TOM40 devoid of this domain was unable to import CYP proteins. These results suggest that compared with the unimodal mitochondrial targeting signals, the chimeric mitochondrial targeting signals are highly evolved and dynamic in nature.
Collapse
Affiliation(s)
- Hindupur K Anandatheerthavarada
- From the Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Naresh Babu V Sepuri
- From the Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Narayan G Avadhani
- From the Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
5
|
Anandatheerthavarada HK, Sepuri NBV, Biswas G, Avadhani NG. An unusual TOM20/TOM22 bypass mechanism for the mitochondrial targeting of cytochrome P450 proteins containing N-terminal chimeric signals. J Biol Chem 2008; 283:19769-80. [PMID: 18480056 DOI: 10.1074/jbc.m801464200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we showed that xenobiotic-inducible cytochrome P450 (CYP) proteins are bimodally targeted to the endoplasmic reticulum and mitochondria. In the present study, we investigated the mechanism of delivery of chimeric signal-containing CYP proteins to the peripheral and channel-forming mitochondrial outer membrane translocases (TOMs). CYP+33/1A1 and CYP2B1 did not require peripheral TOM70, TOM20, or TOM22 for translocation through the channel-forming TOM40 protein. In contrast, CYP+5/1A1 and CYP2E1 were able to bypass TOM20 and TOM22 but required TOM70. CYP27, which contains a canonical cleavable mitochondrial signal, required all of the peripheral TOMs for its mitochondrial translocation. We investigated the underlying mechanisms of bypass of peripheral TOMs by CYPs with chimeric signals. The results suggested that interaction of CYPs with Hsp70, a cytosolic chaperone involved in the mitochondrial import, alone was sufficient for the recognition of chimeric signals by peripheral TOMs. However, sequential interaction of chimeric signal-containing CYPs with Hsp70 and Hsp90 resulted in the bypass of peripheral TOMs, whereas CYP27 interacted only with Hsp70 and was not able to bypass peripheral TOMs. Our results also show that delivery of chimeric signal-containing client proteins by Hsp90 required the cytosol-exposed N-terminal 143 amino acids of TOM40. TOM40 devoid of this domain was unable to bind CYP proteins. These results suggest that, compared with the unimodal mitochondria-targeting signals, the chimeric mitochondria-targeting signals are highly evolved and dynamic in nature.
Collapse
Affiliation(s)
- Hindupur K Anandatheerthavarada
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
6
|
Dinur-Mills M, Tal M, Pines O. Dual targeted mitochondrial proteins are characterized by lower MTS parameters and total net charge. PLoS One 2008; 3:e2161. [PMID: 18478128 PMCID: PMC2367453 DOI: 10.1371/journal.pone.0002161] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 03/20/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In eukaryotic cells, identical proteins can be located in different subcellular compartments (termed dual-targeted proteins). METHODOLOGY/PRINCIPAL FINDINGS We divided a reference set of mitochondrial proteins (published single gene studies) into two groups: i) Dual targeted mitochondrial proteins and ii) Exclusive mitochondrial proteins. Mitochondrial proteins were considered dual-targeted if they were also found or predicted to be localized to the cytosol, the nucleus, the endoplasmic reticulum (ER) or the peroxisome. We found that dual localized mitochondrial proteins have i) A weaker mitochondrial targeting sequence (MitoProtII score, hydrophobic moment and number of basic residues) and ii) a lower whole-protein net charge, when compared to exclusive mitochondrial proteins. We have also generated an annotation list of dual-targeted proteins within the predicted yeast mitochondrial proteome. This considerably large group of dual-localized proteins comprises approximately one quarter of the predicted mitochondrial proteome. We supported this prediction by experimental verification of a subgroup of the predicted dual targeted proteins. CONCLUSIONS/SIGNIFICANCE Taken together, these results establish dual targeting as a widely abundant phenomenon that should affect our concepts of gene expression and protein function. Possible relationships between the MTS/mature sequence traits and protein dual targeting are discussed.
