1
|
CrATP interferes in the promastigote-macrophage interaction in Leishmania amazonensis infection. Parasitology 2011; 138:960-8. [PMID: 21679488 DOI: 10.1017/s0031182011000710] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recent have shown the relationship between Ecto-Nucleoside-Triphosphate-Diphosphohydrolases (Ecto-NTPDases or ecto-nucleotidases) and virulence and infectivity in trypanosomatids. In this work, the inhibition of the ecto-ATPase activities and promastigote growth of Leishmania amazonensis by CrATP was characterized. Furthermore, this compound was used to investigate the role of ecto-nucleotidase in the interaction of L. amazonensis with resident peritoneal macrophages obtained from BALB/c mice. CrATP partially inhibits the ecto-ATPase activity, presenting Ki values of 575·7±199·1 and 383·5±79·0 μm, in the presence or absence of 5 mm MgCl2, respectively. The apparent Kms for ATP (2·9±0·5 mm to Mg2+-dependent ecto-ATPase and 0·4±0·2 mm to Mg2+-independent ecto-ATPase activities) are not significantly altered by CrATP, suggesting a reversible non-competitive inhibition of both enzymes. When CrATP was added to the cultivation medium at 500 μm, it drastically inhibited the cellular growth. The interaction of promastigote forms of L. amazonensis with BALB/c peritoneal macrophages is strongly affected by CrATP. When the parasites were treated with 500 μm CrATP before interacting with macrophages, the adhesion and endocytic indices were strongly reduced to 53·0±14·8% and 39·8±1·1%, respectively. These results indicate that ecto-nucleotidase plays an important role in the infection process caused by Leishmania amazonensis.
Collapse
|
2
|
Abstract
Trypanosomatid protozoa include heteroxenic species some of them pathogenic for men, animals and plants. Parasite membrane contains ecto-enzymes whose active sites face the external medium rather than the cytoplasm. Herpetomonas sp. displayed a Mg2+-dependent ecto-ATPase activity, a Mg-independent ecto-ADPase and an ecto-phosphatase activity. Both, the ecto-ADPase and phosphatase activities were insensitive to CrATP (chromium(III) adenosine 5'-triphosphate complex). Ecto-ATPase activity was reversibly inhibited. At 2 mm ATP the apparent Ki was 4 x 7+/-1 x 0 microm but a fraction of about 40-50% was insensitive to CrATP. Remarkably, at low substrate concentration (0 x 2 mm) more than 90% of the ecto-ATPase was inhibited with Ki=0 x 33+/-0 x 10 microm. These parameter dependences are interpreted as the presence of 2 ecto-ATPases activities, one of them with high ATP apparent affinity and sensitivity to CrATP. DIDS (4,4 diisothiocyanatostilbene 2,2' disulfonic acid), suramin and ADP were also effective as inhibitors. Only ADP presented no additive inhibition with CrATP. The pattern of partial inhibition by CrATP was also observed for the ecto-ATPase activities of Leishmania amazonensis, Trypanosoma cruzi and Trypanosoma rangeli. CrATP emerges as a new inhibitor of ecto-ATPases and as a tool for a better understanding of properties and role of ecto-ATPases in the biology of parasites.
Collapse
|
3
|
Moreira OC, Rios PF, Barrabin H. Inhibition of plasma membrane Ca(2+)-ATPase by CrATP. LaATP but not CrATP stabilizes the Ca(2+)-occluded state. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:411-9. [PMID: 15975546 DOI: 10.1016/j.bbabio.2005.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 05/16/2005] [Accepted: 05/24/2005] [Indexed: 11/20/2022]
Abstract
The bidentate complex of ATP with Cr(3+), CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca(2+)-ATPase and the Na(+),K(+)-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca(2+) and Na(+), respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca(2+)-ATPase. The complex inhibited with similar efficiency the Ca(2+)-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T(1/2)=30 min at 37 degrees C) with a K(i)=28+/-9 microM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg(2+) but unaltered when Ca(2+) was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca(2+) occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La(3+) with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca(2+) at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca(2+) promoted by the plasma membrane Ca(2+)-ATPase goes through an enzymatic phospho-intermediate that maintains Ca(2+) ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.
