1
|
Lambré C, Barat Baviera JM, Bolognesi C, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Andryszkiewicz M, Liu Y, Chesson A. Safety evaluation of the food enzyme phytepsin from Cynara cardunculus L. EFSA J 2023; 21:e07909. [PMID: 36969549 PMCID: PMC10035323 DOI: 10.2903/j.efsa.2023.7909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
The food enzyme phytepsin (EC 3.4.23.40) is extracted from the pistils of the cardoon (Cynara cardunculus L.) by different manufacturers represented by the Dirección General de Salud Pública, Gobierno de Canarias, España. It is intended to be used in milk processing for cheese production. As no concerns arose from the source of the food enzyme, from its manufacture, and based on a history of safe use and consumption, the Panel considered that toxicological data and the estimation of dietary exposure were not required. A search for the similarity of the amino acid sequences of the food enzyme to known allergens was made and no matches were found. The Panel considered that allergic reactions to this phytepsin cannot be excluded in individuals allergic to cardoon. However, the likelihood of allergic reactions to the phytepsin from C. cardunculus L. is expected not to exceed the likelihood of allergic reactions to cardoon. As the prevalence of allergic reactions to cardoon is low, also the likelihood of such reactions to occur to the food enzyme is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
Collapse
|
2
|
Lambré C, Barat Baviera JM, Bolognesi C, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Roos Y, Andryszkiewicz M, Liu Y, Chesson A. Safety evaluation of the food enzyme phytepsin from Cynara cardunculus L. EFSA J 2022; 20:e07678. [PMID: 36507102 PMCID: PMC9727919 DOI: 10.2903/j.efsa.2022.7678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The food enzyme phytepsin (EC 3.4.23.40) is extracted from the pistils of cardoon (Cynara cardunculus L.) by QUALIFICA/oriGIn PORTUGAL. It is intended to be used in milk processing for cheese production. As no concerns arose from the source of the food enzyme, from its manufacture, and based on the history of safe use and consumption, the Panel considered that toxicological data and the estimation of dietary exposure were not required. The Panel considered that allergic reactions to this phytepsin cannot be excluded in individuals allergic to this plant. However, the likelihood of allergic reactions to the phytepsin from C. cardunculus L. is expected not to exceed the likelihood of allergic reactions to cardoon. As the prevalence of allergic reactions to cardoon is low, also the likelihood of such reaction to occur to the food enzyme is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
Collapse
|
3
|
Lambré C, Barat Baviera JM, Bolognesi C, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Roos Y, Andryszkiewicz M, Liu Y, Chesson A. Safety evaluation of the food enzyme phytepsin from Cynara cardunculus L. EFSA J 2022; 20:e07680. [PMID: 36507100 PMCID: PMC9727922 DOI: 10.2903/j.efsa.2022.7680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The food enzyme phytepsin (EC 3.4.23.40) is extracted from the pistils of the cardoon (Cynara cardunculus L.) by seven manufacturers represented by the Regulation Council of Protected Designation of Origin Torta del Casar. It is intended to be used in milk processing for cheese production. As no concerns arose from the source of the food enzyme, from its manufacture, and based on the history of safe use and consumption, the Panel considered that toxicological data and the estimation of dietary exposure were not required. A search for similarity of the amino acid sequences of the food enzyme to known allergens was made and no matches were found. The Panel considered that allergic reactions to this phytepsin cannot be excluded in individuals allergic to this plant. However, the likelihood of allergic reactions to the phytepsin from C. cardunculus L. is expected not to exceed the likelihood of allergic reactions to cardoon. As the prevalence of allergic reactions to cardoon is low, also the likelihood of such reaction to occur to the food enzyme is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
Collapse
|
4
|
Lambré C, Barat Baviera JM, Bolognesi C, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Roos Y, Andryszkiewicz M, Liu Y, Chesson A. Safety evaluation of the food enzyme phytepsin from Cynara cardunculus L. EFSA J 2022; 20:e07681. [PMID: 36507101 PMCID: PMC9727923 DOI: 10.2903/j.efsa.2022.7681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The food enzyme phytepsin (EC 3.4.23.40) is extracted from the pistils of the cardoon Cynara cardunculus L. by ABIASA. It is intended to be used in milk processing for cheese production. As no concerns arose from the source of the food enzyme, from its manufacture, and based on the history of safe use and consumption, the Panel considered that toxicological data and the estimation of dietary exposure were not required. The Panel considered that allergic reactions to this phytepsin cannot be excluded in individuals allergic to this plant. However, the likelihood of allergic reactions to the phytepsin from C. cardunculus L. is expected not to exceed the likelihood of allergic reactions to cardoon. As the prevalence of allergic reactions to cardoon is low, also the likelihood of such reaction to occur to the food enzyme is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.