Collapse
Affiliation(s)
- Maya Dinur-Mills
- Department of Molecular Biology, Hebrew University Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
7
|
Mueller JC, Andreoli C, Prokisch H, Meitinger T. Mechanisms for multiple intracellular localization of human mitochondrial proteins. Mitochondrion 2004; 3:315-25. [PMID: 16120363 DOI: 10.1016/j.mito.2004.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Revised: 09/13/2003] [Accepted: 02/05/2004] [Indexed: 11/25/2022]
Abstract
There is an increasing number of reports that some single gene products function in more than one cellular compartment. This review lists and categorizes the targeting mechanisms of 31 human mitochondrial proteins that have multiple localizations. Further, genetic disorders based on mislocalization are described, and prediction algorithms for multi-localized proteins are proposed. A high diversity of experimentally verified targeting mechanisms ranging from single protein to multi-protein mechanisms exists, with a combination of multiple transcription starting points and alternative splicing being the most frequent. This observation stresses the individuality of the evolutionary histories of such mechanisms. We did not find specific localization strategies to cluster with certain protein functions. There was also no bias with respect to the evolutionary origin of the multi-compartmentalized mitochondrial proteins. Both, genes of bacterial and eukaryotic origin show multiple localization, which does not corroborate the hypothesis that the development of multiple targeting is coupled predominantly with the recruitment of nuclear eukaryotic genes for novel mitochondrial functions.
Collapse
Affiliation(s)
- Jakob Christian Mueller
- Institute of Human Genetics, GSF--National Research Center for Environment and Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany.
| | | | | | | |
Collapse
|
8
|
Low RL, Orton S, Friedman DB. A truncated form of DNA topoisomerase IIbeta associates with the mtDNA genome in mammalian mitochondria. ACTA ACUST UNITED AC 2003; 270:4173-86. [PMID: 14519130 DOI: 10.1046/j.1432-1033.2003.03814.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the likely requirement for a DNA topoisomerase II activity during synthesis of mitochondrial DNA in mammals, this activity has been very difficult to identify convincingly. The only DNA topoisomerase II activity conclusively demonstrated to be mitochondrial in origin is that of a type II activity found associated with the mitochondrial, kinetoplast DNA network in trypanosomatid protozoa [Melendy, T., Sheline, C., and Ray, D.S. (1988) Cell 55, 1083-1088; Shapiro, T.A., Klein, V.A., and Englund, P.A. (1989) J. Biol. Chem.264, 4173-4178]. In the present study, we report the discovery of a type DNA topoisomerase II activity in bovine mitochondria. Identified among mtDNA replicative proteins recovered from complexes of mtDNA and protein, the DNA topoisomerase relaxes a negatively, supercoiled DNA template in vitro, in a reaction that requires Mg2+ and ATP. The relaxation activity is inhibited by etoposide and other inhibitors of eucaryotic type II enzymes. The DNA topoisomerase II copurifies with mitochondria and directly associates with mtDNA, as indicated by sensitivity of some mtDNA circles in the isolated complex of mtDNA and protein to cleavage by etoposide. The purified activity can be assigned to a approximately 150-kDa protein, which is recognized by a polyclonal antibody made against the trypanosomal mitochondrial topo II enzyme. Mass spectrometry performed on peptides prepared from the approximately 150-kDa protein demonstrate that this bovine mitochondrial activity is a truncated version of DNA topoisomerase IIbeta, one of two DNA topoisomerase II activities known to exist in mammalian nuclei.
Collapse
Affiliation(s)
- Robert L Low
- Department of Pathology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | |
Collapse
|
9
|
Affiliation(s)
- Thierry Alcindor
- Division of Haematology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
10
|
Herrmann JM, Neupert W. What fuels polypeptide translocation? An energetical view on mitochondrial protein sorting. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:331-8. [PMID: 11004448 DOI: 10.1016/s0005-2728(00)00169-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein sorting into mitochondria is achieved by the concerted action of at least four translocation complexes. Vectorial transport of polypeptide chains by these complexes requires different driving forces. In particular, Deltapsi, matrix adenosine triphosphate and the free energy of the binding to other protein components are used in series to achieve sorting of proteins to the various mitochondrial subcompartments. The processes providing the translocation energy are presented in this review and their impact for protein sorting into and within mitochondria is discussed.
