1
|
Saxena VK, Vedamurthy GV, Swarnkar CP, Kadam V, Onteru SK, Ahmad H, Singh R. De novo pathway is an active metabolic pathway of cysteine synthesis in Haemonchus contortus. Biochimie 2021; 187:110-120. [PMID: 34082042 DOI: 10.1016/j.biochi.2021.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 01/25/2023]
Abstract
Haemonchus contortus, commonly known as Barber's pole worm, is an economically important gastrointestinal nematode of sheep and goats especially in tropical and sub-tropical regions of the world. Cysteine synthesis is a very important metabolic pathway for the parasite, however the functional aspects of cysteine synthesis in parasite are largely unknown. The key question which we have investigated in the study is; whether the parasite uses a de novo pathway of cysteine synthesis, which is unknown in multicellular organisms of the animal kingdom and known to be absent in mammals. Directional cloning of the cysteine synthase (CS) gene was done in pET303 champion vector using restriction sites XbaI and XhoI. The CS gene of the H.contortus was closely related to CS-A protein of Oesophagostomum dentatum and a hypothetical protein of Ancylostoma ceylanicum. Recombinant protein of the H contortus CS (rHC-CS) gene was expressed using pET303 vector in pLysS BL21 strain of E.coli and subsequently purified by Ni-NTA affinity chromatography. Western blot using anti-His tag antibody confirmed the presence of rHC-CS. Biochemical assay, FTIR and enzyme kinetics studies revealed that rHC-CS used O-acetyl serine as substrate to produce cysteine using de novo pathway and CS activity was also confirmed with the homogenate of H.contortus. Upregulation of CS transcripts in the adult and its downregulation in the L3 larval stage suggests that de novo pathway contributes to the cysteine requirement of mature H.contortus. It is concluded that de novo pathway is an active metabolic pathway in H.contortus.
Collapse
Affiliation(s)
- Vijay Kumar Saxena
- Molecular Physiology Laboratory, Division of Physiology and Biochemistry, Central Sheep and Wool Research Institute, ICAR-CSWRI, Avikanagar, Rajasthan, 304501, India.
| | - G V Vedamurthy
- Livestock Research Centre, Southren Regional Station, National Dairy Research Institute, ICAR-NDRI (SRS), Bengaluru, Karnataka, 560030, India
| | - C P Swarnkar
- Animal Health Division, Central Sheep and Wool Research Institute, ICAR-CSWRI, Avikanagar, Rajasthan, 304501, India
| | - Vinod Kadam
- Textile Manufacturing and Textile Chemistry Division, ICAR- Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, 304501, India
| | - Suneel Kumar Onteru
- Animal Biochemistry Division, National Dairy Research Institute, ICAR-NDRI, Karnal, Haryana, 132001, India
| | - Haseen Ahmad
- Animal Biochemistry Division, National Dairy Research Institute, ICAR-NDRI, Karnal, Haryana, 132001, India
| | - Raghvendar Singh
- Molecular Physiology Laboratory, Division of Physiology and Biochemistry, Central Sheep and Wool Research Institute, ICAR-CSWRI, Avikanagar, Rajasthan, 304501, India
| |
Collapse
|
2
|
Wang WQ, Liu SJ, Song SQ, Møller IM. Proteomics of seed development, desiccation tolerance, germination and vigor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:1-15. [PMID: 25461695 DOI: 10.1016/j.plaphy.2014.11.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/03/2014] [Indexed: 05/19/2023]
Abstract
Proteomics, the large-scale study of the total complement of proteins in a given sample, has been applied to all aspects of seed biology mainly using model species such as Arabidopsis or important agricultural crops such as corn and rice. Proteins extracted from the sample have typically been separated and quantified by 2-dimensional polyacrylamide gel electrophoresis followed by liquid chromatography and mass spectrometry to identify the proteins in the gel spots. In this way, qualitative and quantitative changes in the proteome during seed development, desiccation tolerance, germination, dormancy release, vigor alteration and responses to environmental factors have all been studied. Many proteins or biological processes potentially important for each seed process have been highlighted by these studies, which greatly expands our knowledge of seed biology. Proteins that have been identified to be particularly important for at least two of the seed processes are involved in detoxification of reactive oxygen species, the cytoskeleton, glycolysis, protein biosynthesis, post-translational modifications, methionine metabolism, and late embryogenesis-abundant (LEA) proteins. It will be useful for molecular biologists and molecular plant breeders to identify and study genes encoding particularly interesting target proteins with the aim to improve the yield, stress tolerance or other critical properties of our crop species.