Collapse
|
5
|
Ghribi AM, Gafsi IM, Blecker C, Attia H, Bouaziz MA, Besbes S. Cynara cardunculus as a potential source of milk coagulating protease: Effects on physical properties of cow's milk. Food Sci Nutr 2022; 10:3855-3864. [PMID: 36348785 PMCID: PMC9632194 DOI: 10.1002/fsn3.2981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
In the present research study, Cynara cardunculus (wild cardoon) flowers were blended and extracted using different types of buffers (phosphate buffer; citrate buffer and distilled water) for different maceration times. The most reliable, quick and efficient buffer was found to be phosphate (pH = 6.5) with a 6-h maceration time, which was used throughout this study. C. cardunculus extract (CE) was found to have high clotting and proteolytic activities. The extracted enzyme was found to be very stable against a wide range of pH values as well as of temperature. The formation of milk gels prepared in the presence of CE with different types of milk was evaluated using dynamic rheology and Turbiscan. The evolution of both elastic (G') and viscous (G″) moduli was monitored with time. The values of the whole milk enriched with milk powder gels were higher. Coagulum stability was evaluated using Turbiscan. The textural properties and the curd-firming rate of coagulum were also determined. In conclusion, the prepared CE could be an efficient milk-clotting agent in the production of dairy products.
Collapse
Affiliation(s)
- Abir Mokni Ghribi
- Ecole Nationale d'Ingénieurs de Sfax, Laboratoire AnalyseUniversité de SfaxSfaxTunisie
| | - Ines Makhlouf Gafsi
- Ecole Nationale d'Ingénieurs de Sfax, Laboratoire AnalyseUniversité de SfaxSfaxTunisie
| | - Christophe Blecker
- Gembloux Agro Bio‐Tech, Unité de Technologie des Industries Agro‐Alimentaires, passage des Déportés 2Université de LiègeGemblouxBelgium
| | - Hamadi Attia
- Ecole Nationale d'Ingénieurs de Sfax, Laboratoire AnalyseUniversité de SfaxSfaxTunisie
| | - Mohamed Ali Bouaziz
- Ecole Nationale d'Ingénieurs de Sfax, Laboratoire AnalyseUniversité de SfaxSfaxTunisie
| | - Souhail Besbes
- Ecole Nationale d'Ingénieurs de Sfax, Laboratoire AnalyseUniversité de SfaxSfaxTunisie
- Gembloux Agro Bio‐Tech, Unité de Technologie des Industries Agro‐Alimentaires, passage des Déportés 2Université de LiègeGemblouxBelgium
| |
Collapse
|
6
|
Potentialities of aqueous extract from cultivated Onopordum tauricum (Willd.) as milk clotting agent for cheesemaking. Food Res Int 2022; 158:111592. [DOI: 10.1016/j.foodres.2022.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022]
|
7
|
Folgado A, Abranches R. Tobacco BY2 cells expressing recombinant cardosin B as an alternative for production of active milk clotting enzymes. Sci Rep 2021; 11:14501. [PMID: 34262119 PMCID: PMC8280186 DOI: 10.1038/s41598-021-93882-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/30/2021] [Indexed: 11/08/2022] Open
Abstract
Cynara cardunculus L. or cardoon is a plant that is used as a source of milk clotting enzymes during traditional cheese manufacturing. This clotting activity is due to aspartic proteases (APs) found in the cardoon flower, named cyprosins and cardosins. APs from cardoon flowers display a great degree of heterogeneity, resulting in variable milk clotting activities and directly influencing the final product. Producing these APs using alternative platforms such as bacteria or yeast has proven challenging, which is hampering their implementation on an industrial scale. We have developed tobacco BY2 cell lines as an alternative plant-based platform for the production of cardosin B. These cultures successfully produced active cardosin B and a purification pipeline was developed to obtain isolated cardosin B. The enzyme displayed proteolytic activity towards milk caseins and milk clotting activity under standard cheese manufacturing conditions. We also identified an unprocessed form of cardosin B and further investigated its activation process. The use of protease-specific inhibitors suggested a possible role for a cysteine protease in cardosin B processing. Mass spectrometry analysis identified three cysteine proteases containing a granulin-domain as candidates for cardosin B processing. These findings suggest an interaction between these two groups of proteases and contribute to an understanding of the mechanisms behind the regulation and processing of plant APs. This work also paves the way for the use of tobacco BY2 cells as an alternative production system for active cardosins and represents an important advancement towards the industrial production of cardoon APs.