Collapse
Affiliation(s)
- Otacilio C Moreira
- Instituto de Bioquímica Médica, Programa de Biologia Estrutural, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, CEP 21941-590, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
4
|
Homareda H, Ushimaru M. Stimulation of p-nitrophenylphosphatase activity of Na+/K+-ATPase by NaCl with oligomycin or ATP. FEBS J 2005; 272:673-84. [PMID: 15670149 DOI: 10.1111/j.1742-4658.2004.04496.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is known that the addition of NaCl with oligomycin or ATP stimulates ouabain-sensitive and K+-dependent p-nitrophenylphosphatase (pNPPase) activity of Na+/K+-ATPase. We investigated the mechanism of the stimulation. The combination of oligomycin and NaCl increased the affinity of pNPPase activity for K+. When the ratio of Na+ to Rb+ was 10 in the presence of oligomycin, Rb+-binding and pNPPase activity reached a maximal level and Na+ was occluded. Phosphorylation of Na+/K+-ATPase by p-nitrophenylphosphate (pNPP) was not affected by oligomycin. Because oligomycin stabilizes the Na+-occluded E1 state of Na+/K+-ATPase, it seemed that the Na+-occluded E1 state increased the affinity of the phosphoenzyme formed from pNPP for K+. On the other hand, the combination of ATP and NaCl also increased the affinity of pNPPase for K+ and activated ATPase activity. Both activities were affected by the ligand conditions. Oligomycin noncompetitively affected the activation of pNPPase by NaCl and ATP. Nonhydrolyzable ATP analogues could not substitute for ATP. As NaE1P, which is the high-energy phosphoenzyme formed from ATP with Na+, is also the Na+-occluded E1 state, it is suggested that the Na+-occluded E1 state increases the affinity of the phosphoenzyme from pNPP for K+ through the interaction between alpha subunits. Therefore, membrane-bound Na+/K+-ATPase would function as at least an (alphabeta)2-diprotomer with interacting alpha subunits at the phosphorylation step.
Collapse
Affiliation(s)
- Haruo Homareda
- Department of Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | | |
Collapse
|
5
|
Krumscheid R, Ettrich R, Sovová Z, Susánková K, Lánský Z, Hofbauerová K, Linnertz H, Teisinger J, Amler E, Schoner W. The phosphatase activity of the isolated H4-H5 loop of Na+/K+ ATPase resides outside its ATP binding site. ACTA ACUST UNITED AC 2004; 271:3923-36. [PMID: 15373838 DOI: 10.1111/j.1432-1033.2004.04330.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural stability of the large cytoplasmic domain (H(4)-H(5) loop) of mouse alpha(1) subunit of Na(+)/K(+) ATPase (L354-I777), the number and the location of its binding sites for 2'-3'-O-(trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP) and p-nitrophenylphosphate (pNPP) were investigated. C- and N-terminal shortening revealed that neither part of the phosphorylation (P)-domain are necessary for TNP-ATP binding. There is no indication of a second ATP site on the P-domain of the isolated loop, even though others reported previously of its existence by TNP-N(3)ADP affinity labeling of the full enzyme. Fluorescein isothiocyanate (FITC)-anisotropy measurements reveal a considerable stability of the nucleotide (N)-domain suggesting that it may not undergo a substantial conformational change upon ATP binding. The FITC modified loop showed only slightly diminished phosphatase activity, most likely due to a pNPP site on the N-domain around N398 whose mutation to D reduced the phosphatase activity by 50%. The amino acids forming this pNPP site (M384, L414, W411, S400, S408) are conserved in the alpha(1-4) isoforms of Na(+)/K(+) ATPase, whereas N398 is only conserved in the vertebrates' alpha(1) subunit. The phosphatase activity of the isolated H(4)-H(5) loop was neither inhibited by ATP, nor affected by mutation of D369, which is phosphorylated in native Na(+)/K(+) ATPase.
Collapse
Affiliation(s)
- Rita Krumscheid
- Institute of Biochemistry and Endocrinology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bramkamp M, Gassel M, Altendorf K. FITC binding site and p-nitrophenyl phosphatase activity of the Kdp-ATPase of Escherichia coli. Biochemistry 2004; 43:4559-67. [PMID: 15078102 DOI: 10.1021/bi030198a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The KdpFABC complex of Escherichia coli, which belongs to the P-type ATPase family, has a unique structure, since catalytic activity (KdpB) and the capacity to transport potassium ions (KdpA) are located on different subunits. We found that fluorescein 5-isothiocyanate (FITC) inhibits ATPase activity, probably by covalently modifying lysine 395 in KdpB. In addition, we observed that the KdpFABC complex is able to hydrolyze p-nitrophenyl phosphate (pNPP) in a Mg(2+)-dependent reaction. The pNPPase activity is inhibited by FITC and o-vanadate. Low concentrations of ATP (1-30 microM) stimulate the pNPPase activity, while concentrations of >500 microM are inhibitory. This behavior can be explained either by a regulatory ATP binding site, where ATP hydrolysis is required, or by proposing an interactive dimer. The notion that FITC inhibits pNPPase and ATPase activity supports the idea that the catalytic domain of KdpB is much more compact than other P-type ATPases, like Na(+),K(+)-ATPase, H(+),K(+)-ATPase, and Ca(2+)-ATPase.
