1
|
Jahn M, Crang N, Gynnå AH, Kabova D, Frielingsdorf S, Lenz O, Charpentier E, Hudson EP. The energy metabolism of Cupriavidus necator in different trophic conditions. Appl Environ Microbiol 2024; 90:e0074824. [PMID: 39320125 PMCID: PMC11540253 DOI: 10.1128/aem.00748-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
The "knallgas" bacterium Cupriavidus necator is attracting interest due to its extremely versatile metabolism. C. necator can use hydrogen or formic acid as an energy source, fixes CO2 via the Calvin-Benson-Bassham (CBB) cycle, and grows on organic acids and sugars. Its tripartite genome is notable for its size and duplications of key genes (CBB cycle, hydrogenases, and nitrate reductases). Little is known about which of these isoenzymes and their cofactors are actually utilized for growth on different substrates. Here, we investigated the energy metabolism of C. necator H16 by growing a barcoded transposon knockout library on succinate, fructose, hydrogen (H2/CO2), and formic acid. The fitness contribution of each gene was determined from enrichment or depletion of the corresponding mutants. Fitness analysis revealed that (i) some, but not all, molybdenum cofactor biosynthesis genes were essential for growth on formate and nitrate respiration. (ii) Soluble formate dehydrogenase (FDH) was the dominant enzyme for formate oxidation, not membrane-bound FDH. (iii) For hydrogenases, both soluble and membrane-bound enzymes were utilized for lithoautotrophic growth. (iv) Of the six terminal respiratory complexes in C. necator H16, only some are utilized, and utilization depends on the energy source. (v) Deletion of hydrogenase-related genes boosted heterotrophic growth, and we show that the relief from associated protein cost is responsible for this phenomenon. This study evaluates the contribution of each of C. necator's genes to fitness in biotechnologically relevant growth regimes. Our results illustrate the genomic redundancy of this generalist bacterium and inspire future engineering strategies.IMPORTANCEThe soil bacterium Cupriavidus necator can grow on gas mixtures of CO2, H2, and O2. It also consumes formic acid as carbon and energy source and various other substrates. This metabolic flexibility comes at a price, for example, a comparatively large genome (6.6 Mb) and a significant background expression of lowly utilized genes. In this study, we mutated every non-essential gene in C. necator using barcoded transposons in order to determine their effect on fitness. We grew the mutant library in various trophic conditions including hydrogen and formate as the sole energy source. Fitness analysis revealed which of the various energy-generating iso-enzymes are actually utilized in which condition. For example, only a few of the six terminal respiratory complexes are used, and utilization depends on the substrate. We also show that the protein cost for the various lowly utilized enzymes represents a significant growth disadvantage in specific conditions, offering a route to rational engineering of the genome. All fitness data are available in an interactive app at https://m-jahn.shinyapps.io/ShinyLib/.
Collapse
Affiliation(s)
- Michael Jahn
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
- Max Planck Unit for
the Science of Pathogens,
Berlin, Germany
| | - Nick Crang
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
| | - Arvid H. Gynnå
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
| | - Deria Kabova
- Department of
Chemistry, Technical University Berlin,
Berlin, Germany
| | | | - Oliver Lenz
- Department of
Chemistry, Technical University Berlin,
Berlin, Germany
| | - Emmanuelle Charpentier
- Max Planck Unit for
the Science of Pathogens,
Berlin, Germany
- Humboldt-Universität
zu Berlin, Institute for Biology,
Berlin, Germany
| | - Elton P. Hudson
- School of Engineering
Sciences in Chemistry, Biotechnology and Health, Science for Life
Laboratory, KTH—Royal Institute of
Technology, Stockholm,
Sweden
| |
Collapse
|
2
|
Tang R, Yuan X, Yang J. Problems and corresponding strategies for converting CO 2 into value-added products in Cupriavidus necator H16 cell factories. Biotechnol Adv 2023; 67:108183. [PMID: 37286176 DOI: 10.1016/j.biotechadv.2023.108183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/17/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Elevated CO2 emissions have substantially altered the worldwide climate, while the excessive reliance on fossil fuels has exacerbated the energy crisis. Therefore, the conversion of CO2 into fuel, petroleum-based derivatives, drug precursors, and other value-added products is expected. Cupriavidus necator H16 is the model organism of the "Knallgas" bacterium and is considered to be a microbial cell factory as it can convert CO2 into various value-added products. However, the development and application of C. necator H16 cell factories has several limitations, including low efficiency, high cost, and safety concerns arising from the autotrophic metabolic characteristics of the strains. In this review, we first considered the autotrophic metabolic characteristics of C. necator H16, and then categorized and summarized the resulting problems. We also provided a detailed discussion of some corresponding strategies concerning metabolic engineering, trophic models, and cultivation mode. Finally, we provided several suggestions for improving and combining them. This review might help in the research and application of the conversion of CO2 into value-added products in C. necator H16 cell factories.
Collapse
Affiliation(s)
- Ruohao Tang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong Province, People's Republic of China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong Province, People's Republic of China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China.
| |
Collapse
|
3
|
Stepwise assembly of the active site of [NiFe]-hydrogenase. Nat Chem Biol 2023; 19:498-506. [PMID: 36702959 DOI: 10.1038/s41589-022-01226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/16/2022] [Indexed: 01/27/2023]
Abstract
[NiFe]-hydrogenases are biotechnologically relevant enzymes catalyzing the reversible splitting of H2 into 2e- and 2H+ under ambient conditions. Catalysis takes place at the heterobimetallic NiFe(CN)2(CO) center, whose multistep biosynthesis involves careful handling of two transition metals as well as potentially harmful CO and CN- molecules. Here, we investigated the sequential assembly of the [NiFe] cofactor, previously based on primarily indirect evidence, using four different purified maturation intermediates of the catalytic subunit, HoxG, of the O2-tolerant membrane-bound hydrogenase from Cupriavidus necator. These included the cofactor-free apo-HoxG, a nickel-free version carrying only the Fe(CN)2(CO) fragment, a precursor that contained all cofactor components but remained redox inactive and the fully mature HoxG. Through biochemical analyses combined with comprehensive spectroscopic investigation using infrared, electronic paramagnetic resonance, Mössbauer, X-ray absorption and nuclear resonance vibrational spectroscopies, we obtained detailed insight into the sophisticated maturation process of [NiFe]-hydrogenase.
Collapse
|
4
|
Inactivation of the uptake hydrogenase in the purple non-sulfur photosynthetic bacterium Rubrivivax gelatinosus CBS enables a biological water–gas shift platform for H2 production. ACTA ACUST UNITED AC 2019; 46:993-1002. [DOI: 10.1007/s10295-019-02173-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
Abstract
Biological H2 production has potential to address energy security and environmental concerns if produced from renewable or waste sources. The purple non-sulfur photosynthetic bacterium Rubrivivax gelatinosus CBS produces H2 while oxidizing CO, a component of synthesis gas (Syngas). CO-linked H2 production is facilitated by an energy-converting hydrogenase (Ech), while a subsequent H2 oxidation reaction is catalyzed by a membrane-bound hydrogenase (MBH). Both hydrogenases contain [NiFe] active sites requiring 6 maturation factors (HypA-F) for assembly, but it is unclear which of the two annotated sets of hyp genes are required for each in R. gelatinosus CBS. Herein, we report correlated expression of hyp1 genes with Ech genes and hyp2 expression with MBH genes. Moreover, we find that while Ech H2 evolving activity is only delayed when hyp1 is deleted, hyp2 deletion completely disrupts MBH H2 uptake, providing a platform for a biologically driven water–gas shift reaction to produce H2 from CO.
Collapse
|
5
|
Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H 2-driven NAD +-reduction in the presence of O 2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:8-18. [PMID: 28970007 DOI: 10.1016/j.bbabio.2017.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/17/2017] [Accepted: 09/28/2017] [Indexed: 12/18/2022]
Abstract
Biocatalysts that mediate the H2-dependent reduction of NAD+ to NADH are attractive from both a fundamental and applied perspective. Here we present the first biochemical and spectroscopic characterization of an NAD+-reducing [NiFe]‑hydrogenase that sustains catalytic activity at high temperatures and in the presence of O2, which usually acts as an inhibitor. We isolated and sequenced the four structural genes, hoxFUYH, encoding the soluble NAD+-reducing [NiFe]‑hydrogenase (SH) from the thermophilic betaproteobacterium, Hydrogenophilus thermoluteolus TH-1T (Ht). The HtSH was recombinantly overproduced in a hydrogenase-free mutant of the well-studied, H2-oxidizing betaproteobacterium Ralstonia eutropha H16 (Re). The enzyme was purified and characterized with various biochemical and spectroscopic techniques. Highest H2-mediated NAD+ reduction activity was observed at 80°C and pH6.5, and catalytic activity was found to be sustained at low O2 concentrations. Infrared spectroscopic analyses revealed a spectral pattern for as-isolated HtSH that is remarkably different from those of the closely related ReSH and other [NiFe]‑hydrogenases. This indicates an unusual configuration of the oxidized catalytic center in HtSH. Complementary electron paramagnetic resonance spectroscopic analyses revealed spectral signatures similar to related NAD+-reducing [NiFe]‑hydrogenases. This study lays the groundwork for structural and functional analyses of the HtSH as well as application of this enzyme for H2-driven cofactor recycling under oxic conditions at elevated temperatures.