Collapse
Affiliation(s)
- André Folgado
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal.
| |
Collapse
|
8
|
Barracosa P, Simões I, Martins A, Barros M, Pires E. Biochemical diversity of cardoon flowers (Cynara cardunculus L.): Predicting PDO Mediterranean cheese textures. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Estévez N, Fuciños P, Fuciños C, Jauregi P, Tovar CA, Rúa ML. Hydrolysis of whey protein as a useful approach to obtain bioactive peptides and a β-Lg fraction with different biotechnological applications. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Estévez N, Fuciños P, Fuciños C, Rúa ML. Optimisation of bovine β-lactoglobulin hydrolysis using cardosins from dried flowers of Cynara cardunculus. Food Chem 2020; 345:128741. [PMID: 33601650 DOI: 10.1016/j.foodchem.2020.128741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/13/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022]
Abstract
Bovine whey protein was hydrolysed using cardosins A and B purified from dried flowers of Cynara cardunculus by combining diafiltration, anion-exchange chromatography and ultrafiltration. The proteolysis experiments were performed using different whey protein concentrations and enzyme/substrate (E/S) ratios. Complete hydrolysis of the main whey proteins, β-Lactoglobulin (β-Lg) and α-lactalbumin (α-La), was achieved after 4 h, at E/S ratios of 1/150 U/mg, regardless the initial protein concentration. In previous reports, the authors suggested that cardosins could not hydrolyse β-lactoblogulin. However, our promising results open up new possibilities to further explore the action of cardosins on whey proteins for the production of bioactive peptides.
Collapse
Affiliation(s)
- Natalia Estévez
- Biochemistry Laboratory, CITACA, Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, 32004 Ourense, Spain.
| | - Pablo Fuciños
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715 Braga, Portugal
| | - Clara Fuciños
- Biochemistry Laboratory, CITACA, Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, 32004 Ourense, Spain.
| | - María Luisa Rúa
- Biochemistry Laboratory, CITACA, Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, 32004 Ourense, Spain
| |
Collapse
|
11
|
Exploring the Milk-Clotting and Proteolytic Activities in Different Tissues of Vallesia glabra: a New Source of Plant Proteolytic Enzymes. Appl Biochem Biotechnol 2020; 193:389-404. [PMID: 33009584 DOI: 10.1007/s12010-020-03432-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/28/2020] [Indexed: 01/18/2023]
Abstract
Proteolytic enzymes are widely distributed in nature, playing essential roles in important biological functions. Recently, the use of plant proteases at the industrial level has mainly increased in the food industry (e.g., cheesemaking, meat tenderizing, and protein hydrolysate production). Current technological and scientific advances in the detection and characterization of proteolytic enzymes have encouraged the search for new natural sources. Thus, this work aimed to explore the milk-clotting and proteolytic properties of different tissues of Vallesia glabra. Aqueous extracts from the leaves, fruits, and seeds of V. glabra presented different protein profiles, proteolytic activity, and milk-clotting activity. The milk-clotting activity increased with temperature (30-65 °C), but this activity was higher in leaf (0.20 MCU/mL) compared with that in fruit and seed extracts (0.12 and 0.11 MCU/mL, respectively) at 50 °C. Proteolytic activity in the extracts assayed at different pH (2.5-12.0) suggested the presence of different types of active proteases, with maximum activity at acidic conditions (4.0-4.5). Inhibitory studies indicated that major activity in V. glabra extracts is related to cysteine proteases; however, the presence of serine, aspartic, and metalloproteases was also evident. The hydrolytic profile of caseins indicated that V. glabra leaves could be used as a rennet substitute in cheesemaking, representing a new and promising source of proteolytic enzymes.