Collapse
Affiliation(s)
- Marc Bramkamp
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany
| | | | | |
Collapse
|
7
|
Ward DG, Cavieres JD. Inactivation of Na,K-ATPase following Co(NH3)4ATP binding at a low affinity site in the protomeric enzyme unit. J Biol Chem 2003; 278:14688-97. [PMID: 12591931 DOI: 10.1074/jbc.m211128200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na(+)-dependent or E1 stages of the Na,K-ATPase reaction require a few micromolar ATP, but submillimolar concentrations are needed to accelerate the K(+)-dependent or E2 half of the cycle. Here we use Co(NH(3))(4)ATP as a tool to study ATP sites in Na,K-ATPase. The analogue inactivates the K(+) phosphatase activity (an E2 partial reaction) and the Na,K-ATPase activity in parallel, whereas ATP-[(3)H]ADP exchange (an E1 reaction) is affected less or not at all. Although the inactivation occurs as a consequence of low affinity Co(NH(3))(4)ATP binding (K(D) approximately 0.4-0.6 mm), we can also measure high affinity equilibrium binding of Co(NH(3))(4)[(3)H]ATP (K(D) = 0.1 micro m) to the native enzyme. Crucially, we find that covalent enzyme modification with fluorescein isothiocyanate (which blocks E1 reactions) causes little or no effect on the affinity of the binding step preceding Co(NH(3))(4)ATP inactivation and only a 20% decrease in maximal inactivation rate. This suggests that fluorescein isothiocyanate and Co(NH(3))(4)ATP bind within different enzyme pockets. The Co(NH(3))(4)ATP enzyme was solubilized with C(12)E(8) to a homogeneous population of alphabeta protomers, as verified by analytical ultracentrifugation; the solubilization did not increase the Na,K-ATPase activity of the Co(NH(3))(4)ATP enzyme with respect to parallel controls. This was contrary to the expectation for a hypothetical (alphabeta)(2) membrane dimer with a single ATP site per protomer, with or without fast dimer/protomer equilibrium in detergent solution. Besides, the solubilized alphabeta protomer could be directly inactivated by Co(NH(3))(4)ATP, to less than 10% of the control Na,K-ATPase activity. This suggests that the inactivation must follow Co(NH(3))(4)ATP binding at a low affinity site in every protomeric unit, thus still allowing ATP and ADP access to phosphorylation and high affinity ATP sites.
Collapse
Affiliation(s)
- Douglas G Ward
- Transport ATPase Laboratory, Department of Cell Physiology and Pharmacology, Faculty of Medicine and Biological Sciences, University of Leicester, Leicester LE1 9HN, United Kingdom
| | | |
Collapse
|
8
|
Cavieres JD, Haddow J. Independent access of fluorescein isothiocyanate and Co(NH3)4ATP to their binding sites on the protomer of Na,K-ATPase. Ann N Y Acad Sci 2003; 986:265-6. [PMID: 12763816 DOI: 10.1111/j.1749-6632.2003.tb07180.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J D Cavieres
- Department of Cell Physiology and Pharmacology, University of Leicester, United Kingdom.
| | | |
Collapse
|
9
|
Lin SH, Faller LD. Preparation of Na,K-ATPase specifically modified on the anti-fluorescein antibody-inaccessible site by fluorescein 5'-isothiocyanate. Anal Biochem 2000; 287:303-12. [PMID: 11112278 DOI: 10.1006/abio.2000.4828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specific labeling is required for energy transfer measurements and to avoid artifacts in the use of fluorophores as reporter groups. Therefore, a method for specific modification by one of the most popular reagents for P-type ATPases (fluorescein 5'-isothiocyanate) has been developed. Sulfhydryl reagents protected against modification of cysteine residues, and treatment with dithiothreitol eliminated a slow doubling of the fluorescence of conventionally modified Na,K-ATPase upon dilution that is attributed to disappearance of self-energy transfer. Removal of nonspecifically bound fluorescein was also confirmed by titration of the modified Na, K-ATPase with anti-fluorescein antibody and by time resolution of the fluorescence change when the modified enzyme was mixed with Na(+) in a stopped-flow instrument. The only fluorescence change when specifically modified Na,K-ATPase was mixed with Na(+) was the signal from fluorescein at the antibody-inaccessible, substrate-protectable site that reports the conformational change in unphosphorylated enzyme. The magnitude of the fluorescence change reporting the conformational change increased from between 8 and 12% to between 25 and 30% without affecting the kinetic constants estimated from titrations with Na(+) and K(+). The method should be generally applicable to the preparation of specifically labeled P-type pumps for use in kinetic and equilibrium titrations or energy transfer measurements.