Collapse
Affiliation(s)
- J M Herrmann
- Institut für Physiologische Chemie, Goethestrasse 33, 80336, München, Germany
| | | |
Collapse
|
11
|
Mehta PK, Christen P. The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2000; 74:129-84. [PMID: 10800595 DOI: 10.1002/9780470123201.ch4] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pyridoxal-5-phosphate-dependent enzymes (B6 enzymes) that act on amino acid substrates are of multiple evolutionary origin. The numerous common mechanistic features of B6 enzymes thus are not historical traits passed on from a common ancestor enzyme but rather reflect evolutionary or chemical necessities. Family profile analysis of amino acid sequences supported by comparison of the available three-dimensional (3-D) crystal structures indicates that the B6 enzymes known to date belong to four independent evolutionary lineages of homologous (or more precisely paralogous) proteins, of which the alpha family is by far the largest. The alpha family (with aspartate aminotransferase as the prototype enzyme) includes enzymes that catalyze, with several exceptions, transformations of amino acids in which the covalency changes are limited to the same carbon atom that carries the amino group forming the imine linkage with the coenzyme (i.e., Calpha in most cases). Enzymes of the beta family (tryptophan synthase beta as the prototype enzyme) mainly catalyze replacement and elimination reactions at Cbeta. The D-alanine aminotransferase family and the alanine racemase family are the two other independent lineages, both with relatively few member enzymes. The primordial pyridoxal-5-phosphate-dependent enzymes apparently were regio-specific catalysts that first diverged into reaction-specific enzymes and then specialized for substrate specificity. Aminotransferases as well as amino acid decarboxylases are found in two different evolutionary lineages. Comparison of sequences from eukaryotic, archebacterial, and eubacterial species indicates that the functional specialization of most B6 enzymes has occurred already in the universal ancestor cell. The cofactor pyridoxal-5-phosphate must have emerged very early in biological evolution; conceivably, organic cofactors and metal ions were the first biological catalysts. In attempts to stimulate particular steps of molecular evolution, oligonucleotide-directed mutagenesis of active-site residues and directed molecular evolution have been applied to change both the substrate and reaction specificity of existent B6 enzymes. Pyridoxal-5-phosphate-dependent catalytic antibodies were elicited with a screening protocol that applied functional selection criteria as they might have been operative in the evolution of protein-assisted pyridoxal catalysis.
Collapse
Affiliation(s)
- P K Mehta
- Biochemisches Institut, Universität Zürich, Switzerland
| | | |
Collapse
|
12
|
Bhagwat SV, Biswas G, Anandatheerthavarada HK, Addya S, Pandak W, Avadhani NG. Dual targeting property of the N-terminal signal sequence of P4501A1. Targeting of heterologous proteins to endoplasmic reticulum and mitochondria. J Biol Chem 1999; 274:24014-22. [PMID: 10446170 DOI: 10.1074/jbc.274.34.24014] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies from our laboratory showed that the beta-naphthoflavone-inducible cytochrome P4501A1 is targeted to both the endoplasmic reticulum (ER) and mitochondria. In the present study, we have further investigated the ability of the N-terminal signal sequence (residues 1-44) of P4501A1 to target heterologous proteins, dihydrofolate reductase, and the mature portion of the rat P450c27 to the two subcellular compartments. In vitro transport and in vivo expression experiments show that N-terminally fused 1-44 signal sequence of P4501A1 targets heterologous proteins to both the ER and mitochondria, whereas the 33-44 sequence strictly functions as a mitochondrial targeting signal. Site-specific mutations show that positively charged residues at the 34th and 39th positions are critical for mitochondrial targeting. Cholesterol 27-hydroxylase activity of the ER-associated 1-44/1A1-CYP27 fusion protein can be reconstituted with cytochrome P450 reductase, but the mitochondrial associated fusion protein is functional with adrenodoxin + adrenodoxin reductase. Consistent with these differences, the fusion protein in the two organelle compartments exhibited distinctly different membrane topology. The results on the chimeric nature of the N-terminal signal of P4501A1 coupled with interaction with different electron transport proteins suggest a co-evolutionary nature of some of the xenobiotic inducible microsomal and mitochondrial P450s.