Collapse
|
12
|
Alavi F, Momen S. Aspartic proteases from thistle flowers: Traditional coagulants used in the modern cheese industry. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Cheung LKY, Dupuis JH, Dee DR, Bryksa BC, Yada RY. Roles of Plant-Specific Inserts in Plant Defense. TRENDS IN PLANT SCIENCE 2020; 25:682-694. [PMID: 32526173 DOI: 10.1016/j.tplants.2020.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
Ubiquitously expressed in plants, the plant-specific insert (PSI) of typical plant aspartic proteases (tpAPs) has been associated with plant development, stress response, and defense processes against invading pathogens. Despite sharing high sequence identity, structural studies revealed possible different mechanisms of action among species. The PSI induces signaling pathways of defense hormones in vivo and demonstrates broad-spectrum activity against phytopathogens in vitro. Recent characterization of the PSI-tpAP relationship uncovered novel, nonconventional intracellular protein transport pathways and improved tpAP production yields for industrial applications. In spite of research to date, relatively little is known about the structure-function relationships of PSIs. A comprehensive understanding of their biological roles may benefit plant protection strategies against virulent phytopathogens.
Collapse
Affiliation(s)
- Lennie K Y Cheung
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John H Dupuis
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Derek R Dee
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Brian C Bryksa
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada. @ubc.ca
| |
Collapse
|
14
|
Zikiou A, Esteves AC, Esteves E, Rosa N, Gomes S, Louro Martins AP, Zidoune MN, Barros M. Algerian cardoon flowers express a large spectrum of coagulant enzymes with potential applications in cheesemaking. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Influence of Cardoon Flower ( Cynara cardunculus L.) and Flock Lactation Stage in PDO Serra da Estrela Cheese. Foods 2020; 9:foods9040386. [PMID: 32225012 PMCID: PMC7230902 DOI: 10.3390/foods9040386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022] Open
Abstract
Serra da Estrela (SE) cheese is one of the most appreciated Portuguese cheeses, being produced only from raw ewe's milk, cardoon flower and salt. Cardoon takes part in two important processes in cheese production-coagulation and proteolysis-contributing to its unique features. Furthermore, milk chemical characteristics change during the milking season, being another factor that account for the high variability of cheese attributes. Therefore, the purpose of this work is to study the influence of cardoon flower (commercial, 6 M and 3 M) and flock lactation stage (November 2018, February and April 2019) in the final characteristics of SE cheese. The parameters analysed were moisture, protein, fat and salt contents, texture and colour. Results showed that flock lactation stage has the highest influence in all the studied characteristics, corresponding the early stages of lactation to the most protein-rich and low-fat cheeses. Cardoon flower affects mainly fat and rind colour. This study allows us to conclude that seasonal changes in ewe's milk have a considerable impact in cheese attributes, and that although cardoon type had a more restrained effect, when used with expertise it may help adjust cheese sensory characteristics in order to obtain a final product that matches consumer acceptability requirements.
Collapse
|
16
|
Folgado A, Abranches R. Plant Aspartic Proteases for Industrial Applications: Thistle Get Better. PLANTS (BASEL, SWITZERLAND) 2020; 9:E147. [PMID: 31979230 PMCID: PMC7076372 DOI: 10.3390/plants9020147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/26/2019] [Accepted: 01/18/2020] [Indexed: 01/09/2023]
Abstract
Plant proteases have a number of applications in industrial processes including cheese manufacturing. The flower of the cardoon plant (Cynara cardunculus L.) is traditionally used as a milk-clotting agent in protected designation of origin cheeses made from goat and sheep milk. Plant-derived rennets are of particular importance to consumers who wish to eat cheeses that are produced without harming any animals. In this review, we have highlighted the importance of plant proteases, particularly aspartic proteases, in industrial processes, as well as exploring more fundamental aspects of their synthesis. We have also reviewed and discussed the production of these enzymes using sustainable and cost-effective alternative platforms.