Collapse
Affiliation(s)
- S H Lin
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch at Galveston, 77555-1055, USA
| | | |
Collapse
|
10
|
Tanfani F, Linnertz H, Obsil T, Krumscheid R, Urbanova P, Jelinek O, Mazzanti L, Bertoli E, Schoner W, Amler E. Effects of fluorescent pseudo-ATP and ATP-metal analogs on secondary structure of Na(+)/K(+)-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1457:94-102. [PMID: 10692553 DOI: 10.1016/s0005-2728(00)00055-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The secondary structure of Na(+)/K(+)-ATPase after modification of the ATP-binding sites was analyzed. Consistently with recent reports, we found in trypsin-treated Na(+)/K(+)-ATPase additionally to alpha-helix also beta-sheet structures in the transmembrane segments. However, binding of fluorescein 5'-isothiocyanate (FITC), the pseudo-ATP analog, to the ATP-binding site did not affect the secondary structure of undigested Na(+)/K(+)-ATPase. Consequently, fluorescence intensity changes of FITC-labeled Na(+)/K(+)-ATPase commonly used to observe conformational transitions of the enzyme reflect physiological changes of the native structure. The metal complex analogues of ATP, Cr(H(2)O)(4)ATP and Co(NH(3))(4)ATP, on the other hand, affected the secondary structure of Na(+)/K(+)-ATPase. We propose that these changes in the secondary structure are responsible for inhibition of backdoor phosphorylation.
Collapse
Affiliation(s)
- F Tanfani
- Institute of Biochemistry, Medical School, University of Ancona, I-60131, Ancona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Antolovic R, Hamer E, Serpersu EH, Kost H, Linnertz H, Kovarik Z, Schoner W. Affinity labelling with MgATP analogues reveals coexisting Na+ and K+ forms of the alpha-subunits of Na+/K+-ATPase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:181-9. [PMID: 10103049 DOI: 10.1046/j.1432-1327.1999.00260.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To test the hypothesis that Na+/K+-ATPase works as an (alpha beta)2-diprotomer with interacting catalytic alpha-subunits, tryptic digestion of pig kidney enzyme, that had been inactivated with substitution-inert MgATP complex analogues, was performed. This led to the demonstration of coexisting C-terminal Na+-like 80-kDa as well as K+-like 60-kDa peptides and N-terminal 40-kDa peptides of the alpha-subunit. To localize the ATP binding sites on tryptic peptides, studies with radioactive MgATP complex analogues were performed: Co(NH3)4-8-N3-ATP specifically modified the E2ATP (low affinity) binding site of Na+/K+-ATPase with an inactivation rate constant (k2) of 12 x 10-3.min-1 at 37 degrees C and a dissociation constant (Kd) of 207 +/- 28 microm. Tryptic digestion of the [gamma32P]Co(NH3)4-8-N3-ATP-inactivated and photolabelled alpha-subunit (Mr = 100 kDa) led, in the absence of univalent cations, to a K+-like C-terminal 60-kDa fragment which was labelled in addition to an unlabelled Na+-like C-terminal 80-kDa fragment. Tryptic digestion of [alpha32P]-or [gamma32P]Cr(H2O)4ATP - bound to the E1ATP (high affinity) site - led to the labelling of a Na+-like 80-kDa fragment besides the immediate formation of an unlabelled K+-like N-terminal 40-kDa fragment and a C-terminal 60-kDa fragment. Because a labelled Na+-like 80-kDa fragment cannot result from an unlabelled K+-like 60-kDa fragment, and because unlabelled alpha-subunits did not show any catalytic activity, the findings are consistent with a situation in which Na+- and K+-like conformations are stabilized by tight binding of substitution-inert MgATP complex analogues to the E1ATP and E2ATP sites. Hence, all data are consistent with the hypothesis that ATP binding induces coexisting Na+ and K+ conformations within an (alphabeta)2-diprotomeric Na+/K+-ATPase.
Collapse
Affiliation(s)
- R Antolovic
- Institut für Biochemie und Endokrinologie, Facbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Thoenges D, Amler E, Eckert T, Schoner W. Tight binding of bulky fluorescent derivatives of adenosine to the low affinity E2ATP site leads to inhibition of Na+/K+-ATPase. Analysis of structural requirements of fluorescent ATP derivatives with a Koshland-Némethy-Filmer model of two interacting ATP sites. J Biol Chem 1999; 274:1971-8. [PMID: 9890953 DOI: 10.1074/jbc.274.4.1971] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A Koshland-Némethy-Filmer model of two cooperating ATP sites has previously been shown to explain the kinetics of inhibition of Na+/K+-ATPase (EC 3.6.1.37) by dansylated ATP (Thoenges, D., and Schoner, W. (1997) J. Biol. Chem. 272, 16315-16321). The present work demonstrates that this model adequately describes all types of interactions and kinetics of a number of ATP analogs that differ in their cooperativity of the high and low affinity ATP binding sites of the enzyme. 2',3'-O(2,4,6-trinitrophenyl)ATP binds in a negative cooperative way to the E1ATP site (Kd = 0.7 microM) and to the E2ATP site (Kd = 210 microM), but 3'(2')-O-methylanthraniloyl-ATP in a positive cooperative way with a lower affinity to the E1ATP binding site (Kd = 200 microM) than to the E2ATP binding site (Kd = 80 microM). 3'(2')-O(5-Fluor-2,4-dinitrophenyl)-ATP, however, binds in a noncooperative way, with equal affinities to both ATP binding sites (Kd = 10 microM). In a research for the structural parameters determining ATP site specificity and cooperativity, we became aware that structural flexibility of ribose is necessary for catalysis. Moreover, puckering of the ring atoms in the ribose is essential for the interaction between ATP sites in Na+/K+-ATPase. A number of derivatives of 2'(3')-O-adenosine with bulky fluorescent substitutes bind with high affinity to the E2ATP site and inhibit Na+/K+-ATPase activity. Evidently, an increased number of interactions of such a bulky adenosine with the enzyme protein tightens binding to the E2ATP site.