Collapse
|
6
|
Puggioni V, Tempel S, Latifi A. Distribution of Hydrogenases in Cyanobacteria: A Phylum-Wide Genomic Survey. Front Genet 2016; 7:223. [PMID: 28083017 PMCID: PMC5186783 DOI: 10.3389/fgene.2016.00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/13/2016] [Indexed: 01/02/2023] Open
Abstract
Microbial Molecular hydrogen (H2) cycling plays an important role in several ecological niches. Hydrogenases (H2ases), enzymes involved in H2 metabolism, are of great interest for investigating microbial communities, and producing BioH2. To obtain an overall picture of the genetic ability of Cyanobacteria to produce H2ases, we conducted a phylum wide analysis of the distribution of the genes encoding these enzymes in 130 cyanobacterial genomes. The concomitant presence of the H2ase and genes involved in the maturation process, and that of well-conserved catalytic sites in the enzymes were the three minimal criteria used to classify a strain as being able to produce a functional H2ase. The [NiFe] H2ases were found to be the only enzymes present in this phylum. Fifty-five strains were found to be potentially able produce the bidirectional Hox enzyme and 33 to produce the uptake (Hup) enzyme. H2 metabolism in Cyanobacteria has a broad ecological distribution, since only the genomes of strains collected from the open ocean do not possess hox genes. In addition, the presence of H2ase was found to increase in the late branching clades of the phylogenetic tree of the species. Surprisingly, five cyanobacterial genomes were found to possess homologs of oxygen tolerant H2ases belonging to groups 1, 3b, and 3d. Overall, these data show that H2ases are widely distributed, and are therefore probably of great functional importance in Cyanobacteria. The present finding that homologs to oxygen-tolerant H2ases are present in this phylum opens new perspectives for applying the process of photosynthesis in the field of H2 production.
Collapse
Affiliation(s)
- Vincenzo Puggioni
- Laboratoire de Chimie Bactérienne UMR 7283, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University Marseille, France
| | - Sébastien Tempel
- Laboratoire de Chimie Bactérienne UMR 7283, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University Marseille, France
| | - Amel Latifi
- Laboratoire de Chimie Bactérienne UMR 7283, Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University Marseille, France
| |
Collapse
|
7
|
Genetic analyses of the functions of [NiFe]-hydrogenase maturation endopeptidases in the hyperthermophilic archaeon Thermococcus kodakarensis. Extremophiles 2016; 21:27-39. [DOI: 10.1007/s00792-016-0875-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
|
8
|
Jugder BE, Welch J, Braidy N, Marquis CP. Construction and use of a Cupriavidus necator H16 soluble hydrogenase promoter (PSH) fusion to gfp (green fluorescent protein). PeerJ 2016; 4:e2269. [PMID: 27547572 PMCID: PMC4974937 DOI: 10.7717/peerj.2269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/28/2016] [Indexed: 12/30/2022] Open
Abstract
Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2). Amongst a number of promising candidates for application in the oxidation of H2 is a soluble [Ni–Fe] uptake hydrogenase (SH) produced by Cupriavidus necator H16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP) reporter system to characterise PSH promoter activity using several gene cloning approaches. A PSH promoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSH promoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinant C. necator H16 cells. Here we report the first successful fluorescent reporter system to study PSH promoter activity in C. necator H16. The fusion construct allowed for the design of a simple screening assay to evaluate PSH activity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression.
Collapse
Affiliation(s)
- Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jeffrey Welch
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nady Braidy
- Centre for Health Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Christopher P Marquis
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
9
|
Schiffels J, Selmer T. A flexible toolbox to study protein-assisted metalloenzyme assembly in vitro. Biotechnol Bioeng 2015; 112:2360-72. [PMID: 25994231 DOI: 10.1002/bit.25658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/11/2015] [Indexed: 11/06/2022]
Abstract
A number of metalloenzymes harbor unique cofactors, which are incorporated into the apo-enzymes via protein-assisted maturation. In the case of [NiFe]-hydrogenases, minimally seven maturation factors (HypABCDEF and a specific endopeptidase) are involved, making these enzymes an excellent example for studying metallocenter assembly in general. Here, we describe an innovative toolbox to study maturation involving multiple putative gene products. The two core elements of the system are a modular, combinatorial cloning system and a cell-free maturation system, which is based on recombinant Escherichia coli extracts and/or purified maturases. Taking maturation of the soluble, oxygen-tolerant [NiFe]-hydrogenase (SH) from Cupriavidus necator as an example, the capacities of the toolbox are illustrated. In total 18 genes from C. necator were analyzed, including four SH-structural genes, the SH-dedicated hyp-genes and a second set of hyp-genes putatively involved in maturation of the Actinobacterium-like hydrogenase (AH). The two hyp-sets were either expressed in their entirety from single vectors or split into functional modules, which enabled flexible approaches to investigate limitations, specificities and the capabilities of individual constituents to functionally substitute each other. Affinity-tagged Hyp-Proteins were used in pull-down experiments to demonstrate direct interactions between dedicated or non-related constituents. The dedicated Hyp-set from C. necator exhibited the highest maturation efficiency in vitro. Constituents of non-related maturation machineries were found to interact with and to accomplish partial activation of SH. In contrast to homologues of the Hyp-family, omission of the SH-specific endopeptidase HoxW completely abolished in vitro maturation. We detected stoichiometric imbalances inside the recombinant production system, which point to limitations by the cyanylation complex HypEF and the premature subunit HoxH. Purification of HoxW revealed strong indications for the presence of a putative [4Fe-4S]-cluster, which is unique among this class of maturases. Results are discussed in the context of [NiFe]-hydrogenase maturation, and in light of the capacity of the novel toolbox.
Collapse
Affiliation(s)
- Johannes Schiffels
- From the Aachen University of Applied Sciences, Campus Juelich, Department of Chemistry and Biotechnology, Heinrich-Mussmann-Str. 1, D-52428 Juelich, Germany
| | | |
Collapse
|
10
|
Soboh B, Stripp ST, Bielak C, Lindenstrauß U, Braussemann M, Javaid M, Hallensleben M, Granich C, Herzberg M, Heberle J, Sawers RG. The [NiFe]-hydrogenase accessory chaperones HypC and HybG of Escherichia coli are iron- and carbon dioxide-binding proteins. FEBS Lett 2013; 587:2512-6. [PMID: 23851071 DOI: 10.1016/j.febslet.2013.06.055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 12/26/2022]
Abstract
[NiFe]-hydrogenase accessory proteins HypC and HypD form a complex that binds a Fe-(CN)₂CO moiety and CO₂. In this study two HypC homologues from Escherichia coli were purified under strictly anaerobic conditions and both contained sub-stoichiometric amounts of iron (approx. 0.3 molFe/mol HypC). Infrared spectroscopic analysis identified a signature at 2337 cm⁻¹ indicating bound CO₂. Aerobically isolated HypC lacked both Fe and CO₂. Exchange of either of the highly conserved amino acid residues Cys2 or His51 abolished both Fe- and CO₂-binding. Our results suggest that HypC delivers CO₂ bound directly to Fe for reduction to CO by HypD.
Collapse
Affiliation(s)
- Basem Soboh
- Institute of Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Schiffels J, Pinkenburg O, Schelden M, Aboulnaga EHAA, Baumann MEM, Selmer T. An innovative cloning platform enables large-scale production and maturation of an oxygen-tolerant [NiFe]-hydrogenase from Cupriavidus necator in Escherichia coli. PLoS One 2013; 8:e68812. [PMID: 23861944 PMCID: PMC3702609 DOI: 10.1371/journal.pone.0068812] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/31/2013] [Indexed: 11/18/2022] Open
Abstract
Expression of multiple heterologous genes in a dedicated host is a prerequisite for approaches in synthetic biology, spanning from the production of recombinant multiprotein complexes to the transfer of tailor-made metabolic pathways. Such attempts are often exacerbated, due in most cases to a lack of proper directional, robust and readily accessible genetic tools. Here, we introduce an innovative system for cloning and expression of multiple genes in Escherichia coli BL21 (DE3). Using the novel methodology, genes are equipped with individual promoters and terminators and subsequently assembled. The resulting multiple gene cassettes may either be placed in one vector or alternatively distributed among a set of compatible plasmids. We demonstrate the effectiveness of the developed tool by production and maturation of the NAD(+)reducing soluble [NiFe]-hydrogenase (SH) from Cupriavidus necator H16 (formerly Ralstonia eutropha H16) in E. coli BL21Star™ (DE3). The SH (encoded in hoxFUYHI) was successfully matured by co-expression of a dedicated set of auxiliary genes, comprising seven hyp genes (hypC1D1E1A2B2F2X) along with hoxW, which encodes a specific endopeptidase. Deletion of genes involved in SH maturation reduced maturation efficiency substantially. Further addition of hoxN1, encoding a high-affinity nickel permease from C. necator, considerably increased maturation efficiency in E. coli. Carefully balanced growth conditions enabled hydrogenase production at high cell-densities, scoring mg·(Liter culture)(-1) yields of purified functional SH. Specific activities of up to 7.2±1.15 U·mg(-1) were obtained in cell-free extracts, which is in the range of the highest activities ever determined in C. necator extracts. The recombinant enzyme was isolated in equal purity and stability as previously achieved with the native form, yielding ultrapure preparations with anaerobic specific activities of up to 230 U·mg(-1). Owing to the combinatorial power exhibited by the presented cloning platform, the system might represent an important step towards new routes in synthetic biology.