Collapse
Affiliation(s)
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| |
Collapse
|
17
|
Folgado A, Pires AS, Figueiredo AC, Pimentel C, Abranches R. Toward alternative sources of milk coagulants for cheese manufacturing: establishment of hairy roots culture and protease characterization from Cynara cardunculus L. PLANT CELL REPORTS 2020; 39:89-100. [PMID: 31583429 DOI: 10.1007/s00299-019-02475-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Extracts from hairy root cultures of Cynara cardunculus L. contain proteases and show milk-clotting activity. Cynara cardunculus L. or cardoon is often used as rennet in traditional cheese manufacturing, due to the presence of specific proteases in the flower. However, the flower extracts are variable depending on the provenance and quality of the flowers as well as high genetic variability among cardoon populations, and this affects the quality of the final product. In search for alternative sources of milk-clotting enzymes, hairy root cultures from cardoon were obtained and characterized regarding their protease content and proteolytic activity toward milk proteins. Aspartic, serine and cysteine proteases were identified in hairy roots by mass spectrometry analysis and an azocasein assay combined with specific inhibitors. RT-PCR analysis revealed the expression of cardosin A and D, and immunoblotting analysis suggested the presence of cardosin A or cardosin A-like enzyme in its mature form, supporting this system as an alternative source of cardosins. Hairy root protein extracts showed activity over caseins, supporting its use as milk coagulant, which was further tested by milk-clotting assays. This is also the first report on the establishment of hairy root cultures from cardoon, which paves the way for future work on controlled platforms for production of valuable metabolites which are known to be present in this species.
Collapse
Affiliation(s)
- André Folgado
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Ana Sofia Pires
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Ana Cristina Figueiredo
- Faculdade de Ciências da Universidade de Lisboa, Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Centro de Biotecnologia Vegetal (CBV), 1749-016, Lisbon, Portugal
| | - Catarina Pimentel
- Genomics and Stress Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal.
| |
Collapse
|
18
|
Barracosa P, Barracosa M, Pires E. Cardoon as a Sustainable Crop for Biomass and Bioactive Compounds Production. Chem Biodivers 2019; 16:e1900498. [PMID: 31778035 DOI: 10.1002/cbdv.201900498] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/22/2019] [Indexed: 01/12/2023]
Abstract
Cardoon is a multi-purpose and versatile Mediterranean crop, adapted to climate change, with a wide spectrum of potential applications due its added value as a rich source of fibers, oils and bioactive compounds. The Cynara species are a component of the Mediterranean diet and have been used as food and medicine since ancient times. The important role of cardoon in human nutrition, as a functional food, is due to its high content of nutraceutical and bioactive compounds such as oligofructose inulin, caffeoylquinic acids, flavonoids, anthocyanins, sesquiterpenes lactones, triterpenes, fatty acids and aspartic proteases. The present review highlights the characteristics and functions of cardoon biomass which permits the development of innovative products in food and nutrition, pharmaceutics and cosmetics, plant protection and biocides, oils and energy, lignocellulose materials, and healthcare industries following the actual trends of a circular economy.
Collapse
Affiliation(s)
- Paulo Barracosa
- Escola Superior Agrária de Viseu - Instituto Politécnico de Viseu, 3500-606, Viseu, Portugal.,CI&DETS - Centro de Estudos em Educação, Tecnologias e Saúde, 3504-510, Viseu, Portugal.,Centro de Investigação e de Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
| | - Mariana Barracosa
- Faculdade de Ciências da Nutrição e Alimentação -, Universidade do Porto, 4200-465, Porto, Portugal
| | - Euclides Pires
- Departamento Ciências da Vida - FCTUC, Universidade de Coimbra, 3000-456, Coimbra, Portugal
| |
Collapse
|
19
|
Colombo ML, Fernández A, Cimino CV, Liggieri C, Bruno M, Faro C, Veríssimo PC, Vairo-Cavalli S. Miniature cheeses made with blends of chymosin and a vegetable rennet from flowers of Silybum marianum: Enzymatic characterization of the flower-coagulant peptidase. Food Chem 2018; 266:223-231. [PMID: 30381179 DOI: 10.1016/j.foodchem.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/28/2018] [Accepted: 06/03/2018] [Indexed: 11/29/2022]
Abstract
Binary blends of S. marianum-flower extract and chymosin, as coagulant preparations, enabled the manufacture of miniature cheeses with distinctive characteristics compared to those of chymosin-renneted cheeses. The physicochemical parameters, sensory attributes of the cheeses, and in-vitro water-soluble antioxidant activity were analyzed and compared to those properties obtained from control chymosin-renneted cheeses. The preponderant proteolytic constituent in the flower extract was isolated in a two-step-purification protocol. The thus purified aspartic peptidase was maximally active at acidic pHs and exhibited a preference for peptide bonds between hydrophobic residues. Enzymologic characterization revealed differences in the kinetic parameters and specificity compared to other enzymes employed, such as rennet. S. marianum-flower extract, as a source of peptidase with distinctive characteristics, is a suitable substitute for chymosin in miniature-cheese production. The addition of vegetable rennet contributed to the development of an intense aroma and conferred antioxidant activity to the cheeses and wheys.