Collapse
Affiliation(s)
- D Thoenges
- Institute of Biochemistry and Endocrinology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
13
|
Linnertz H, Lanz E, Gregor M, Antolovic R, Krumscheid R, Obsil T, Slavik J, Kovarik Z, Schoner W, Amler E. Microenvironment of the high affinity ATP-binding site of Na+/K+-ATPase is slightly acidic. Biochem Biophys Res Commun 1999; 254:215-21. [PMID: 9920761 DOI: 10.1006/bbrc.1998.9874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluorescein-5'-isothiocyanate (FITC) was used to study the high-affinity ATP-binding site of Na+/K+-ATPase. The molar ratio of specifically bound FITC per alpha-subunit of Na+/K+-ATPase was found to be 0.5 as followed from pretreatment experiments with another specific E1ATP-inhibitor Cr(H2O)4AdoPP[CH2]P. This indicated an existence of one high affinity ATP-binding site (E1ATP-binding site) in the native (alphabeta)2-diprotomer of Na+/K+-ATPase. Fluorescence dual-excitation ratio of specifically bound FITC revealed that at external pH 7.5, the pH value inside the E1ATP-binding site is 6.95 +/- 0.18. In addition, FITC fluorescence quenching by anti-fluorescein and by iodide choline indicated the limited access of water into the small pocket of the E1ATP-binding site.
Collapse
Affiliation(s)
- H Linnertz
- Institute of Biochemistry & Endocrinology, Justus-Liebig-University, Frankfurter St. 100, Giessen, D-35392, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ward DG, Cavieres JD. Affinity labeling of two nucleotide sites on Na,K-ATPase using 2'(3')-O-(2,4,6-trinitrophenyl)8-azidoadenosine 5'-[alpha-32P]diphosphate (TNP-8N3-[alpha-32P]ADP) as a photoactivatable probe. Label incorporation before and after blocking the high affinity ATP site with fluorescein isothiocyanate. J Biol Chem 1998; 273:33759-65. [PMID: 9837964 DOI: 10.1074/jbc.273.50.33759] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP and its analogues act on the minimal functional unit of Na, K-ATPase, the alpha beta protomer, with high and low affinity effects. Fluorescein isothiocyanate (FITC) irreversibly blocks the high affinity, or catalytic, ATP site, and yet the surviving K+-phosphatase activity of soluble FITC-modified alphabeta protomers can be photoinactivated by 2'(3')-O-trinitrophenyl (TNP)-8N3-ADP (Ward, D. G., and Cavieres, J. D. (1998) J. Biol. Chem. 273, 14277-14284). We have now used TNP-8N3-[alpha-32P]ADP as a photoaffinity label for Na,K-ATPase. The native enzyme can be photolabeled at 5 microM TNP-8N3-[alpha-32P]ADP, and ATP or FITC treatment prevents labeling of the alpha chain. At 25 microM, however, TNP-8N3-[alpha-32P]ADP can be incorporated in the FITC-modified alpha chain, concurrently with the inactivation of the K+-phosphatase activity, to an extrapolated level of 0.5-1.2 mol of 32P-probe per mol of alpha chain. Photoinactivation and labeling are prevented by TNP-ADP, vanadate, or strophanthidin and are promoted by Na+ or Mg2+, but not K+. The cation effects suggest that the fluorescein-modified enzyme incorporates the TNP-8N3-[alpha-32P]ADP. Mg complex preferentially, and the free probe when in the E1 enzyme form and after occupation of a low-affinity Na+ site. Partial trypsinolysis reveals that the point of TNP-8N3-[alpha-32P]ADP attachment is on the C-terminal 58-kDa fragment of the FITC-modified alpha chain. The affinity labeling of the fluorescein enzyme by TNP-8N3-[alpha-32P]ADP endorses the view that two nucleotide sites can be occupied simultaneously in each alpha subunit of Na,K-ATPase.