Collapse
Affiliation(s)
- Wei-Qing Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | - Song-Quan Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China.
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, DK-4200 Slagelse, Denmark.
| |
Collapse
|
3
|
Yacoubi R, Job C, Belghazi M, Chaibi W, Job D. Toward Characterizing Seed Vigor in Alfalfa Through Proteomic Analysis of Germination and Priming. J Proteome Res 2011; 10:3891-903. [DOI: 10.1021/pr101274f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Rafika Yacoubi
- Laboratoire de Biologie et Physiologie Cellulaire Végétales, Département de Biologie, Université de Tunis, Tunisie
| | - Claudette Job
- Centre National de la Recherche Scientifique-Université Claude Bernard Lyon 1-Institut National des Sciences Appliquées-Bayer CropScience Joint Laboratory, UMR 5240 Lyon cedex 9, France
| | - Maya Belghazi
- Centre d’Analyses Protéomiques de Marseille (CAPM), IFR Jean Roche, Faculté de médecine, Marseille cedex 20, France
| | - Wided Chaibi
- Laboratoire de Biologie et Physiologie Cellulaire Végétales, Département de Biologie, Université de Tunis, Tunisie
| | - Dominique Job
- Centre National de la Recherche Scientifique-Université Claude Bernard Lyon 1-Institut National des Sciences Appliquées-Bayer CropScience Joint Laboratory, UMR 5240 Lyon cedex 9, France
| |
Collapse
|
4
|
Catusse J, Meinhard J, Job C, Strub JM, Fischer U, Pestsova E, Westhoff P, Van Dorsselaer A, Job D. Proteomics reveals potential biomarkers of seed vigor in sugarbeet. Proteomics 2011; 11:1569-80. [PMID: 21432998 DOI: 10.1002/pmic.201000586] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/21/2010] [Accepted: 11/08/2010] [Indexed: 12/14/2022]
Abstract
To unravel biomarkers of seed vigor, an important trait conditioning crop yield, a comparative proteomic study was conducted with sugarbeet seed samples of varying vigor as generated by an invigoration treatment called hydropriming and an aging treatment called controlled deterioration. Comparative proteomics revealed proteins exhibiting contrasting behavior between seed samples. Thus, 18 proteins were up-regulated during priming and down-regulated during aging and further displayed an up-regulation upon priming of the aged seeds, meaning that down-regulation of these spot volumes during aging was reversible upon subsequent priming. Also, 11 proteins exhibited the converse behavior characterized by a decrease and an increase of the spot volumes during priming and aging of the control seeds, respectively, and a decrease in the spot volumes upon priming of the aged seeds. The results underpinned the role in seed vigor of several metabolic pathways involved in lipid and starch mobilization, protein synthesis or the methyl cycle. They also corroborate previous studies suggesting that the glyoxylate enzyme isocitrate lyase, the capacity of protein synthesis and components of abscisic acid signaling pathways are likely contributors of seed vigor.