Collapse
Affiliation(s)
- S V Bhagwat
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6047, USA
| | | | | | | | | | | |
Collapse
|
13
|
Rulten S, Thorpe J, Kay J. Identification of eukaryotic parvulin homologues: a new subfamily of peptidylprolyl cis-trans isomerases. Biochem Biophys Res Commun 1999; 259:557-62. [PMID: 10364457 DOI: 10.1006/bbrc.1999.0828] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report here the existence of a subfamily of eukaryotic parvulin proteins that have strong sequence homology with E. coli parvulin, but lack the WW domain found in previously described eukarytoic parvulins. We hence term members of this subfamily EPVH (eukaryotic parvulin homologue). We describe the characterisation of hEPVH (human eukaryotic parvulin homologue). Immunogold labelling transmission electron microscopy reveals that hEPVH is preferentially localised in the mitochondrial matrix. The homology of hEPVH with its prokaryotic ancestor supports the hypothesis that this protein may have a mitochondrial function. An essential role in this organelle may explain the need for a high degree of conservation of this protein between distantly related species.
Collapse
Affiliation(s)
- S Rulten
- Department of Biological Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
| | | | | |
Collapse
|
14
|
Sachdev D, Chirgwin JM. Order of fusions between bacterial and mammalian proteins can determine solubility in Escherichia coli. Biochem Biophys Res Commun 1998; 244:933-7. [PMID: 9535771 DOI: 10.1006/bbrc.1998.8365] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We made fusions between Escherichia coli maltose-binding protein (MBP) and the mammalian aspartic proteinases pepsinogen or procathepsin D. When MBP was at the N-terminus, the fusions were soluble in E. coli. When the order was reversed, the chimeric proteins formed inclusion bodies. The data suggest that the solubility of fusion proteins is controlled by whether the protein domains emerging first from the ribosome normally fold into soluble or insoluble states. The soluble MBP-aspartic proteinase fusions were stable but proteolytically inactive. MBP-pepsinogen, however, was efficiently renatured from 8 M urea in vitro, suggesting that the E. coli cytoplasm does not support folding of the mammalian partner protein to the native state. Thus, inclusion body formation may be the consequence, rather than the cause, of non-native folding in vivo, and in E. coli soluble proteins may fold into states different from those reached in vitro.
Collapse
Affiliation(s)
- D Sachdev
- Research Service, Audie L. Murphy Memorial Veterans' Administration Medical Center, San Antonio, Texas, USA
| | | |
Collapse
|
15
|
Addya S, Anandatheerthavarada HK, Biswas G, Bhagwat SV, Mullick J, Avadhani NG. Targeting of NH2-terminal-processed microsomal protein to mitochondria: a novel pathway for the biogenesis of hepatic mitochondrial P450MT2. J Cell Biol 1997; 139:589-99. [PMID: 9348277 PMCID: PMC2141697 DOI: 10.1083/jcb.139.3.589] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/1997] [Revised: 08/12/1997] [Indexed: 02/05/2023] Open
Abstract
Cytochrome P4501A1 is a hepatic, microsomal membrane-bound enzyme that is highly induced by various xenobiotic agents. Two NH2-terminal truncated forms of this P450, termed P450MT2a and MT2b, are also found localized in mitochondria from beta-naphthoflavone-induced livers. In this paper, we demonstrate that P4501A1 has a chimeric NH2-terminal signal that facilitates the targeting of the protein to both the ER and mitochondria. The NH2-terminal 30-amino acid stretch of P4501A1 is thought to provide signals for ER membrane insertion and also stop transfer. The present study provides evidence that a sequence motif immediately COOH-terminal (residues 33-44) to the transmembrane domain functions as a mitochondrial targeting signal under both in vivo and in vitro conditions, and that the positively charged residues at positions 34 and 39 are critical for mitochondrial targeting. Results suggest that 25% of P4501A1 nascent chains, which escape ER membrane insertion, are processed by a liver cytosolic endoprotease. We postulate that the NH2-terminal proteolytic cleavage activates a cryptic mitochondrial targeting signal. Immunofluorescence microscopy showed that a portion of transiently expressed P4501A1 is colocalized with the mitochondrial-specific marker protein cytochrome oxidase subunit I. The mitochondrial-associated MT2a and MT2b are localized within the inner membrane compartment, as tested by resistance to limited proteolysis in both intact mitochondria and mitoplasts. Our results therefore describe a novel mechanism whereby proteins with chimeric signal sequence are targeted to the ER as well as to the mitochondria.