Collapse
Affiliation(s)
- Johannes Schiffels
- Department of Chemistry and Biotechnology, Aachen University of Applied Sciences, Juelich, Germany
| | - Olaf Pinkenburg
- Institute for Immunology, Biomedical Research Centre (BMFZ), Philipps University of Marburg, Marburg (Lahn), Germany
| | - Maximilian Schelden
- Department of Chemistry and Biotechnology, Aachen University of Applied Sciences, Juelich, Germany
| | | | - Marcus E. M. Baumann
- Department of Chemistry and Biotechnology, Aachen University of Applied Sciences, Juelich, Germany
| | - Thorsten Selmer
- Department of Chemistry and Biotechnology, Aachen University of Applied Sciences, Juelich, Germany
- * E-mail:
| |
Collapse
|
12
|
Novel, oxygen-insensitive group 5 [NiFe]-hydrogenase in Ralstonia eutropha. Appl Environ Microbiol 2013; 79:5137-45. [PMID: 23793632 DOI: 10.1128/aem.01576-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, a novel group of [NiFe]-hydrogenases has been defined that appear to have a great impact in the global hydrogen cycle. This so-called group 5 [NiFe]-hydrogenase is widespread in soil-living actinobacteria and can oxidize molecular hydrogen at atmospheric levels, which suggests a high affinity of the enzyme toward H2. Here, we provide a biochemical characterization of a group 5 hydrogenase from the betaproteobacterium Ralstonia eutropha H16. The hydrogenase was designated an actinobacterial hydrogenase (AH) and is catalytically active, as shown by the in vivo H2 uptake and by activity staining in native gels. However, the enzyme does not sustain autotrophic growth on H2. The AH was purified to homogeneity by affinity chromatography and consists of two subunits with molecular masses of 65 and 37 kDa. Among the electron acceptors tested, nitroblue tetrazolium chloride was reduced by the AH at highest rates. At 30°C and pH 8, the specific activity of the enzyme was 0.3 μmol of H2 per min and mg of protein. However, an unexpectedly high Michaelis constant (Km) for H2 of 3.6 ± 0.5 μM was determined, which is in contrast to the previously proposed low Km of group 5 hydrogenases and makes atmospheric H2 uptake by R. eutropha most unlikely. Amperometric activity measurements revealed that the AH maintains full H2 oxidation activity even at atmospheric oxygen concentrations, showing that the enzyme is insensitive toward O2.
Collapse
|
13
|
Bürstel I, Siebert E, Winter G, Hummel P, Zebger I, Friedrich B, Lenz O. A universal scaffold for synthesis of the Fe(CN)2(CO) moiety of [NiFe] hydrogenase. J Biol Chem 2012; 287:38845-53. [PMID: 23019332 DOI: 10.1074/jbc.m112.376947] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydrogen-cycling [NiFe] hydrogenases harbor a dinuclear catalytic center composed of nickel and iron ions, which are coordinated by four cysteine residues. Three unusual diatomic ligands in the form of two cyanides (CN(-)) and one carbon monoxide (CO) are bound to the iron and apparently account for the complexity of the cofactor assembly process, which involves the function of at least six auxiliary proteins, designated HypA, -B, -C, -D, -E, and -F. It has been demonstrated previously that the HypC, -D, -E, and -F proteins participate in cyanide synthesis and transfer. Here, we show by infrared spectroscopic analysis that the purified HypCD complexes from Ralstonia eutropha and Escherichia coli carry in addition to both cyanides the CO ligand. We present experimental evidence that in vivo the attachment of the CN(-) ligands is a prerequisite for subsequent CO binding. With the aid of genetic engineering and subsequent mutant analysis, the functional role of conserved cysteine residues in HypD from R. eutropha was investigated. Our results demonstrate that the HypCD complex serves as a scaffold for the assembly of the Fe(CN)(2)(CO) entity of [NiFe] hydrogenase.
Collapse
Affiliation(s)
- Ingmar Bürstel
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117,10115 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Requirements for construction of a functional hybrid complex of photosystem I and [NiFe]-hydrogenase. Appl Environ Microbiol 2010; 76:2641-51. [PMID: 20154103 DOI: 10.1128/aem.02700-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of cellular systems in which the enzyme hydrogenase is efficiently coupled to the oxygenic photosynthesis apparatus represents an attractive avenue to produce H(2) sustainably from light and water. Here we describe the molecular design of the individual components required for the direct coupling of the O(2)-tolerant membrane-bound hydrogenase (MBH) from Ralstonia eutropha H16 to the acceptor site of photosystem I (PS I) from Synechocystis sp. PCC 6803. By genetic engineering, the peripheral subunit PsaE of PS I was fused to the MBH, and the resulting hybrid protein was purified from R. eutropha to apparent homogeneity via two independent affinity chromatographical steps. The catalytically active MBH-PsaE (MBH(PsaE)) hybrid protein could be isolated only from the cytoplasmic fraction. This was surprising, since the MBH is a substrate of the twin-arginine translocation system and was expected to reside in the periplasm. We conclude that the attachment of the additional PsaE domain to the small, electron-transferring subunit of the MBH completely abolished the export competence of the protein. Activity measurements revealed that the H(2) production capacity of the purified MBH(PsaE) fusion protein was very similar to that of wild-type MBH. In order to analyze the specific interaction of MBH(PsaE) with PS I, His-tagged PS I lacking the PsaE subunit was purified via Ni-nitrilotriacetic acid affinity and subsequent hydrophobic interaction chromatography. Formation of PS I-hydrogenase supercomplexes was demonstrated by blue native gel electrophoresis. The results indicate a vital prerequisite for the quantitative analysis of the MBH(PsaE)-PS I complex formation and its light-driven H(2) production capacity by means of spectroelectrochemistry.
Collapse
|
15
|
Schubert T, Lenz O, Krause E, Volkmer R, Friedrich B. Chaperones specific for the membrane-bound [NiFe]-hydrogenase interact with the Tat signal peptide of the small subunit precursor in Ralstonia eutropha H16. Mol Microbiol 2007; 66:453-67. [PMID: 17850259 DOI: 10.1111/j.1365-2958.2007.05933.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Periplasmic membrane-bound [NiFe]-hydrogenases undergo a complex maturation pathway, including cofactor incorporation, subunit assembly, and finally twin-arginine-dependent membrane translocation (Tat). In this study, the role of the two accessory proteins HoxO and HoxQ in the maturation of the membrane-bound [NiFe]-hydrogenase (MBH) of Ralstonia eutropha H16 was investigated. MBH activity was absent in soluble as well as membrane fractions of cells with deletions in the respective genes. The absence of HoxO and HoxQ led to degradation of the small subunit precursor (preHoxK) of the MBH. The two accessory proteins directly interacted with preHoxK prior to assembly of active MBH dimer in the cytoplasm. MBH mutants with modified Tat signal peptides were disrupted in preHoxK/HoxO/HoxQ complex formation. Isolated HoxO and HoxQ proteins formed a complex in vitro with the chemically synthesized HoxK Tat signal peptide. Two functions of the two chaperones are discussed: (i) protection of the Fe-S cluster containing HoxK subunit under oxygenic conditions, and (ii) avoidance of HoxK export prior to dimerization with the large MBH subunit HoxG.
Collapse
Affiliation(s)
- Torsten Schubert
- Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestr. 117, D-10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
16
|
Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones AK, Albracht SPJ, Friedrich B. [NiFe]-Hydrogenases of Ralstonia eutropha H16: Modular Enzymes for Oxygen-Tolerant Biological Hydrogen Oxidation. J Mol Microbiol Biotechnol 2006; 10:181-96. [PMID: 16645314 DOI: 10.1159/000091564] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent research on hydrogenases has been notably motivated by a desire to utilize these remarkable hydrogen oxidation catalysts in biotechnological applications. Progress in the development of such applications is substantially hindered by the oxygen sensitivity of the majority of hydrogenases. This problem tends to inspire the study of organisms such as Ralstonia eutropha H16 that produce oxygen-tolerant [NiFe]-hydrogenases. R. eutropha H16 serves as an excellent model system in that it produces three distinct [NiFe]-hydrogenases that each serve unique physiological roles: a membrane-bound hydrogenase (MBH) coupled to the respiratory chain, a cytoplasmic, soluble hydrogenase (SH) able to generate reducing equivalents by reducing NAD+ at the expense of hydrogen, and a regulatory hydrogenase (RH) which acts in a signal transduction cascade to control hydrogenase gene transcription. This review will present recent results regarding the biosynthesis, regulation, structure, activity, and spectroscopy of these enzymes. This information will be discussed in light of the question how do organisms adapt the prototypical [NiFe]-hydrogenase system to function in the presence of oxygen.
Collapse
Affiliation(s)
- Tanja Burgdorf
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Lenz O, Gleiche A, Strack A, Friedrich B. Requirements for heterologous production of a complex metalloenzyme: the membrane-bound [NiFe] hydrogenase. J Bacteriol 2005; 187:6590-5. [PMID: 16159796 PMCID: PMC1236620 DOI: 10.1128/jb.187.18.6590-6595.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By taking advantage of the tightly clustered genes for the membrane-bound [NiFe] hydrogenase of Ralstonia eutropha H16, broad-host-range recombinant plasmids were constructed carrying the entire membrane-bound hydrogenase (MBH) operon encompassing 21 genes. We demonstrate that the complex MBH biosynthetic apparatus is actively produced in hydrogenase-free hosts yielding fully assembled and functional MBH protein.