Collapse
Affiliation(s)
- Julie Catusse
- CNRS/UCBL/INSA/Bayer CropScience Joint Laboratory (UMR), Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kumaran S, Jez JM. Thermodynamics of the Interaction between O-Acetylserine Sulfhydrylase and the C-Terminus of Serine Acetyltransferase. Biochemistry 2007; 46:5586-94. [PMID: 17425333 DOI: 10.1021/bi7001168] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cysteine biosynthesis in plants is partly regulated by the physical association of O-acetylserine sulfhydrylase (OASS) and serine acetyltransferase (SAT). Interaction of OASS and SAT requires only the 10 C-terminal residues of SAT. Here we analyze the thermodynamics of formation of a complex of Arabidopsis thaliana OASS (AtOASS) and the C-terminal ligand of AtSAT (C10 peptide) as a function of temperature and salt concentration using fluorescence spectroscopy and isothermal titration calorimetry (ITC). Our results suggest that the C-terminus of AtSAT provides the major contribution to the total binding energy in the plant cysteine synthase complex. The C10 peptide binds to the AtOASS homodimer in a 2:1 complex. Interaction between AtOASS and the C10 peptide is tight (Kd = 5-100 nM) over a range of temperatures (10-35 degrees C) and NaCl concentrations (0.02-1.3 M). AtOASS binding of the C10 peptide displays negative cooperativity at higher temperatures. ITC studies reveal compensating changes in the enthalpy and entropy of binding that also depend on temperature. The enthalpy of interaction has a significant temperature dependence (DeltaCp = -401 cal mol-1 K-1). The heat capacity change and salt dependence studies suggest that hydrophobic interactions drive formation of the AtOASS.C10 peptide complex. The potential regulatory effect of temperature on the plant cysteine synthase complex is discussed.
Collapse
Affiliation(s)
- Sangaralingam Kumaran
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, USA
| | | |
Collapse
|
6
|
Wirtz M, Droux M. Synthesis of the sulfur amino acids: cysteine and methionine. PHOTOSYNTHESIS RESEARCH 2005; 86:345-62. [PMID: 16307301 DOI: 10.1007/s11120-005-8810-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 06/15/2005] [Indexed: 05/05/2023]
Abstract
This review will assess new features reported for the molecular and biochemical aspects of cysteine and methionine biosynthesis in Arabidopsis thaliana with regards to early published data from other taxa including crop plants and bacteria (Escherichia coli as a model). By contrast to bacteria and fungi, plant cells present a complex organization, in which the sulfur network takes place in multiple sites. Particularly, the impact of sulfur amino-acid biosynthesis compartmentalization will be addressed in respect to localization of sulfur reduction. To this end, the review will focus on regulation of sulfate reduction by synthesis of cysteine through the cysteine synthase complex and the synthesis of methionine and its derivatives. Finally, regulatory aspects of sulfur amino-acid biosynthesis will be explored with regards to interlacing processes such as photosynthesis, carbon and nitrogen assimilation.
Collapse
Affiliation(s)
- Markus Wirtz
- Heidelberg Institute of Plant Sciences (HIP), University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany.
| | | |
Collapse
|
7
|
Bonner ER, Cahoon RE, Knapke SM, Jez JM. Molecular Basis of Cysteine Biosynthesis in Plants. J Biol Chem 2005; 280:38803-13. [PMID: 16166087 DOI: 10.1074/jbc.m505313200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In plants, cysteine biosynthesis plays a central role in fixing inorganic sulfur from the environment and provides the only metabolic sulfide donor for the generation of methionine, glutathione, phytochelatins, iron-sulfur clusters, vitamin cofactors, and multiple secondary metabolites. O-Acetylserine sulfhydrylase (OASS) catalyzes the final step of cysteine biosynthesis, the pyridoxal 5'-phosphate (PLP)-dependent conversion of O-acetylserine into cysteine. Here we describe the 2.2 A resolution crystal structure of OASS from Arabidopsis thaliana (AtOASS) and the 2.7 A resolution structure of the AtOASS K46A mutant with PLP and methionine covalently linked as an external aldimine in the active site. Although the plant and bacterial OASS share a conserved set of amino acids for PLP binding, the structure of AtOASS reveals a difference from the bacterial enzyme in the positioning of an active site loop formed by residues 74-78 when methionine is bound. Site-directed mutagenesis, kinetic analysis, and ligand binding titrations probed the functional roles of active site residues. These experiments indicate that Asn(77) and Gln(147) are key amino acids for O-acetylserine binding and that Thr(74) and Ser(75) are involved in sulfur incorporation into cysteine. In addition, examination of the AtOASS structure and nearly 300 plant and bacterial OASS sequences suggest that the highly conserved beta8A-beta9A surface loop may be important for interaction with serine acetyltransferase, the other enzyme in cysteine biosynthesis. Initial protein-protein interaction experiments using AtOASS mutants targeted to this loop support this hypothesis.