Collapse
Affiliation(s)
- S Addya
- Laboratories of Biochemistry, Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
16
|
Ladner RD, Caradonna SJ. The human dUTPase gene encodes both nuclear and mitochondrial isoforms. Differential expression of the isoforms and characterization of a cDNA encoding the mitochondrial species. J Biol Chem 1997; 272:19072-80. [PMID: 9228092 DOI: 10.1074/jbc.272.30.19072] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have previously identified distinct nuclear and mitochondrial isoforms of dUTPase in human cells, reporting the cDNA sequence of the nuclear isoform (DUT-N). We now report a cDNA corresponding to the mitochondrial isoform (DUT-M). The DUT-M cDNA contains an 252-amino acid open reading frame, encoding a protein with a predicted Mr of 26,704. The amino-terminal region of the protein contains an arginine-rich, 69-residue mitochondrial targeting presequence that is absent in the mature protein. In vitro transcription and translation of the DUT-M cDNA results in the production of a precursor protein with an apparent molecular mass of 31 kDa as judged by SDS-polyacrylamide gel electrophoresis. The DUT-M precursor is enzymatically active and immunoreacts with a dUTPase-specific monoclonal antibody. Mitochondrial import and processing studies demonstrate that the DUT-M precursor is processed into a 23-kDa protein and imported into mitochondria in vitro. Isoelectric focusing experiments demonstrate that the DUT-N has a pI of 6.0, while the processed form of DUT-M has a more basic pI of 8.1, measurements that are in agreement with predicted values. Studies aimed at understanding the expression of these isoforms were performed utilizing quiescent and replicating 34Lu human lung fibroblasts as a model cell culture system. Northern blot analysis, employing an isoform-specific probe, demonstrates that DUT-N and DUT-M are encoded by two distinct mRNA species of 1.1 and 1.4 kilobases, respectively. Western and Northern blot analysis reveal that DUT-M protein and mRNA are expressed in a constitutive fashion, independent of cell cycle phase or proliferation status. In contrast, DUT-N protein and mRNA levels are tightly regulated to coincide with nuclear DNA replication status. Because DUT-N and DUT-M have identical amino acid and cDNA sequences in their overlapping regions, we set out to determine if they were encoded by the same gene. The 5' region of the gene encoding dUTPase was isolated and characterized by a combination of Southern hybridization and DNA sequencing. These analyses demonstrate that the dUTPase isoforms are encoded by the same gene with isoform-specific transcripts arising through the use of alternative 5' exons. This finding represents the first example in humans of alternative 5' exon usage to generate differentially expressed nuclear and mitochondrial specific protein isoforms.
Collapse
Affiliation(s)
- R D Ladner
- Department of Molecular Biology, The University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, Stratford, New Jersey 08084, USA.
| | | |
Collapse
|
17
|
Hales KG, Fuller MT. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 1997; 90:121-9. [PMID: 9230308 DOI: 10.1016/s0092-8674(00)80319-0] [Citation(s) in RCA: 449] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Drosophila melanogaster fuzzy onions (fzo) gene encodes the first known protein mediator of mitochondrial fusion. During Drosophila spermatogenesis, mitochondria in early postmeiotic spermatids aggregate, fuse, and elongate beside the growing flagellar axoneme. fzo mutant males are defective in this developmentally regulated mitochondrial fusion and are sterile. fzo encodes a large, novel, predicted transmembrane GTPase that becomes detectable on spermatid mitochondria late in meiosis II, just prior to fusion, and disappears soon after fusion is complete. Missense mutations that alter conserved residues required for GTP binding in other GTPases inhibit the fusogenic activity of Fzo in vivo but do not affect its localization. Fzo has homologs of unknown function in mammals, nematodes, and yeast.
Collapse
Affiliation(s)
- K G Hales
- Department of Genetics, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
18
|
Abstract
Recently, neural networks have been applied to a widening range of problems in molecular biology. An area particularly suited to neural-network methods is the identification of protein sorting signals and the prediction of their cleavage sites, as these functional units are encoded by local, linear sequences of amino acids rather than global 3D structures.