Collapse
Affiliation(s)
- M Laura Colombo
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina; CONICET, Argentina
| | - Agustina Fernández
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina; CONICET, Argentina
| | - Cecilia V Cimino
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina
| | - Constanza Liggieri
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina; CICPBA, Argentina
| | - Mariela Bruno
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina; CONICET, Argentina
| | - Carlos Faro
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal; Biocant, Biotechnology Innovation Centre, Núcleo 04, Lote 3, 3060-197 Cantanhede, Portugal
| | - Paula C Veríssimo
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456 Portugal.
| | - Sandra Vairo-Cavalli
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina; CONICET, Argentina; Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
20
|
Barracosa P, Rosa N, Barros M, Pires E. Selected Cardoon (Cynara cardunculus L.) Genotypes Suitable for PDO Cheeses in Mediterranean Regions. Chem Biodivers 2018; 15:e1800110. [PMID: 29790297 DOI: 10.1002/cbdv.201800110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/18/2018] [Indexed: 11/10/2022]
Abstract
Cardoon flower extract is a traditional and exclusive rennet used for some PDO cheeses in several Mediterranean regions, due to its extremely high concentration in cardosins. In this preliminary study, six individual cardoon genotypes (1M - 6M) were selected because they revealed a wide and consistent diversity of total and specific cardosin concentrations in flowers. During three growing seasons, the stability of 12 biochemical characteristics of flower extracts and 26 plant morphological descriptors was confirmed. Surprisingly, the cardosin profiles of each genotype, based on four main groups A0, A1, A and B, were stable during the annual flower harvesting period and over all three years using ion-exchange chromatography and native-PAGE electrophoresis. This knowledge will allow an improvement in the quality and standardization of cardosin profiles from cardoon flowers used for cheese production and other innovative applications. The results obtained are promising for the development of a plant breeding program based on biochemical and morphological characteristics in order to obtain the most adapted plant architecture for combined purposes related to specific cardosins composition, flower and plant biomass production, and ease of harvesting.
Collapse
Affiliation(s)
- Paulo Barracosa
- Escola Superior Agrária de Viseu- Instituto Politécnico de Viseu, Viseu, Portugal.,CI&DETS - Centro de Estudos em Educação, Tecnologias e Saúde, 3504-510, Viseu, Portugal.,Centro de Investigação e de Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro, 5001-801, Vila Real, Portugal
| | - Nuno Rosa
- Instituto de Ciências da Saúde, Universidade Católica Portuguesa- Pólo de Viseu, 3504-505, Viseu, Portugal
| | - Marlene Barros
- Instituto de Ciências da Saúde, Universidade Católica Portuguesa- Pólo de Viseu, 3504-505, Viseu, Portugal
| | - Euclides Pires
- Departamento Ciências da Vida - FCTUC, Universidade de Coimbra, 3000-456, Coimbra, Portugal
| |
Collapse
|
21
|
Three phase partitioning to concentrate milk clotting proteases from Wrightia tinctoria R. Br and its characterization. Int J Biol Macromol 2018; 118:279-288. [PMID: 29894788 DOI: 10.1016/j.ijbiomac.2018.06.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 01/08/2023]
Abstract
Wrightia tinctoria stem proteases were partially purified for the first time through a non-chromatographic technique, three phase partitioning (TPP), to concentrate the milk clotting proteases. Various parameters like salt and solvent concentration that affect the partitioning of the protease were examined. Maximum recovery and purification fold of the protease activity were found in the interfacial phase (IP) with 60% ammonium sulphate and 1:1 crude enzyme to t-butanol. Optimum pH and temperature of the enzyme fraction were found to be 7.5 and 50 °C respectively. Inhibition studies revealed its serine nature. Non-denaturing PAGE, Zymography and 2D PAGE of IP revealed presence of three different caseinolytic proteases of molecular weights 95.62 kDa, 91.11 kDa and 83.23 kDa with pI 3.89, 5.45 and 5.43 respectively. Both aqueous and lyophilized form of IP were remarkably stable retaining complete activity at 4 °C for 3 weeks. Electrophoretic analysis of casein hydrolysate by IP at different incubation time indicated a time dependent substrate subunit specificity with hydrolysis of κ-casein commencing after 10 min followed by α and β caseins. This pattern was found similar to that by commercial vegetable coagulant, Enzeco®. Study details the effectiveness of TPP concentrated W. tinctoria proteases as a vegetable coagulant alternative in cheese making.