Collapse
Affiliation(s)
- Eric R Bonner
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | | | | | | |
Collapse
|
8
|
Campanini B, Speroni F, Salsi E, Cook PF, Roderick SL, Huang B, Bettati S, Mozzarelli A. Interaction of serine acetyltransferase with O-acetylserine sulfhydrylase active site: evidence from fluorescence spectroscopy. Protein Sci 2005; 14:2115-24. [PMID: 15987896 PMCID: PMC2279323 DOI: 10.1110/ps.051492805] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/09/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
Serine acetyltransferase is a key enzyme in the sulfur assimilation pathway of bacteria and plants, and is known to form a bienzyme complex with O-acetylserine sulfhydrylase, the last enzyme in the cysteine biosynthetic pathway. The biological function of the complex and the mechanism of reciprocal regulation of the constituent enzymes are still poorly understood. In this work the effect of complex formation on the O-acetylserine sulfhydrylase active site has been investigated exploiting the fluorescence properties of pyridoxal 5'-phosphate, which are sensitive to the cofactor microenvironment and to conformational changes within the protein matrix. The results indicate that both serine acetyltransferase and its C-terminal decapeptide bind to the alpha-carboxyl subsite of O-acetylserine sulfhydrylase, triggering a transition from an open to a closed conformation. This finding suggests that serine acetyltransferase can inhibit O-acetylserine sulfhydrylase catalytic activity with a double mechanism, the competition with O-acetylserine for binding to the enzyme active site and the stabilization of a closed conformation that is less accessible to the natural substrate.
Collapse
Affiliation(s)
- Barbara Campanini
- Department of Biochemistry and Molecular Biology, Univeristy of Parma, 43100 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Rouhier N, Villarejo A, Srivastava M, Gelhaye E, Keech O, Droux M, Finkemeier I, Samuelsson G, Dietz KJ, Jacquot JP, Wingsle G. Identification of plant glutaredoxin targets. Antioxid Redox Signal 2005; 7:919-29. [PMID: 15998247 DOI: 10.1089/ars.2005.7.919] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glutaredoxins (Grxs) are small ubiquitous proteins of the thioredoxin (Trx) family, which catalyze dithiol-disulfide exchange reactions or reduce protein-mixed glutathione disulfides. In plants, several Trx-interacting proteins have been isolated from different compartments, whereas very few Grx-interacting proteins are known. We describe here the determination of Grx target proteins using a mutated poplar Grx, various tissular and subcellular plant extracts, and liquid chromatography coupled to tandem mass spectrometry detection. We have identified 94 putative targets, involved in many processes, including oxidative stress response [peroxiredoxins (Prxs), ascorbate peroxidase, catalase], nitrogen, sulfur, and carbon metabolisms (methionine synthase, alanine aminotransferase, phosphoglycerate kinase), translation (elongation factors E and Tu), or protein folding (heat shock protein 70). Some of these proteins were previously found to interact with Trx or to be glutathiolated in other organisms, but others could be more specific partners of Grx. To substantiate further these data, Grx was shown to support catalysis of the stroma beta-type carbonic anhydrase and Prx IIF of Arabidopsis thaliana, but not of poplar 2-Cys Prx. Overall, these data suggest that the interaction could occur randomly either with exposed cysteinyl disulfide bonds formed within or between target proteins or with mixed disulfides between a protein thiol and glutathione.