Collapse
Affiliation(s)
- Oliver Lenz
- Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | | | | | | |
Collapse
|
18
|
Jones AK, Lenz O, Strack A, Buhrke T, Friedrich B. NiFe hydrogenase active site biosynthesis: identification of Hyp protein complexes in Ralstonia eutropha. Biochemistry 2004; 43:13467-77. [PMID: 15491154 DOI: 10.1021/bi048837k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biosynthesis of the NiFe hydrogenase active site is a complex process involving the action of the Hyp proteins: HypA-HypF. Here we investigate the mechanism of NiFe site biosynthesis in Ralstonia eutropha by examining the interactions between HypC, HypD, HypE, and HypF1. Using an affinity purification procedure based on the Strep-tag II, we purified HypC and HypE from different genetic backgrounds as complexes with other hydrogenase-related proteins and characterized them using immunological analysis. Copurification of HypC and HoxH, the active site-containing subunit of the soluble hydrogenase in R. eutropha, from several different genetic backgrounds suggests that this complex forms early in the maturation process. With respect to the Hyp proteins, it is shown that HypE and HypF1 formed a stable complex both in vivo and in vitro. Furthermore, HypC and HypD functioned as a unit. Together, they were able to interact with HypE to form a range of complexes probably varying in stoichiometry. The HypC/HypD/HypE complexes did not involve HypF1 but appeared to be more stable when HypF1 was also present in the cells. We hypothesize that HypF1 is able to modify some component of the HypC/HypD/HypE complex. Since we have also seen that HypF1 and HypE form a complex, it is likely that HypF1 modifies HypE. On the basis of these results, we propose a complete catalytic cycle for HypE. First, it is modified by HypF1, and then it can form a complex with HypC/HypD. This activated HypE/HypC/HypD complex could then decompose by donating active site components to the immature hydrogenase and regenerate unmodified HypE.
Collapse
Affiliation(s)
- Anne K Jones
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
19
|
Van der Linden E, Burgdorf T, Bernhard M, Bleijlevens B, Friedrich B, Albracht SPJ. The soluble [NiFe]-hydrogenase from Ralstonia eutropha contains four cyanides in its active site, one of which is responsible for the insensitivity towards oxygen. J Biol Inorg Chem 2004; 9:616-26. [PMID: 15164270 DOI: 10.1007/s00775-004-0555-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 04/27/2004] [Indexed: 11/30/2022]
Abstract
Infrared spectra of (15)N-enriched preparations of the soluble cytoplasmic NAD(+)-reducing [NiFe]-hydrogenase from Ralstonia eutropha are presented. These spectra, together with chemical analyses, show that the Ni-Fe active site contains four cyanide groups and one carbon monoxide molecule. It is proposed that the active site is a (RS)(2)(CN)Ni(micro-RS)(2)Fe(CN)(3)(CO) centre (R=Cys) and that H(2) activation solely takes place on nickel. One of the two FMN groups (FMN-a) in the enzyme can be reversibly released upon reduction of the enzyme. It is now reported that at longer times also one of the cyanide groups, the one proposed to be bound to the nickel atom, could be removed from the enzyme. This process was irreversible and induced the inhibition of the enzyme activity by oxygen; the enzyme remained insensitive to carbon monoxide. The Ni-Fe active site was EPR undetectable under all conditions tested. It is concluded that the Ni-bound cyanide group is responsible for the oxygen insensitivity of the enzyme.
Collapse
Affiliation(s)
- Eddy Van der Linden
- Swammerdam Institute for Life Sciences, Biochemistry, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Fuhrmann S, Ferner M, Jeffke T, Henne A, Gottschalk G, Meyer O. Complete nucleotide sequence of the circular megaplasmid pHCG3 of Oligotropha carboxidovorans: function in the chemolithoautotrophic utilization of CO, H2 and CO2. Gene 2003; 322:67-75. [PMID: 14644498 DOI: 10.1016/j.gene.2003.08.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oligotropha carboxidovorans harbors the low-copy-number, circular, 133,058-bp DNA megaplasmid pHCG3, which is essential in the chemolithoautotrophic utilization of CO (carboxidotrophy), H(2) (hydrogenotrophy) and CO(2) under aerobic conditions. The complete nucleotide sequence of pHCG3 revealed 125 open reading frames. Of these, 95 were identified as putative structural genes. The plasmid carries the four gene clusters cox (14.54 kb, 12 genes), cbb (13.33 kb, 13 genes), hox (23.35 kb, 19 genes plus one ORF) and tra/trb (25.01 kb, 22 genes plus 2 ORFs), which assemble the functions required for the utilization of CO, CO(2) or H(2), and the conjugal transfer of the plasmid, respectively. The gene clusters cox, cbb and hox form a 51.2-kb chemolithoautotrophy module. The tra/trb cluster on the plasmid pHCG3 of O. carboxidovorans has a similar architecture as the Ti-plasmid of Agrobacterium tumefaciens. The tra/trb cluster is separated from the chemolithoautotrophy module by two regions (25.2 and 29.6 kb) with miscellaneous or mostly unknown functions. These regions carry a number of single genes coding for replication and stabilization of pHCG3 as well as the components of a putative system of global regulation of plasmid replication in O. carboxidovorans. An oriV encodes the replication proteins RepABC. Sequence comparisons of pHCG3-encoded genes suggest that major genetic exchange between O. carboxidovorans and the proteobacteria has occurred.
Collapse
Affiliation(s)
- Sven Fuhrmann
- Department of Microbiology and Bayreuth Center of Molecular Biosciences, University of Bayreuth, D-95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G. Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H(2)-based ithoautotrophy and anaerobiosis. J Mol Biol 2003; 332:369-83. [PMID: 12948488 DOI: 10.1016/s0022-2836(03)00894-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The self-transmissible megaplasmid pHG1 carries essential genetic information for the facultatively lithoautotrophic and facultatively anaerobic lifestyles of its host, the Gram-negative soil bacterium Ralstonia eutropha H16. We have determined the complete nucleotide sequence of pHG1. This megaplasmid is 452,156 bp in size and carries 429 potential genes. Groups of functionally related genes form loose clusters flanked by mobile elements. The largest functional group consists of lithoautotrophy-related genes. These include a set of 41 genes for the biosynthesis of the three previously identified hydrogenases and of a fourth, novel hydrogenase. Another large cluster carries the genetic information for denitrification. In addition to a dissimilatory nitrate reductase, both specific and global regulators were identified. Also located in the denitrification region is a set of genes for cytochrome c biosynthesis. Determinants for several enzymes involved in the mineralization of aromatic compounds were found. The genes for conjugative plasmid transfer predict that R.eutropha forms two types of pili. One of them is related to the type IV pili of pathogenic enterobacteria. pHG1 also carries an extensive "junkyard" region encompassing 17 remnants of mobile elements and 22 partial or intact genes for phage-type integrase. Among the mobile elements is a novel member of the IS5 family, in which the transposase gene is interrupted by a group II intron.
Collapse
Affiliation(s)
- Edward Schwartz
- Institut für Biologie, Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestr. 117, 10115 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Maróti G, Fodor BD, Rákhely G, Kovács AT, Arvani S, Kovács KL. Accessory proteins functioning selectively and pleiotropically in the biosynthesis of [NiFe] hydrogenases in Thiocapsa roseopersicina. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2218-27. [PMID: 12752441 DOI: 10.1046/j.1432-1033.2003.03589.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There are at least two membrane-bound (HynSL and HupSL) and one soluble (HoxEFUYH) [NiFe] hydrogenases in Thiocapsa roseopersicina BBS, a purple sulfur photosynthetic bacterium. Genes coding for accessory proteins that participate in the biosynthesis and maturation of hydrogenases seem to be scattered along the chromosome. Transposon-based mutagenesis was used to locate the hydrogenase accessory genes. Molecular analysis of strains showing mutant phenotypes led to the identification of hupK (hoxV ), hypC1, hypC2, hypD, hypE, and hynD genes. The roles of hynD, hupK and the two hypC genes were investigated in detail. The putative HynD was found to be a hydrogenase-specific endoprotease type protein, participating in the maturation of the HynSL enzyme. HupK plays an important role in the formation of the functionally active membrane-bound [NiFe] hydrogenases, but not in the biosynthesis of the soluble enzyme. In-frame deletion mutagenesis showed that HypC proteins were not specific for the maturation of either hydrogenase enzyme. The lack of either HypC protein drastically reduced the activity of every hydrogenase. Hence both HypCs might participate in the maturation of [NiFe] hydrogenases. Homologous complementation with the appropriate genes substantiated the physiological roles of the corresponding gene products in the H2 metabolism of T. roseopersicina.