Collapse
|
22
|
Alihanoğlu S, Ektiren D, Akbulut Çakır Ç, Vardin H, Karaaslan A, Karaaslan M. Effect of Oryctolagus cuniculus (rabbit) rennet on the texture, rheology, and sensory properties of white cheese. Food Sci Nutr 2018; 6:1100-1108. [PMID: 29983974 PMCID: PMC6021729 DOI: 10.1002/fsn3.649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 03/15/2018] [Indexed: 11/24/2022] Open
Abstract
Calf rennet has long been used in cheese-making. Because of calf rennet shortage and high cost, novel proteases were needed to meet industry's increasing enzyme demand. Recombinant chymosins and camel chymosin were started to be used in the industry. There is no study in the literature subjecting use of rabbit rennet in cheese production. Chemical, rheological, and sensorial characteristics of white cheese made with rabbit rennet were investigated in this study. Quality characteristics of rabbit rennet cheese (RC) were compared to cheeses produced with commercial calf (CC) and camel chymosins (CLC). RC and CLC exhibited higher hardness and dynamic moduli values throughout the storage as compared to CC. Although moisture levels of cheese samples were similar at day 60, CC had much lower hardness and dynamic moduli values than CLC and RC. While the appearance and structure were better for CLC, the highest odor and taste scores were obtained by RC during 60 days of storage. The results of this investigation proposed that rabbit rennet could be a suitable milk coagulant for white cheese production. Our results showed that rabbit rennet has comparable cheese-making performance with camel chymosin and could be a good alternative for calf chymosin.
Collapse
Affiliation(s)
- Selin Alihanoğlu
- Food Engineering DepartmentEngineering FacultyHarran UniversitySanliurfaTurkey
| | - Demet Ektiren
- Food Engineering DepartmentEngineering FacultyHarran UniversitySanliurfaTurkey
| | - Çağım Akbulut Çakır
- Food Engineering DepartmentEngineering FacultyHarran UniversitySanliurfaTurkey
| | - Hasan Vardin
- Food Engineering DepartmentEngineering FacultyHarran UniversitySanliurfaTurkey
| | - Asliye Karaaslan
- Technical Sciences Vocational SchoolFood Technology ProgramHarran UniversitySanliurfaTurkey
| | - Mehmet Karaaslan
- Food Engineering DepartmentEngineering FacultyHarran UniversitySanliurfaTurkey
| |
Collapse
|
23
|
Liburdi K, Emiliani Spinelli S, Benucci I, Lombardelli C, Esti M. A preliminary study of continuous milk coagulation using Cynara cardunculus flower extract and calf rennet immobilized on magnetic particles. Food Chem 2018; 239:157-164. [DOI: 10.1016/j.foodchem.2017.06.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/12/2017] [Accepted: 06/16/2017] [Indexed: 01/13/2023]
|
24
|
Almeida CM, Manso JA, Figueiredo AC, Antunes L, Cruz R, Manadas B, Bur D, Pereira PJB, Faro C, Simões I. Functional and structural characterization of synthetic cardosin B-derived rennet. Appl Microbiol Biotechnol 2017; 101:6951-6968. [DOI: 10.1007/s00253-017-8445-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 11/29/2022]
|
25
|
Senthilkumar S, Ramasamy D, Subramanian S. Isolation and Partial Characterisation of Milk-clotting Aspartic Protease from Streblus asper. FOOD SCI TECHNOL INT 2016. [DOI: 10.1177/1082013206063839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A rennin-like milk-clotting protease from the twigs of Streblus asper was purified by a factor of 65 times with 36% recovery using ethanol precipitation, ion-exchange and size-exclusion chromatographic techniques. The enzyme was found to be monomeric in nature having a molecular mass of 55kDa. The enzyme acts optimally at 55°C and was stable in the temperature range of 30–40°C. Easy enzyme inactivation by moderate heating, makes this protease extract potentially useful for cheese production. The purified enzyme is an acid protease with an optimum pH of 5.5 and it retained 96% of its residual activity between pH 5.0 and 6.0. Pepstatin A inhibited the proteinase activity, whereas iodoacetamide, phenylmethyl sulphonyl fluoride, β-mercaptoethanol and ethylenediaminetetraacetic acid had no significant inhibitory effect suggesting the presence of aspartic acid residue at the active site. The milkclotting aspartic protease showed predominant α-helical conformation in phosphate buffer as evidenced from circular dichroic spectroscopy.