Collapse
Affiliation(s)
- Nicolas Rouhier
- Unité Mixte de Recherches 1136 INRA UHP (Interaction Arbres Microorganismes), IFR 110 Génomique Ecophysiologie et Ecologie Fonctionnelles, Université Henri Poincaré, Vandoeuvre, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Balmer Y, Koller A, del Val G, Manieri W, Schürmann P, Buchanan BB. Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proc Natl Acad Sci U S A 2003; 100:370-5. [PMID: 12509500 PMCID: PMC140980 DOI: 10.1073/pnas.232703799] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2002] [Indexed: 01/13/2023] Open
Abstract
Thioredoxins are small multifunctional redox active proteins widely if not universally distributed among living organisms. In chloroplasts, two types of thioredoxins (f and m) coexist and play central roles in regulating enzyme activity. Reduction of thioredoxins in chloroplasts is catalyzed by an iron-sulfur disulfide enzyme, ferredoxin-thioredoxin reductase, that receives photosynthetic electrons from ferredoxin, thereby providing a link between light and enzyme activity. Chloroplast thioredoxins function in the regulation of the Calvin cycle and associated processes. However, the relatively small number of known thioredoxin-linked proteins (about 16) raised the possibility that others remain to be identified. To pursue this opportunity, we have mutated thioredoxins f and m, such that the buried cysteine of the active disulfide has been replaced by serine or alanine, and bound them to affinity columns to trap target proteins of chloroplast stroma. The covalently linked proteins were eluted with DTT, separated on gels, and identified by mass spectrometry. This approach led to the identification of 15 potential targets that function in 10 chloroplast processes not known to be thioredoxin linked. Included are proteins that seem to function in plastid-to-nucleus signaling and in a previously unrecognized type of oxidative regulation. Approximately two-thirds of these targets contained conserved cysteines. We also identified 11 previously unknown and 9 confirmed target proteins that are members of pathways known to be regulated by thioredoxin. In contrast to results with individual enzyme assays, specificity for thioredoxin f or m was not observed on affinity chromatography.
Collapse
Affiliation(s)
- Yves Balmer
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley 94720, USA
| | | | | | | | | | | |
Collapse
|
11
|
Warrilow AGS, Hawkesford MJ. Modulation of cyanoalanine synthase and O-acetylserine (thiol) lyases A and B activity by beta-substituted alanyl and anion inhibitors. JOURNAL OF EXPERIMENTAL BOTANY 2002; 53:439-445. [PMID: 11847242 DOI: 10.1093/jexbot/53.368.439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The reaction mechanisms of three enzymes belonging to a single gene family are compared: a cyanoalanine synthase and two isoforms of O-acetylserine (thiol) lyase (O-ASTL) isolated from spinach (Spinacea oleracea L. cv. Medina). O-ASTL represents a major regulatory point in the S-assimilatory pathway, and the related cyanoalanine synthase, which is specific to the mitochondrial compartment, has evolved an independent function of cyanide detoxification. All three enzymes catalysed both the cysteine synthesis and cyanoalanine synthesis reactions although with different efficiencies, and which may be explained by a single amino acid substitution in the substrate-binding pocket of the enzyme. Substituted alanine and nucleophillic inhibitors caused predominantly non-competitive inhibition, indicating binding to both E- and F-forms of the enzyme in a bi-bi ping-pong kinetic model. Michaelis-Menten kinetics were observed when the alanyl substrate was varied in the presence and absence of inhibitors. The use of alanyl inhibitors has shown that the alanyl half-cycle of both the cysteine synthesis and cyanoalanine synthesis reactions of cyanoalanine synthase and O-acetylserine (thiol) lyases are similar. This is in contrast to the results observed with nucleophillic inhibitors, which have shown that the mechanisms of anion binding and processing differ between cyanoalanine synthase and O-ASTLs.