Collapse
Affiliation(s)
- Gergely Maróti
- Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Hungary
| | | | | | | | | | | |
Collapse
|
23
|
Kanai T, Ito S, Imanaka T. Characterization of a cytosolic NiFe-hydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 2003; 185:1705-11. [PMID: 12591889 PMCID: PMC148058 DOI: 10.1128/jb.185.5.1705-1711.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified an NiFe-hydrogenase exclusively localized in the cytoplasm of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 (T. kodakaraensis hydrogenase). A gene cluster encoding T. kodakaraensis hydrogenase was composed of four open reading frames (hyhBGSL(Tk)), where the hyhS(Tk) and hyhL(Tk) gene products corresponded to the small and the large subunits of NiFe-hydrogenase, respectively. A putative open reading frame for hydrogenase-specific maturation endopeptidase (hybD(Tk)) was found downstream of the cluster. Polyclonal antibodies raised against recombinant HyhL(Tk) were used for immunoaffinity purification of T. kodakaraensis hydrogenase, leading to a 259-fold concentration of hydrogenase activity. The purified T. kodakaraensis hydrogenase was composed of four subunits (beta, gamma, delta, and alpha), corresponding to the products of hyhBGSL(Tk), respectively. Each alphabetagammadelta unit contained 0.8 mol of Ni, 22.3 mol of Fe, 21.1 mol of acid-labile sulfide, and 1.01 mol of flavin adenine dinucleotide. The optimal temperature for the T. kodakaraensis hydrogenase was 95 degrees C for H(2) uptake and 90 degrees C for H(2) production with methyl viologen as the electron carrier. We found that NADP(+) and NADPH promoted high levels of uptake and evolution of H(2), respectively, suggesting that the molecule is the electron carrier for the T. kodakaraensis hydrogenase.
Collapse
Affiliation(s)
- Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
24
|
Burgdorf T, De Lacey AL, Friedrich B. Functional analysis by site-directed mutagenesis of the NAD(+)-reducing hydrogenase from Ralstonia eutropha. J Bacteriol 2002; 184:6280-8. [PMID: 12399498 PMCID: PMC151951 DOI: 10.1128/jb.184.22.6280-6288.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tetrameric cytoplasmic [NiFe] hydrogenase (SH) of Ralstonia eutropha couples the oxidation of hydrogen to the reduction of NAD(+) under aerobic conditions. In the catalytic subunit HoxH, all six conserved motifs surrounding the [NiFe] site are present. Five of these motifs were altered by site-directed mutagenesis in order to dissect the molecular mechanism of hydrogen activation. Based on phenotypic characterizations, 27 mutants were grouped into four different classes. Mutants of the major class, class I, failed to grow on hydrogen and were devoid of H(2)-oxidizing activity. In one of these isolates (HoxH I64A), H(2) binding was impaired. Class II mutants revealed a high D(2)/H(+) exchange rate relative to a low H(2)-oxidizing activity. A representative (HoxH H16L) displayed D(2)/H(+) exchange but had lost electron acceptor-reducing activity. Both activities were equally affected in class III mutants. Mutants forming class IV showed a particularly interesting phenotype. They displayed O(2)-sensitive growth on hydrogen due to an O(2)-sensitive SH protein.
Collapse
Affiliation(s)
- Tanja Burgdorf
- Institut für Biologie, Humboldt-Universität zu Berlin, Germany
| | | | | |
Collapse
|
25
|
Buhrke T, Bleijlevens B, Albracht SP, Friedrich B. Involvement of hyp gene products in maturation of the H(2)-sensing [NiFe] hydrogenase of Ralstonia eutropha. J Bacteriol 2001; 183:7087-93. [PMID: 11717266 PMCID: PMC95556 DOI: 10.1128/jb.183.24.7087-7093.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The biosynthesis of [NiFe] hydrogenases is a complex process that requires the function of the Hyp proteins HypA, HypB, HypC, HypD, HypE, HypF, and HypX for assembly of the H(2)-activating [NiFe] site. In this study we examined the maturation of the regulatory hydrogenase (RH) of Ralstonia eutropha. The RH is a H(2)-sensing [NiFe] hydrogenase and is required as a constituent of a signal transduction chain for the expression of two energy-linked [NiFe] hydrogenases. Here we demonstrate that the RH regulatory activity was barely affected by mutations in hypA, hypB, hypC, and hypX and was not substantially diminished in hypD- and hypE-deficient strains. The lack of HypF, however, resulted in a 90% decrease of the RH regulatory activity. Fourier transform infrared spectroscopy and the incorporation of (63)Ni into the RH from overproducing cells revealed that the assembly of the [NiFe] active site is dependent on all Hyp functions, with the exception of HypX. We conclude that the entire Hyp apparatus (HypA, HypB, HypC, HypD, HypE, and HypF) is involved in an efficient incorporation of the [NiFe] center into the RH.
Collapse
Affiliation(s)
- T Buhrke
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
26
|
Fodor B, Rákhely G, Kovács KL. Transposon mutagenesis in purple sulfur photosynthetic bacteria: identification of hypF, encoding a protein capable of processing [NiFe] hydrogenases in alpha, beta, and gamma subdivisions of the proteobacteria. Appl Environ Microbiol 2001; 67:2476-83. [PMID: 11375153 PMCID: PMC92897 DOI: 10.1128/aem.67.6.2476-2483.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A random transposon-based mutagenesis system was optimized for the purple sulfur phototrophic bacterium Thiocapsa roseopersicina BBS. Screening for hydrogenase-deficient phenotypes resulted in the isolation of six independent mutants in a mini-Tn5 library. One of the mutations was in a gene showing high amino acid sequence similarity to HypF proteins in other organisms. Inactivation of hydrogen uptake activity in the hypF-deficient mutant resulted in a dramatic increase in the hydrogen evolution capacity of T. roseopersicina under nitrogen-fixing conditions. This mutant is therefore a promising candidate for use in practical biohydrogen-producing systems. The reconstructed hypF gene was able to complement the hypF-deficient mutant of T. roseopersicina BBS. Heterologous complementation experiments, using hypF mutant strains of T. roseopersicina, Escherichia coli, and Ralstonia eutropha and various hypF genes, were performed. They were successful in all of the cases tested, although for E. coli, the regulatory region of the foreign gene had to be replaced in order to achieve partial complementation. RT-PCR data suggested that HypF has no effect on the transcriptional regulation of the structural genes of hydrogenases in this organism.
Collapse
Affiliation(s)
- B Fodor
- Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, and Department of Biotechnology, University of Szeged, H-6726 Szeged, Hungary
| | | | | |
Collapse
|
27
|
Rother D, Henrich HJ, Quentmeier A, Bardischewsky F, Friedrich CG. Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol 2001; 183:4499-508. [PMID: 11443084 PMCID: PMC95344 DOI: 10.1128/jb.183.15.4499-4508.2001] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The novel genes soxFGH were identified, completing the sox gene cluster of Paracoccus pantotrophus coding for enzymes involved in lithotrophic sulfur oxidation. The periplasmic SoxF, SoxG, and SoxH proteins were induced by thiosulfate and purified to homogeneity from the soluble fraction. soxF coded for a protein of 420 amino acids with a signal peptide containing a twin-arginine motif. SoxF was 37% identical to the flavoprotein FccB of flavocytochrome c sulfide dehydrogenase of Allochromatium vinosum. The mature SoxF (42,832 Da) contained 0.74 mol of flavin adenine dinucleotide per mol. soxG coded for a novel protein of 303 amino acids with a signal peptide containing a twin-arginine motif. The mature SoxG (29,657 Da) contained two zinc binding motifs and 0.90 atom of zinc per subunit of the homodimer. soxH coded for a periplasmic protein of 317 amino acids with a double-arginine signal peptide. The mature SoxH (32,317 Da) contained two metal binding motifs and 0.29 atom of zinc and 0.20 atom of copper per subunit of the homodimer. SoxXA, SoxYZ, SoxB, and SoxCD (C. G. Friedrich, A. Quentmeier, F. Bardischewsky, D. Rother, R. Kraft, S. Kostka, and H. Prinz, J. Bacteriol. 182:4476-4487, 2000) reconstitute a system able to perform thiosulfate-, sulfite-, sulfur-, and hydrogen sulfide-dependent cytochrome c reduction, and this system is the first described for oxidizing different inorganic sulfur compounds. SoxF slightly inhibited the rate of hydrogen sulfide oxidation but not the rate of sulfite or thiosulfate oxidation. From use of a homogenote mutant with an in-frame deletion in soxF and complementation analysis, it was evident that the soxFGH gene products were not required for lithotrophic growth with thiosulfate.
Collapse
Affiliation(s)
- D Rother
- Lehrstuhl für Technische Mikrobiologie, Fachbereich Chemietechnik, Universität Dortmund, Emil-Figge-Strasse 66, D-44221 Dortmund, Germany
| | | | | | | | | |
Collapse
|
28
|
Hansel A, Axelsson R, Lindberg P, Troshina OY, Wünschiers R, Lindblad P. Cloning and characterisation of a hyp gene cluster in the filamentous cyanobacterium Nostoc sp. strain PCC 73102. FEMS Microbiol Lett 2001; 201:59-64. [PMID: 11445168 DOI: 10.1111/j.1574-6968.2001.tb10733.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Maturation of [NiFe]-hydrogenases requires the action of several groups of accessory genes. Homologues of one group of these genes, the so-called hyp genes, putatively encoding proteins participating in the formation of an active uptake hydrogenase in the filamentous, heterocyst-forming cyanobacterium Nostoc PCC 73102, were cloned. The cluster, consisting of hypF, hypC, hypD, hypE, hypA, and hypB, is located 3.8 kb upstream from the uptake hydrogenase-encoding hupSL. Gene expression analyses show that these hyp genes are, like hupL, transcribed under N(2)-fixing but not under non-N(2)-fixing growth conditions. Furthermore, the six hyp genes are transcribed together with an open reading frame upstream of hypF, as a single mRNA. Analysis of the DNA region upstream of the experimentally determined transcriptional start site revealed putative -10 and -35 sequence elements and putative binding sites for the global nitrogen regulator NtcA.