Collapse
Affiliation(s)
- D G Ward
- Transport ATPase Laboratory, Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | | |
Collapse
|
15
|
Linnertz H, Kost H, Obsil T, Kotyk A, Amler E, Schoner W. Erythrosin 5'-isothiocyanate labels Cys549 as part of the low-affinity ATP binding site of Na+/K+-ATPase. FEBS Lett 1998; 441:103-5. [PMID: 9877174 DOI: 10.1016/s0014-5793(98)01533-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The high-affinity E1ATP site of Na+/K+-ATPase labeled with fluorescein 5'-isothiocyanate and its E2ATP site labeled with erythrosin 5'-isothiocyanate (ErITC), as was shown recently [Linnertz et al. (1998) J. Biol. Chem. 273, 28813-28821], reside on separate and adjacent catalytic alpha subunits. This paper provides evidence that specific labeling of the E2ATP binding site with ErITC resulted in a modification of the Cys549 residue in the tryptic fragment with the sequence Val545-Leu-Gly-Phe-Cys549-His550. Hence, Cys549 is part of or close to the low-affinity E2ATP binding site of Na+/K+-ATPase.
Collapse
Affiliation(s)
- H Linnertz
- Institute of Biochemistry and Endocrinology, Justus-Liebig University Giessen, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Linnertz H, Urbanova P, Obsil T, Herman P, Amler E, Schoner W. Molecular distance measurements reveal an (alpha beta)2 dimeric structure of Na+/K+-ATPase. High affinity ATP binding site and K+-activated phosphatase reside on different alpha-subunits. J Biol Chem 1998; 273:28813-21. [PMID: 9786881 DOI: 10.1074/jbc.273.44.28813] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP hydrolysis by Na+/K+-ATPase proceeds via the interaction of simultaneously existing and cooperating high (E1ATP) and low (E2ATP) substrate binding sites. It is unclear whether both ATP sites reside on the same or on different catalytic alpha-subunits. To answer this question, we looked for a fluorescent label for the E2ATP site that would be suitable for distance measurements by Förster energy transfer after affinity labeling of the E1ATP site by fluorescein 5'-isothiocyanate (FITC). Erythrosin 5'-isothiocyanate (ErITC) inactivated, in an E1ATP site-blocked enzyme (by FITC), the residual activity of the E2ATP site, namely K+-activated p-nitrophenylphosphatase in a concentration-dependent way that was ATP-protectable. The molar ratios of FITC/alpha-subunit of 0.6 and of ErITC/alpha-subunit of 0.48 indicate 2 ATP sites per (alpha beta)2 diprotomer. Measurements of Förster energy transfer between the FITC-labeled E1ATP and the ErITC-labeled or Co(NH3)4ATP-inactivated E2ATP sites gave a distance of 6.45 +/- 0.64 nm. This distance excludes 2 ATP sites per alpha-subunit since the diameter of alpha is 4-5 nm. Förster energy transfer between cardiac glycoside binding sites labeled with anthroylouabain and fluoresceinylethylenediamino ouabain gave a distance of 4.9 +/- 0.5 nm. Hence all data are consistent with the hypothesis that Na+/K+-ATPase in cellular membranes is an (alpha beta)2 diprotomer and works as a functional dimer (Thoenges, D., and Schoner, W. (1997) J. Biol. Chem. 272, 16315-16321).
Collapse
Affiliation(s)
- H Linnertz
- Institute of Biochemistry and Endocrinology, Justus-Liebig-University Giessen, Frankfurter Str. 100, D-35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Ward DG, Cavieres JD. Photoinactivation of fluorescein isothiocyanate-modified Na,K-ATPase by 2'(3')-O-(2,4,6-trinitrophenyl)8-azidoadenosine 5'-diphosphate. Abolition of E1 and E2 partial reactions by sequential block of high and low affinity nucleotide sites. J Biol Chem 1998; 273:14277-84. [PMID: 9603934 DOI: 10.1074/jbc.273.23.14277] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na,K-ATPase activity of the sodium pump exhibits apparent multisite kinetics toward ATP, a feature that is inherent to the minimal enzyme unit, the alpha beta protomer. We have argued that this should arise from separate catalytic and noncatalytic sites on the alpha beta protomer as fluorescein isothiocyanate (FITC) blocks a high affinity ATP site on all alpha subunits and yet the modified Na, K-ATPase retains a low affinity response to nucleotides (Ward, D. G., and Cavieres, J. D. (1996) J. Biol. Chem. 271, 12317-12321). We now find that 2'(3')-O-(2,4,6-trinitrophenyl)8-azido-adenosine 5'-diphosphate (TNP-8N3-ADP), a high affinity photoactivatable analogue of ATP, can inhibit the K+-phosphatase activity of the FITC-modified enzyme during assays in dimmed light. The inhibition occurs with a Ki of 140 microM at 20 mM K+; it requires the adenine ring as 2'(3')-O-(2,4 6-trinitrophenyl) (TNP)-UDP or TNP-uridine are less potent and 2,4,6-trinitrobenzene-sulfonate is ineffective. Under irradiation with UV light, TNP-8N3-ADP inactivates the K+-phosphatase activity of the fluorescein-enzyme and also its phosphorylation by [32P]Pi. The photoinactivation process is stimulated by Na+ or Mg2+, and is inhibited by K+ or excess TNP-ADP. In the presence of 50 mM Na+ and 1 mM Mg2+, TNP-8N3-ADP photoinactivates with a K0.5 of 15 microM. Furthermore, TNP-8N3-ADP photoinactivates the FITC-modified, solubilized alpha beta protomers, even more effectively than the membrane-bound fluorescein-enzyme. These results strongly suggest that catalytic and allosteric ATP sites coexist on the alpha beta protomer of Na,K-ATPase.