Collapse
Affiliation(s)
- Andrew G S Warrilow
- IACR-Rothamsted, Agriculture and Environment Division, Harpenden, Hertfordshire AL5 2JQ, UK
| | | |
Collapse
|
12
|
Abstract
Cysteine is the major source of fixed sulfur for the synthesis of sulfur-containing compounds in organisms of the Bacteria and Eucarya domains. Though pathways for cysteine biosynthesis have been established for both of these domains, it is unknown how the Archaea fix sulfur or synthesize cysteine. None of the four archaeal genomes sequenced to date contain open reading frames with identities to either O-acetyl-L-serine sulfhydrylase (OASS) or homocysteine synthase, the only sulfur-fixing enzymes known in nature. We report the purification and characterization of OASS from acetate-grown Methanosarcina thermophila, a moderately thermophilic methanoarchaeon. The purified OASS contained pyridoxal 5'-phosphate and catalyzed the formation of L-cysteine and acetate from O-acetyl-L-serine and sulfide. The N-terminal amino acid sequence has high sequence similarity with other known OASS enzymes from the Eucarya and Bacteria domains. The purified OASS had a specific activity of 129 micromol of cysteine/min/mg, with a K(m) of 500 +/- 80 microM for sulfide, and exhibited positive cooperativity and substrate inhibition with O-acetyl-L-serine. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band at 36 kDa, and native gel filtration chromatography indicated a molecular mass of 93 kDa, suggesting that the purified OASS is either a homodimer or a homotrimer. The optimum temperature for activity was between 40 and 60 degrees C, consistent with the optimum growth temperature for M. thermophila. The results of this study provide the first evidence for a sulfur-fixing enzyme in the Archaea domain. The results also provide the first biochemical evidence for an enzyme with the potential for involvement in cysteine biosynthesis in the Archaea.
Collapse
Affiliation(s)
- B Borup
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
13
|
Kery V, Poneleit L, Meyer JD, Manning MC, Kraus JP. Binding of pyridoxal 5'-phosphate to the heme protein human cystathionine beta-synthase. Biochemistry 1999; 38:2716-24. [PMID: 10052942 DOI: 10.1021/bi981808n] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystathionine beta-synthase (CBS), a pyridoxal 5'-phosphate (PLP) dependent enzyme, catalyzes the condensation of serine and homocysteine to form cystathionine. Mammalian CBS was recently shown to be a heme protein. While the role of heme in CBS is unknown, catalysis by CBS can be explained solely by participation of PLP in the reaction mechanism. In this study, treatment of CBS with sodium borohydride selectively reduced the Schiff base but did not affect the heme. Purification and sequencing of the PLP-cross-linked peptide from a trypsin digest of the reduced enzyme revealed the evolutionarily conserved Lys119 to be the residue forming the Schiff base. Serine and hydroxylamine form an alpha-aminoacrylate and an oxime with PLP in CBS, respectively. The sulfhydryl-containing substrate, homocysteine, disturbs the heme environment but does not interact with PLP. In contrast to other PLP-dependent enzymes, CBS emits no PLP-related fluorescence when excited at 296 or 330 nm. PLP but not heme dissociates from the enzyme in the presence of hydroxylamine. The dissociation of PLP is a multistage process involving a short approximately 500 s lag phase, followed by a rapid inactivation and a slower PLP-oxime formation. PLP-free CBS exhibits a decrease of secondary structure as well as loss of CBS activity that can be only partially restored by PLP. This study constitutes the first comprehensive investigation of PLP interaction with a heme protein.