Collapse
Affiliation(s)
- A Hansel
- Department of Physiological Botany, EBC, Uppsala University, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Kleihues L, Lenz O, Bernhard M, Buhrke T, Friedrich B. The H(2) sensor of Ralstonia eutropha is a member of the subclass of regulatory [NiFe] hydrogenases. J Bacteriol 2000; 182:2716-24. [PMID: 10781538 PMCID: PMC101976 DOI: 10.1128/jb.182.10.2716-2724.2000] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two energy-generating hydrogenases enable the aerobic hydrogen bacterium Ralstonia eutropha (formerly Alcaligenes eutrophus) to use molecular hydrogen as the sole energy source. The complex synthesis of the nickel-iron-containing enzymes has to be efficiently regulated in response to H(2), which is available in low amounts in aerobic environments. H(2) sensing in R. eutropha is achieved by a hydrogenase-like protein which controls the hydrogenase gene expression in concert with a two-component regulatory system. In this study we show that the H(2) sensor of R. eutropha is a cytoplasmic protein. Although capable of H(2) oxidation with redox dyes as electron acceptors, the protein did not support lithoautotrophic growth in the absence of the energy-generating hydrogenases. A specifically designed overexpression system for R. eutropha provided the basis for identifying the H(2) sensor as a nickel-containing regulatory protein. The data support previous results which showed that the sensor has an active site similar to that of prototypic [NiFe] hydrogenases (A. J. Pierik, M. Schmelz, O. Lenz, B. Friedrich, and S. P. J. Albracht, FEBS Lett. 438:231-235, 1998). It is demonstrated that in addition to the enzymatic activity the regulatory function of the H(2) sensor is nickel dependent. The results suggest that H(2) sensing requires an active [NiFe] hydrogenase, leaving the question open whether only H(2) binding or subsequent H(2) oxidation and electron transfer processes are necessary for signaling. The regulatory role of the H(2)-sensing hydrogenase of R. eutropha, which has also been investigated in other hydrogen-oxidizing bacteria, is intimately correlated with a set of typical structural features. Thus, the family of H(2) sensors represents a novel subclass of [NiFe] hydrogenases denoted as the "regulatory hydrogenases."
Collapse
Affiliation(s)
- L Kleihues
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
30
|
Massanz C, Friedrich B. Amino acid replacements at the H2-activating site of the NAD-reducing hydrogenase from Alcaligenes eutrophus. Biochemistry 1999; 38:14330-7. [PMID: 10572008 DOI: 10.1021/bi9908080] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of amino acid residues in the H(2)-activating subunit (HoxH) of the NAD-reducing hydrogenase (SH) from Alcaligenes eutrophus has been investigated by site-directed mutagenesis. Conserved residues in the N-terminal L1 (RGxE) and L2 (RxCGxCx(3)H) and the C-terminal L5 (DPCx(2)Cx(2)H/R) motifs of the active site-harboring subunit were chosen as targets. Crystal structure analysis of the [NiFe] hydrogenase from Desulfovibrio gigas uncovered two pairs of cysteines (motifs L2 and L5) as coordinating ligands of Ni and Fe. Glutamate (L1) and histidine residues (L2 and L5) were proposed as being involved in proton transfer [Volbeda, A., Charon, M.-H., Piras, C., Hatchikian, E. C., Frey, M., and Fontecilla Camps, J. C. (1995) Nature 373, 580-587]. The A. eutrophus mutant proteins fell into three classes. (i) Replacement of the putative four metal-binding cysteines with serine led to the loss of H(2) reactivity and blocked the assembly of the holoenzyme. Exchange of Cys62, Cys65, or Cys458 was accompanied by the failure of the HoxH subunit to incorporate nickel, supporting the essential function of these residues in the formation of the active site. Although the fourth mutant of this class (HoxH[C461S]) exhibited nickel binding, the modified protein was catalytically inactive and unable to oligomerize. (ii) Mutations in residues possibly involved in proton transfer (HoxH[E43V], HoxH[H69L], and HoxH[H464L]) yielded Ni-containing proteins with residual low levels of hydrogenase activity. (iii) The most promising mutant protein (HoxH[R40L]), which was identified as a metal-containing tetrametric enzyme, was completely devoid of H(2)-dependent oxidoreductase activity but exhibited a remarkably high level of D(2)-H(+) exchange activity. These characteristics are compatible with the interpretation of a functional proton transfer uncoupled from the flow of electrons.
Collapse
Affiliation(s)
- C Massanz
- Institut für Biologie, Humboldt-Universität zu Berlin, Germany
| | | |
Collapse
|
31
|
Schwartz E, Buhrke T, Gerischer U, Friedrich B. Positive transcriptional feedback controls hydrogenase expression in Alcaligenes eutrophus H16. J Bacteriol 1999; 181:5684-92. [PMID: 10482509 PMCID: PMC94088 DOI: 10.1128/jb.181.18.5684-5692.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein HoxA is the central regulator of the Alcaligenes eutrophus H16 hox regulon, which encodes two hydrogenases, a nickel permease and several accessory proteins required for hydrogenase biosynthesis. Expression of the regulatory gene hoxA was analyzed. Screening of an 8-kb region upstream of hoxA with a promoter probe vector localized four promoter activities. One of these was found in the region immediately 5' of hoxA; the others were correlated with the nickel metabolism genes hypA1, hypB1, and hypX. All four activities were independent of HoxA and of the minor transcription factor sigma(54). Translational fusions revealed that hoxA is expressed constitutively at low levels. In contrast to these findings, immunoblotting studies revealed a clear fluctuation in the HoxA pool in response to conditions which induce the hox regulon. Quantitative transcript assays indicated elevated levels of hyp mRNA under hydrogenase-derepressing conditions. Using interposon mutagenesis, we showed that the activity of a remote promoter is required for hydrogenase expression and autotrophic growth. Site-directed mutagenesis revealed that P(MBH), which directs transcription of the structural genes of the membrane-bound hydrogenase, contributes to the expression of hoxA under hydrogenase-derepressing conditions. Thus, expression of the hox regulon is governed by a positive feedback loop mediating amplification of the regulator HoxA. These results imply the existence of an unusually large (ca. 17,000-nucleotide) transcript.
Collapse
Affiliation(s)
- E Schwartz
- Institut für Biologie der Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
32
|
Hernando Y, Palacios J, Imperial J, Ruiz-Argüeso T. Rhizobium leguminosarum bv. viciae hypA gene is specifically expressed in pea (Pisum sativum) bacteroids and required for hydrogenase activity and processing. FEMS Microbiol Lett 1998; 169:295-302. [PMID: 9868773 DOI: 10.1111/j.1574-6968.1998.tb13332.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Rhizobium leguminosarum bv. viciae strain UPM791 induces in symbiosis with peas the synthesis of a nickel-containing hydrogenase which recycles the hydrogen evolved by nitrogenase. The genes required for synthesis of this hydrogenase, hupSLCDEFGHIJKhypABFCDEX, are clustered in the symbiotic plasmid. Analysis of a hypA-deficient mutant showed that HypA is essential for symbiotic hydrogenase activity and required for correct processing of the hydrogenase large subunit. Unlike other microoxically induced hyp genes, the hypA gene was only expressed in pea bacteroids from its own promoter. The hypA mRNA 5' end was mapped 109 bp upstream of the translational start codon. This distinct pattern of expression suggests a different role for HypA and the remaining Hyp proteins in hydrogenase synthesis.
Collapse
Affiliation(s)
- Y Hernando
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | |
Collapse
|
33
|
Lenz O, Friedrich B. A novel multicomponent regulatory system mediates H2 sensing in Alcaligenes eutrophus. Proc Natl Acad Sci U S A 1998; 95:12474-9. [PMID: 9770510 PMCID: PMC22855 DOI: 10.1073/pnas.95.21.12474] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxidation of molecular hydrogen catalyzed by [NiFe] hydrogenases is a widespread mechanism of energy generation among prokaryotes. Biosynthesis of the H2-oxidizing enzymes is a complex process subject to positive control by H2 and negative control by organic energy sources. In this report we describe a novel signal transduction system regulating hydrogenase gene (hox) expression in the proteobacterium Alcaligenes eutrophus. This multicomponent system consists of the proteins HoxB, HoxC, HoxJ*, and HoxA. HoxB and HoxC share characteristic features of dimeric [NiFe] hydrogenases and form the putative H2 receptor that interacts directly or indirectly with the histidine protein kinase HoxJ*. A single amino acid substitution (HoxJ*G422S) in a conserved C-terminal glycine-rich motif of HoxJ* resulted in a loss of H2-dependent signal transduction and a concomitant block in autophosphorylating activity, suggesting that autokinase activity is essential for the response to H2. Whereas deletions in hoxB or hoxC abolished hydrogenase synthesis almost completely, the autokinase-deficient strain maintained high-level hox gene expression, indicating that the active sensor kinase exerts a negative effect on hox gene expression in the absence of H2. Substitutions of the conserved phosphoryl acceptor residue Asp55 in the response regulator HoxA (HoxAD55E and HoxAD55N) disrupted the H2 signal-transduction chain. Unlike other NtrC-like regulators, the altered HoxA proteins still allowed high-level transcriptional activation. The data presented here suggest a model in which the nonphosphorylated form of HoxA stimulates transcription in concert with a yet unknown global energy-responsive factor.