Collapse
Affiliation(s)
- M G Claros
- Laboratorio de Bioqumica y Biologa Molecular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | |
Collapse
|
19
|
Landrieu I, Vandenbol M, Härtlein M, Portetelle D. Mitochondrial asparaginyl-tRNA synthetase is encoded by the yeast nuclear gene YCR24c. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 243:268-73. [PMID: 9030748 DOI: 10.1111/j.1432-1033.1997.0268a.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One of the open reading frames located on yeast Saccharomyces cerevisiae chromosome III, YCR24c, appeared to code for a protein of unknown function, but the predicted sequence showed similarity with asparaginyl-tRNA synthetase from Escherichia coli, with 38% amino acid identity. There is a putative mitochondrial targeting signal at the N-terminus of the YCR24c product. Northern blot analysis of total RNA from a wild-type strain sigma1278b confirmed that YCR24c was transcribed. Disruption of the chromosomal copy of YCR24c in a respiratory-competent haploid cell induced a petite phenotype, but did not affect cell viability. This respiratory-defective phenotype is typical for a mutation in a nuclear gene that induces a non-functional mitochondrial protein synthesis system. The protein encoded by YCR24c was expressed in Escherichia coli in a histidine-tagged form and isolated. The enzyme aminoacylated unfractionated Escherichia coli tRNA with asparagine. These results identified YCR24c as the structural gene for yeast mitochondrial asparaginyl-tRNA synthetase.
Collapse
Affiliation(s)
- I Landrieu
- Unité de Microbiologie, Faculté Universitaire des Sciences Agronomiques de Gembloux, Belgium
| | | | | | | |
Collapse
|
20
|
Abstract
Mitochondria import many hundreds of different proteins that are encoded by nuclear genes. These proteins are targeted to the mitochondria, translocated through the mitochondrial membranes, and sorted to the different mitochondrial subcompartments. Separate translocases in the mitochondrial outer membrane (TOM complex) and in the inner membrane (TIM complex) facilitate recognition of preproteins and transport across the two membranes. Factors in the cytosol assist in targeting of preproteins. Protein components in the matrix partake in energetically driving translocation in a reaction that depends on the membrane potential and matrix-ATP. Molecular chaperones in the matrix exert multiple functions in translocation, sorting, folding, and assembly of newly imported proteins.
Collapse
Affiliation(s)
- W Neupert
- Institut für Physiologische Chemie der Universität München, Germany
| |
Collapse
|
21
|
Koonin EV, Mushegian AR. Complete genome sequences of cellular life forms: glimpses of theoretical evolutionary genomics. Curr Opin Genet Dev 1996; 6:757-62. [PMID: 8994848 DOI: 10.1016/s0959-437x(96)80032-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The availability of complete genome sequences of cellular life forms creates the opportunity to explore the functional content of the genomes and evolutionary relationships between them at a new qualitative level. With the advent of these sequences, the construction of a minimal gene set sufficient for sustaining cellular life and reconstruction of the genome of the last common ancestor of bacteria, eukaryotes, and archaea become realistic, albeit challenging, research projects. A version of the minimal gene set for modern-type cellular life derived by comparative analysis of two bacterial genomes, those of Haemophilus influenzae and Mycoplasma genitalium, consists of approximately 250 genes. A comparison of the protein sequences encoded in these genes with those of the proteins encoded in the complete yeast genome suggests that the last common ancestor of all extant life might have had an RNA genome.
Collapse
Affiliation(s)
- E V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | |
Collapse
|
22
|
Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:779-86. [PMID: 8944766 DOI: 10.1111/j.1432-1033.1996.00779.x] [Citation(s) in RCA: 1324] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Most of the proteins that are used in mitochondria are imported through the double membrane of the organelle. The information that guides the protein to mitochondria is contained in its sequence and structure, although no direct evidence can be obtained. In this article, discriminant analysis has been performed with 47 parameters and a large set of mitochondrial proteins extracted from the SwissProt database. A computational method that facilitates the analysis and objective prediction of mitochondrially imported proteins has been developed. If only the amino acid sequence is considered, 75-97% of the mitochondrial proteins studied have been predicted to be imported into mitochondria. Moreover, the existence of mitochondrial-targeting sequences is predicted in 76-94% of the analyzed mitochondrial precursor proteins. As a practical application, the number of unknown yeast open reading frames that might be mitochondrial proteins has been predicted, which revealed that many of them are clustered.
Collapse
Affiliation(s)
- M G Claros
- Laboratoire de Génétique Moléculaire, CNRS URA 1302, Ecole Normale Supérieure, Paris, France. or
| | | |
Collapse
|
23
|
Waltner M, Hammen PK, Weiner H. Influence of the Mature Portion of a Precursor Protein on the Mitochondrial Signal Sequence. J Biol Chem 1996. [DOI: 10.1074/jbc.271.35.21226] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|