Collapse
Affiliation(s)
- V Kery
- Department of Pediatrics, University of Colorado School of Medicine, Denver 80262, USA
| | | | | | | | | |
Collapse
|
14
|
Curien G, Job D, Douce R, Dumas R. Allosteric activation of Arabidopsis threonine synthase by S-adenosylmethionine. Biochemistry 1998; 37:13212-21. [PMID: 9748328 DOI: 10.1021/bi980068f] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Plant threonine synthase, in contrast to its bacterial counterpart, is strongly stimulated by S-adenosylmethionine via a noncovalent interaction [Giovanelli et al. (1984) Plant. Physiol. 76, 285-292]. The mechanism of activation remained, however, largely unknown. To further characterize this unusual role for S-adenosylmethionine, the Arabidopsis thaliana threonine synthase was overexpressed in Escherichia coli, purified to homogeneity, and then used for kinetic and enzyme-bound pyridoxal 5'-phosphate fluorescence equilibrium-binding experiments. We observed that the activating effect of S-adenosylmethionine results from an 8-fold increase in the rate of catalysis and from a 25-fold decrease in the Km value for the O-phosphohomoserine substrate. The data can be well fitted by a kinetic model assuming binding of two S-adenosylmethionine molecules on the native enzyme. We suggest that the dramatic modifications of the enzyme kinetic properties originate most presumably from an allosteric and cooperative transition induced by S-adenosylmethionine. This transition occurs at a much faster rate in the presence of the substrate than in its absence.
Collapse
Affiliation(s)
- G Curien
- Unité mixte CNRS/Rhône-Poulenc (UMR 41), Rhône-Poulenc Agrochimie, Lyon, France
| | | | | | | |
Collapse
|
15
|
Kery V, Poneleit L, Kraus JP. Trypsin cleavage of human cystathionine beta-synthase into an evolutionarily conserved active core: structural and functional consequences. Arch Biochem Biophys 1998; 355:222-32. [PMID: 9675031 DOI: 10.1006/abbi.1998.0723] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cystathionine beta-synthase (CBS) catalyzes the condensation of homocysteine and serine to cystathionine-an irreversible step in the eukaryotic transsulfuration pathway. The native enzyme is a homotetramer or multimer of 63-kDa (551 amino acids) subunits and is activated by S-adenosyl-l-methionine (AdoMet) or by partial cleavage with trypsin. Amino-terminal analysis of the early products of trypsinolysis demonstrated that the first cleavages occur at Lys 30, 36, and 39. The enzyme still retains the subunit organization as a tetramer or multimer composed of 58-kDa subunits. Analysis by electrospray ionization mass spectrometry showed that further trypsin treatment cleaves CBS in its COOH-terminal region at Arg 413 to yield 45-kDa subunits. This 45-kDa active core is the portion of CBS most conserved with the evolutionarily related enzymes isolated from plants, yeast, and bacteria. The active core of CBS forms a dimer of approximately 85 kDa. The dimer is about twice as active as the tetramer. It binds both pyridoxal 5'-phosphate and heme cofactors but is no longer activated by AdoMet. Further analysis suggests that the dissociation of CBS to dimers causes a decrease in enzyme thermostability and a threefold increase in affinity toward the sulfhydryl-containing substrate-homocysteine. We found that the COOH-terminal region, residues 414-551, is essential for maintaining the tetrameric structure and AdoMet activation of the enzyme. The inability of the active core to form multimeric aggregates has facilitated its crystallization and X-ray diffraction studies.
Collapse
Affiliation(s)
- V Kery
- Department of Cellular & Structural Biology, University of Colorado School of Medicine, Denver, Colorado, 80262, USA
| | | | | |
Collapse
|
16
|
Azevedo RA, Arruda P, Turner WL, Lea PJ. The biosynthesis and metabolism of the aspartate derived amino acids in higher plants. PHYTOCHEMISTRY 1997; 46:395-419. [PMID: 9332022 DOI: 10.1016/s0031-9422(97)00319-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The essential amino acids lysine, threonine, methionine and isoleucine are synthesised in higher plants via a common pathway starting with aspartate. The regulation of the pathway is discussed in detail, and the properties of the key enzymes described. Recent data obtained from studies of regulation at the gene level and information derived from mutant and transgenic plants are also discussed. The herbicide target enzyme acetohydroxyacid synthase involved in the synthesis of the branched chain amino acids is reviewed.
Collapse
Affiliation(s)
- R A Azevedo
- Departamento de Genética, Universidade de São Paulo, Piracicaba, SP, Brasil
| | | | | | | |
Collapse
|