Collapse
Affiliation(s)
- O Lenz
- Institut für Biologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, 10115 Berlin, Germany
| | | |
Collapse
|
34
|
Rousset M, Magro V, Forget N, Guigliarelli B, Belaich JP, Hatchikian EC. Heterologous expression of the Desulfovibrio gigas [NiFe] hydrogenase in Desulfovibrio fructosovorans MR400. J Bacteriol 1998; 180:4982-6. [PMID: 9733707 PMCID: PMC107529 DOI: 10.1128/jb.180.18.4982-4986.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of Desulfovibrio fructosovorans MR400 DeltahynABC to express the heterologous cloned [NiFe] hydrogenase of Desulfovibrio gigas was investigated. The [NiFe] hydrogenase operon from D. gigas, hynABCD, was cloned, sequenced, and introduced into D. fructosovorans MR400. A portion of the recombinant heterologous [NiFe] hydrogenase was totally matured, exhibiting catalytic and spectroscopic properties identical to those of the native D. gigas protein. A chimeric operon containing hynAB from D. gigas and hynC from D. fructosovorans placed under the control of the D. fructosovorans hynAp promoter was constructed and expressed in D. fructosovorans MR400. Under these conditions, the same level of activity was obtained as with the D. gigas hydrogenase operon.
Collapse
Affiliation(s)
- M Rousset
- Unité de Bioénergétique et Ingénierie des Protéines, IBSM, CNRS, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
35
|
Schwartz E, Gerischer U, Friedrich B. Transcriptional regulation of Alcaligenes eutrophus hydrogenase genes. J Bacteriol 1998; 180:3197-204. [PMID: 9620971 PMCID: PMC107822 DOI: 10.1128/jb.180.12.3197-3204.1998] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/1998] [Accepted: 04/08/1998] [Indexed: 02/07/2023] Open
Abstract
Alcaligenes eutrophus H16 produces a soluble hydrogenase (SH) and a membrane-bound hydrogenase (MBH) which catalyze the oxidation of H2, supplying the organism with energy for autotrophic growth. The promoters of the structural genes for the SH and the MBH, PSH and PMBH, respectively, were identified by means of the primer extension technique. Both promoters were active in vivo under hydrogenase-derepressing conditions but directed only low levels of transcription under condition which repressed hydrogenase synthesis. The cellular pools of SH and MBH transcripts under the different growth conditions correlated with the activities of the respective promoters. Also, an immediate and drastic increase in transcript pool levels occurred upon derepression of the hydrogenase system. Both promoters were dependent on the minor sigma factor sigma 54 and on the hydrogenase regulator HoxA in vivo. PSH was stronger than PMBH under both heterotrophic and autotrophic growth conditions. The two promoters were induced at approximately the same rates upon derepression of the hydrogenase system in diauxic cultures. The response regulator HoxA mediated low-level activation of PSH and PMBH in a heterologous system.
Collapse
MESH Headings
- Alcaligenes/enzymology
- Alcaligenes/genetics
- Alcaligenes/metabolism
- Bacterial Proteins/metabolism
- Base Sequence
- DNA Primers/genetics
- DNA, Bacterial/genetics
- DNA-Binding Proteins
- DNA-Directed RNA Polymerases/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Genes, Bacterial
- Homeodomain Proteins
- Hydrogenase/genetics
- Hydrogenase/metabolism
- Kinetics
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA Polymerase Sigma 54
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sigma Factor/metabolism
- Solubility
- Trans-Activators/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- E Schwartz
- Institut für Biologie, Humboldt-Universität zu Berlin, Germany. edward=
| | | | | |
Collapse
|
36
|
Massanz C, Schmidt S, Friedrich B. Subforms and in vitro reconstitution of the NAD-reducing hydrogenase of Alcaligenes eutrophus. J Bacteriol 1998; 180:1023-9. [PMID: 9495738 PMCID: PMC106987 DOI: 10.1128/jb.180.5.1023-1029.1998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cytoplasmic, NAD-reducing hydrogenase (SH) of Alcaligenes eutrophus H16 is a heterotetrameric enzyme which contains several cofactors and undergoes a complex maturation during biogenesis. HoxH is the Ni-carrying subunit, and together with HoxY it forms the hydrogenase dimer. HoxF and HoxU represent the flavin-containing diaphorase moiety, which is closely related to NADH:ubiquinone oxidoreductase and mediates NADH oxidation. A variety of mutations were introduced into the four SH structural genes to obtain mutant enzymes composed of monomeric and dimeric forms. A deletion removing most of hoxF, hoxU, and hoxY led to the expression of a HoxH monomer derivative which was proteolytically processed at the C terminus like the wild-type polypeptide. While the hydrogenase dimer, produced by a strain deleted of hoxF and hoxU, displayed H2-dependent dye-reducing activity, the monomeric form did not mediate the activation of H2, although nickel was incorporated into HoxH. Deletion of hoxH and hoxY led to the production of HoxFU dimers which displayed NADH:oxidoreductase activity. Mixing the hydrogenase and the diaphorase moieties in vitro reconstituted the structure and catalytic function of the SH holoenzyme.
Collapse
Affiliation(s)
- C Massanz
- Institut für Biologie, Humboldt-Universität zu Berlin, Germany
| | | | | |
Collapse
|
37
|
Bernhard M, Benelli B, Hochkoeppler A, Zannoni D, Friedrich B. Functional and structural role of the cytochrome b subunit of the membrane-bound hydrogenase complex of Alcaligenes eutrophus H16. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:179-86. [PMID: 9310376 DOI: 10.1111/j.1432-1033.1997.00179.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study shows that the product of the hoxZ gene of Alcaligenes eutrophus H16 is a b-type cytochrome (cytochrome b(z)), which is essential for anchoring the membrane-bound hydrogenase (MBH) complex to the periplasmic side of the membrane and for H2-coupled respiration. The hoxZ product is not required for MBH translocation and H2-dependent reduction of the redox dye, 2,3,5-triphenyl-2-tetrazolium chloride. The lack of cytochrome b(z) does not affect the electron-transport activities linked to oxidation of succinate and NADH, although it enhances the electron-flow rate through the cytochrome-c oxidase pathway in hoxZdelta membranes. We show that the hoxZ product is a dihaem cytochrome b (haems with E(m7.0) of +10 mV and +166 mV) involved in H2-dependent electron transfer. We conclude that cytochrome b(z) of the A. eutrophus MBH complex is the link necessary for transfer of electrons from H2 to the ubiquinone pool and that it is required for attachment of MBH to the membrane.
Collapse
Affiliation(s)
- M Bernhard
- Institut für Biologie der Humboldt-Universität zu Berlin, Germany
| | | | | | | | | |
Collapse
|
38
|
Wodara C, Bardischewsky F, Friedrich CG. Cloning and characterization of sulfite dehydrogenase, two c-type cytochromes, and a flavoprotein of Paracoccus denitrificans GB17: essential role of sulfite dehydrogenase in lithotrophic sulfur oxidation. J Bacteriol 1997; 179:5014-23. [PMID: 9260941 PMCID: PMC179357 DOI: 10.1128/jb.179.16.5014-5023.1997] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A 13-kb genomic region of Paracoccus dentrificans GB17 is involved in lithotrophic thiosulfate oxidation. Adjacent to the previously reported soxB gene (C. Wodara, S. Kostka, M. Egert, D. P. Kelly, and C. G. Friedrich, J. Bacteriol. 176:6188-6191, 1994), 3.7 kb were sequenced. Sequence analysis revealed four additional open reading frames, soxCDEF. soxC coded for a 430-amino-acid polypeptide with an Mr of 47,339 that included a putative signal peptide of 40 amino acids (Mr of 3,599) with a RR motif present in periplasmic proteins with complex redox centers. The mature soxC gene product exhibited high amino acid sequence similarity to the eukaryotic molybdoenzyme sulfite oxidase and to nitrate reductase. We constructed a mutant, GBsoxC delta, carrying an in-frame deletion in soxC which covered a region possibly coding for the molybdenum cofactor binding domain. GBsoxC delta was unable to grow lithoautotrophically with thiosulfate but grew well with nitrate as a nitrogen source or as an electron acceptor. Whole cells and cell extracts of mutant GBsoxC delta contained 10% of the thiosulfate-oxidizing activity of the wild type. Only a marginal rate of sulfite-dependent cytochrome c reduction was observed from cell extracts of mutant GBsoxC delta. These results demonstrated that sulfite dehydrogenase was essential for growth with thiosulfate of P. dentrificans GB17. soxD coded for a periplasmic diheme c-type cytochrome of 384 amino acids (Mr of 39,983) containing a putative signal peptide with an Mr of 2,363. soxE coded for a periplasmic monoheme c-type cytochrome of 236 amino acids (Mr of 25,926) containing a putative signal peptide with an Mr of 1,833. SoxD and SoxE were highly identical to c-type cytochromes of P. denitrificans and other organisms. soxF revealed an incomplete open reading frame coding for a peptide of 247 amino acids with a putative signal peptide (Mr of 2,629). The deduced amino acid sequence of soxF was 47% identical and 70% similar to the sequence of the flavoprotein of flavocytochrome c of Chromatium vinosum, suggesting the involvement of the flavoprotein in thiosulfate oxidation of P. denitrificans GB17.