Collapse
Affiliation(s)
- D G Ward
- Transport ATPase Laboratory, Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 9HN, United Kingdom
| | | |
Collapse
|
18
|
Linnertz H, Urbanova P, Amler E. Quenching of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole-modified Na+/K+-ATPase reveals a higher accessibility of the low-affinity ATP-binding site. FEBS Lett 1997; 419:227-30. [PMID: 9428639 DOI: 10.1016/s0014-5793(97)01460-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
7-Chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) labeled Na+/K+-ATPase covalently with two different inactivation constants (Ki = 2.5 microM; Ki' = 10 microM). It apparently modified the two different ATP-binding sites of the enzyme since it decreased the activity of the E2ATP site, i.e. the K+-activated para-nitrophenylphosphatase activity, in an enzyme whose high-affinity E1ATP site had been blocked by fluorescein 5'isothiocyanate (FITC). It also reduced the activity of the E1ATP site, i.e. the Na+-activated protein phosphorylation, in an enzyme whose low-affinity E2ATP site had been blocked by Co(NH3)4PO4. Fluorescence quenching experiments with KI, CsCl and MnCl2 of the NBD-Cl-labeled Na+/K+-ATPase revealed two differently accessible types of fluorophores depending on the ATP site: The E2ATP site apparently differs from the E1ATP site in that it is more open because the fluorophore labeling in the E2ATP site was sterically better accessible for quenchers.
Collapse
Affiliation(s)
- H Linnertz
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague
| | | | | |
Collapse
|
19
|
Ward DG, Schoner W, Cavieres JD. Nucleotides trigger the release of Co(NH3)4ATP tightly bound to inactivated Na,K-ATPase. Ann N Y Acad Sci 1997; 834:432-4. [PMID: 9432919 DOI: 10.1111/j.1749-6632.1997.tb52291.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- D G Ward
- Department of Cell Physiology and Pharmacology, Leicester University, UK
| | | | | |
Collapse
|
20
|
Affiliation(s)
- D Thoenges
- Institut für Biochemie und Endokrinologie, Justus-Liebig-Universität Giessen, Germany
| | | | | |
Collapse
|
21
|
Plesner IW. Two unexplained kinetic features of NA,K-ATPase may be understood as indicating K(+)-induced cooperativity between subunits in a dimeric enzyme. Ann N Y Acad Sci 1997; 834:412-5. [PMID: 9432916 DOI: 10.1111/j.1749-6632.1997.tb52286.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- I W Plesner
- Department of Chemistry, University of Aarhus, Denmark.
| |
Collapse
|
22
|
Brinkmann K, Linnertz H, Amler E, Lanz E, Herman P, Schoner W. Fluoresceinyl-ethylenediamine-ouabain detects an acidic environment in the cardiac glycoside binding site of Na+/K+-ATPase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:301-8. [PMID: 9363783 DOI: 10.1111/j.1432-1033.1997.t01-2-00301.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To probe the pH value in the microenvironment of the cardiac glycoside-binding site of Na+/K+-ATPase, pH-sensitive fluorescent derivatives of ouabain were synthesized. The fluoresceinyl derivative of ethylenediamino-ouabain (FEDO) had a pKs of 6.0 and showed a H+-dependent fluorescence change, when its ratio of excitation at 490 nm/450 nm was recorded at 530 nm. Binding of FEDO inactivated Na+/K+-ATPase at 37 degrees C and pH 7.25 in a slow time-dependent process under the conditions of backdoor phosphorylation with k(on) of 891 s(-1) M(-1). The complex dissociated with k(on) of 0.35 x 10(-3) s(-1) resulting in a Kd value of 0.4 microM for the FEDO x enzyme complex. Binding of FEDO was associated with a decrease of the excitatory fluorescence ratio at 490 nm/450 nm which could be used to convert this change into a pH value. A pH value of 5.1 +/- 0.2 was calculated to exist in the microenvironment of the FEDO x enzyme complex. This pH value was independent of the pH of the incubation medium used to form the FEDO x enzyme complex. Analysis of the accessibility of the fluorophore in the FEDO x enzyme complex to the dynamic quencher potassium iodide detected a decrease of the Stern-Volmer constant from 6.2 mM(-1) (free FEDO) to 1.5 mM(-1) (FEDO x enzyme complex) indicating thereby a limited accessibility of the fluorophore to anions. Analysis of the microenvironment of the fluorescein residue of the FEDO x enzyme complex by measurements of the anisotropy and the fluorescence half-life time revealed that both processes differed significantly when H2O was replaced by D2O. We conclude, therefore, that a pH of 5.1 +/- 0.2 exists in the vicinity of ouabain that is hidden in the depth of the receptor site when the ouabain receptor complex has been formed.