Collapse
Affiliation(s)
- C Wodara
- Lehrstuhl für Technische Mikrobiologie, Fachbereich Chemietechnik, Universität Dortmund, Germany
| | | | | |
Collapse
|
39
|
Massanz C, Fernandez VM, Friedrich B. C-terminal extension of the H2-activating subunit, HoxH, directs maturation of the NAD-reducing hydrogenase in Alcaligenes eutrophus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:441-8. [PMID: 9151977 DOI: 10.1111/j.1432-1033.1997.t01-3-00441.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Formation of enzymatically active [NiFe] hydrogenases is dependent on a number of posttranslational steps, including metal attachment to a precursor of the catalytic subunit, truncation of a small C-terminal peptide from the precursor, and oligomerisation of the subunits. Two amino acid replacements were introduced by site-directed mutagenesis at the C-terminal proteolytic cleavage site of HoxH, the Ni-containing subunit of the cytoplasmic NAD-reducing hydrogenase of Alcaligenes eutrophus H16. Replacement of Ala465, the first residue of the 24-amino-acid cleaved polypeptide, by Pro yielded a form of HoxH that was blocked in C-terminal proteolysis. This HoxH subunit, although capable of binding Ni, was blocked in formation of a stable tetrameric holoenzyme. In the second mutant, the C-terminal extension of HoxH was eliminated by substituting the Ala codon for a translational stop codon. Although this mutant subunit was able to form the oligomeric holoenzyme, it was devoid of Ni. Both mutant proteins contained only traces of H2-activating functions. H2-dependent reduction of NAD and benzylviologen, and D2/H+-exchange activity were almost completely abolished, while the NADH oxidoreductase activity, mediated by the diaphorase moiety of the hydrogenase, was retained. These results allow the following conclusions: the C-terminal extension of HoxH is neccessary to direct specific Ni insertion into the hydrogenase; subunit assembly to the holoenzyme is not dependent on Ni insertion; and a precursor with the C-terminal peptide is not competent for assembly.
Collapse
Affiliation(s)
- C Massanz
- Institut für Biologie der Humboldt-Universitat zu Berlin, Germany
| | | | | |
Collapse
|
40
|
Kerby RL, Ludden PW, Roberts GP. In vivo nickel insertion into the carbon monoxide dehydrogenase of Rhodospirillum rubrum: molecular and physiological characterization of cooCTJ. J Bacteriol 1997; 179:2259-66. [PMID: 9079911 PMCID: PMC178962 DOI: 10.1128/jb.179.7.2259-2266.1997] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The products of cooCTJ are involved in normal in vivo Ni insertion into the carbon monoxide dehydrogenase (CODH) of Rhodospirillum rubrum. Located on a 1.5-kb DNA segment immediately downstream of the CODH structural gene (cooS), two of the genes encode proteins that bear motifs reminiscent of other (urease and hydrogenase) Ni-insertion systems: a nucleoside triphosphate-binding motif near the N terminus of CooC and a run of 15 histidine residues regularly spaced over the last 30 amino acids of the C terminus of CooJ. A Gm(r)omega-linker cassette was developed to create both polar and nonpolar (60 bp) insertions in the cooCTJ region, and these, along with several deletions, were introduced into R. rubrum by homologous recombination. Analysis of the exogenous Ni levels required to sustain CO-dependent growth of the R. rubrum mutants demonstrated different phenotypes: whereas the wild-type strain and a mutant bearing a partial cooJ deletion (of the region encoding the histidine-rich segment) grew at 0.5 microM Ni supplementation, strains bearing Gm(r)omega-linker cassettes in cooT and cooJ required approximately 50-fold-higher Ni levels and all cooC insertion strains, bearing polar or nonpolar insertions, grew optimally at 550 microM Ni.
Collapse
Affiliation(s)
- R L Kerby
- Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
41
|
Lenz O, Strack A, Tran-Betcke A, Friedrich B. A hydrogen-sensing system in transcriptional regulation of hydrogenase gene expression in Alcaligenes species. J Bacteriol 1997; 179:1655-63. [PMID: 9045826 PMCID: PMC178879 DOI: 10.1128/jb.179.5.1655-1663.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Heterologous complementation studies using Alcaligenes eutrophus H16 as a recipient identified a hydrogenase-specific regulatory DNA region on megaplasmid pHG21-a of the related species Alcaligenes hydrogenophilus. Nucleotide sequence analysis revealed four open reading frames on the subcloned DNA, designated hoxA, hoxB, hoxC, and hoxJ. The product of hoxA is homologous to a transcriptional activator of the family of two-component regulatory systems present in a number of H2-oxidizing bacteria. hoxB and hoxC predict polypeptides of 34.5 and 52.5 kDa, respectively, which resemble the small and the large subunits of [NiFe] hydrogenases and correlate with putative regulatory proteins of Bradyrhizobium japonicum (HupU and HupV) and Rhodobacter capsulatus (HupU). hoxJ encodes a protein with typical consensus motifs of histidine protein kinases. Introduction of the complete set of genes on a broad-host-range plasmid into A. eutrophus H16 caused severe repression of soluble and membrane-bound hydrogenase (SH and MBH, respectively) synthesis in the absence of H2. This repression was released by truncation of hoxJ. H2-dependent hydrogenase gene transcription is a typical feature of A. hydrogenophilus and differs from the energy and carbon source-responding, H2-independent mode of control characteristic of A. eutrophus H16. Disruption of the A. hydrogenophilus hoxJ gene by an in-frame deletion on megaplasmid pHG21-a led to conversion of the regulatory phenotype: SH and MBH of the mutant were expressed in the absence of H2 in response to the availability of the carbon and energy source. RNA dot blot analysis showed that HoxJ functions on the transcriptional level. These results suggest that the putative histidine protein kinase HoxJ is involved in sensing molecular hydrogen, possibly in conjunction with the hydrogenase-like polypeptides HoxB and HoxC.
Collapse
Affiliation(s)
- O Lenz
- Institut für Biologie der Humboldt-Universität zu Berlin, Germany
| | | | | | | |
Collapse
|
42
|
Bernhard M, Schwartz E, Rietdorf J, Friedrich B. The Alcaligenes eutrophus membrane-bound hydrogenase gene locus encodes functions involved in maturation and electron transport coupling. J Bacteriol 1996; 178:4522-9. [PMID: 8755880 PMCID: PMC178219 DOI: 10.1128/jb.178.15.4522-4529.1996] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Alcaligenes eutrophus H16 produces two [NiFe] hydrogenases which catalyze the oxidation of hydrogen and enable the organism to utilize H2 as the sole energy source. The genes (hoxK and hoxG) for the heterodimeric, membrane-bound hydrogenase (MBH) are located adjacent to a series of eight accessory genes (hoxZ, hoxM, hoxL, hoxO, hoxQ, hoxR, hoxT, and hoxV). In the present study, we generated a set of isogenic mutants with in-frame deletions in the two structural genes and in each of the eight accessory genes. The resulting mutants can be grouped into two classes on the basis of the H2-oxidizing activity of the MBH. Class I mutants (hoxKdelta, hoxGdelta, hoxMdelta, hoxOdelta, and hoxQdelta) were totally devoid of MBH-mediated, H2-oxidizing activity. The hoxM deletion strain was the only mutant in our collection which was completely blocked in carboxy-terminal processing of large subunit HoxG, indicating that hoxM encodes a specific protease. Class II mutants (hoxZdelta, hoxLdelta, hoxRdelta, hoxTdelta, and hoxVdelta) contained residual amounts of MBH activity in the membrane fraction of the extracts. Immunochemical analysis and 63Ni incorporation experiments revealed that the mutations affect various steps in MBH maturation. A lesion in hoxZ led to the production of a soluble MBH which was highly active with redox dye.
Collapse
Affiliation(s)
- M Bernhard
- Institut für Biologie der Humboldt-Universitat zu Berlin, Germany
| | | | | | | |
Collapse
|
43
|
Thiemermann S, Dernedde J, Bernhard M, Schroeder W, Massanz C, Friedrich B. Carboxyl-terminal processing of the cytoplasmic NAD-reducing hydrogenase of Alcaligenes eutrophus requires the hoxW gene product. J Bacteriol 1996; 178:2368-74. [PMID: 8636040 PMCID: PMC177947 DOI: 10.1128/jb.178.8.2368-2374.1996] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Two open reading frames (ORFs) were identified immediately downstream of the four structural genes for the soluble hydrogenase (SH) of Alcaligenes eutrophus H16. While a mutation in ORF2 had no obvious effect on hydrogen metabolism, an in-frame deletion in ORF1, subsequently designated hoxW, led to a complete loss of SH activity and hence a significant retardation of autotrophic growth on hydrogen. Hydrogen oxidation in the hoxW mutant was catalyzed by the second hydrogenase, a membrane-bound enzyme. Assembly of the four subunits of the SH was blocked in mutant cells, and HoxH, the hydrogen-activating subunit, accumulated as a precursor which was still capable of binding nickel. Protein sequencing revealed that HoxH isolated from the wild type terminates at His-464, whereas the C-terminal amino acid sequence of HoxH from the hoxW mutant is colinear with the deduced sequence. Processing of the HoxH precursor was restored in vitro by a cell extract containing HoxW. These results indicate that HoxW is a highly specific carboxyl-terminal protease which releases a 24-amino-acid peptide from HoxH prior to progression of subunit assembly.
Collapse
Affiliation(s)
- S Thiemermann
- Institut für Pflanzenphysiologie und Mikrobiologie, Freie Universität Berlin, Germany
| | | | | | | | | | | |
Collapse
|