Collapse
Affiliation(s)
- K Brinkmann
- Institute of Biochemistry and Endocrinology, Justus-Liebig-University Giessen, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Thoenges D, Schoner W. 2'-O-Dansyl analogs of ATP bind with high affinity to the low affinity ATP site of Na+/K+-ATPase and reveal the interaction of two ATP sites during catalysis. J Biol Chem 1997; 272:16315-21. [PMID: 9195936 DOI: 10.1074/jbc.272.26.16315] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Na+/K+-transport through mammalian cell membranes by Na+/K+-ATPase (EC 3.6.1.37) needs the interaction of ATP sites with different binding affinities during catalysis: one with catalytic (high affinity site) and one with regulatory properties (low affinity site). To find affinity labels for the latter one, the effects of 2'-O-dansylated ATP analogs on Na+/K+-ATPase and its partial activities were analyzed. DANS-ATP (2'-O-(6-dimethylaminonaphthalenesulfonyl)adenosine 5'-triphosphate) inhibited noncompetitively at low ATP concentrations and competitively at high ATP concentrations the Na+/K+-activated hydrolysis of ATP under turnover conditions. It interacted preferentially with the low affinity ATP site as shown by its protective effect against the inactivation of Na+/K+-ATPase by Co(NH3)4ATP and Cr(H2O)4ATP. DANS-N3-ATP, however, inactivated Na+/K+-ATPase. The initial velocity of inactivation shows a sigmoid concentration dependence that was converted to a hyperbola in the presence of ATP. DANS-N3-ATP inhibited competitively the K+-activated hydrolysis of p-nitrophenyl phosphate in a fluorescein isothiocyanate-blocked enzyme but did not effect Na+-dependent phosphoenzyme formation from [gamma-32P]ATP in a Co(NH3)4PO4-blocked enzyme. These effects could be described by a Koshland-Némethy-Filmer model assuming two nucleotide binding sites in strong cooperation. Fitting all data to this model revealed that ATP was bound in a negative cooperative way with a Kd = 0.3-1 microM to the first site and a Kd = 100-120 microM to the second site of the enzyme containing already one ATP bound. The hydrolysis of ATP through a pathway with two ATP bound was 30 times faster than hydrolysis with one ATP bound. DANS-N3-ATP bound in a positive cooperative way with a Kd = 500 +/- 100 microM to the first site and a Kd = 2.5 +/- 0.5 microM to the second site containing already one DANS-N3-ATP bound. Therefore, DANS-N3-ATP may be an useful affinity marker of the low affinity, regulatory ATP site.
Collapse
Affiliation(s)
- D Thoenges
- Institut für Biochemie und Endokrinologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen; Frankfurter Strasse 100, D-35392 Giessen, Germany
| | | |
Collapse
|
24
|
Roberts G, Beaugé L. Complex ATP-activation kinetics of plant H+-transporting ATPase may or may not require two substrate sites. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:228-32. [PMID: 9210488 DOI: 10.1111/j.1432-1033.1997.00228.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The complex ATP-activation kinetics of plant H+-ATPase requires two ATP effects on the enzyme. They may result from the simultaneous existence of two ATP sites or a single site that consecutively changes its properties. We describe here three main models for ATP binding to the plant H+-ATPase. Considering the experimental data there are some restrictions in their application. A system with two simultaneous catalytic sites with cooperative binding is possible provided the substrate exerts regulatory properties, and when ES (or SE) leads to a slower velocity path than SES (v1 < v2). In other words, simple cooperativity does not work. A system with two substrate sites, one of which is catalytic and the other is always and only regulatory (i.e. it affects the overall reaction rate), offers two alternatives: one with potential cooperative binding (the system does not discriminate between binding to the catalytic and regulatory sites; and the other with intrinsically different affinities of catalytic and regulatory sites (i.e. the system discriminates between binding to the two binding sites). Here it is also obligatory that ES (or SE) leads to a slower-velocity path than SES (v1 < v2). Thirdly, a system is possible with single ATP domain that is consecutively catalytic and regulatory as the cycle proceeds. These three mechanisms give rise to equivalent rate equations. Therefore, there is no way to distinguish between them on the basis of kinetic studies. Another conclusion drawn from modeling these schemes is that the form of the plots might resemble but not correspond to certain cooperativity type. For instance, for two substrate sites, a true negative cooperativity for substrate binding can mimic positive cooperativity if the v1 velocity pathway is much slower than the v2 one.
Collapse
Affiliation(s)
- G Roberts
- División de Biofísica, Instituto de Investigación Médica Mercedes yMartín Ferreyra, Casilla de Correo, Córdoba, Argentina
| | | |
Collapse
|