Collapse
Affiliation(s)
- S. Senthilkumar
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - D. Ramasamy
- Instituteof Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600052, India
| | - S. Subramanian
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| |
Collapse
|
26
|
Role of protease and oxidase activities involved in some technological aspects of the globe artichoke processing and storage. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.03.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Structural and thermo-rheological analysis of solutions and gels of a β-lactoglobulin fraction isolated from bovine whey. Food Chem 2016; 198:45-53. [DOI: 10.1016/j.foodchem.2015.11.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 10/01/2015] [Accepted: 11/16/2015] [Indexed: 11/20/2022]
|
28
|
Liu C, Cheng FF, Liu X, Ma HY, Yang XQ. Improved extraction of disulphide-rich bioactive proteins from soya hulls: characterisation of a novel aspartic proteinase. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chun Liu
- Research and Development Center of Food Proteins; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Fen-Fen Cheng
- Research and Development Center of Food Proteins; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Xiao Liu
- Research and Development Center of Food Proteins; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Hong-Yu Ma
- College of Plant Protection; Nanjing Agricultural University; Nanjing 210095 China
| | - Xiao-Quan Yang
- Research and Development Center of Food Proteins; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- State Key Laboratory of Pulp and Paper Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
29
|
Ordiales E, Martín A, Benito MJ, Ruiz-Moyano S, Gallardo G, Córdoba MDG. Characterisation of the vegetable rennets used for ‘Torta del Casar’ cheesemaking by a protein profile method. INT J DAIRY TECHNOL 2015. [DOI: 10.1111/1471-0307.12254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Elena Ordiales
- Agricultura; Centro Tecnológico Nacional Agroalimentario Extremadura; CTAEX. Ctra. Villafranco a Balboa km 1.2. Villafranco del Guadiana 06195 Badajoz Spain
| | - Alberto Martín
- Nutrición y Bromatología; Escuela de Ingenierías Agrarias; University of Extremadura; Ctra. de Cáceres s/n 06071 Badajoz Spain
| | - Maria J Benito
- Nutrición y Bromatología; Escuela de Ingenierías Agrarias; University of Extremadura; Ctra. de Cáceres s/n 06071 Badajoz Spain
| | - Santiago Ruiz-Moyano
- Nutrición y Bromatología; Escuela de Ingenierías Agrarias; University of Extremadura; Ctra. de Cáceres s/n 06071 Badajoz Spain
| | - Gustavo Gallardo
- Nutrición y Bromatología; Escuela de Ingenierías Agrarias; University of Extremadura; Ctra. de Cáceres s/n 06071 Badajoz Spain
| | - Maria de Guia Córdoba
- Nutrición y Bromatología; Escuela de Ingenierías Agrarias; University of Extremadura; Ctra. de Cáceres s/n 06071 Badajoz Spain
| |
Collapse
|
30
|
Chen HJ, Huang YH, Huang GJ, Huang SS, Chow TJ, Lin YH. Sweet potato SPAP1 is a typical aspartic protease and participates in ethephon-mediated leaf senescence. JOURNAL OF PLANT PHYSIOLOGY 2015; 180:1-17. [PMID: 25886396 DOI: 10.1016/j.jplph.2015.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Plant aspartic proteases are generally divided into three categories: typical, nucellin-like, and atypical aspartic proteases based on their gene and protein structures. In this report, a full-length cDNA SPAP1 was cloned from sweet potato leaves, which contained 1515 nucleotides (504 amino acids) and exhibited high amino acid sequence identity (ca. 51-72%) with plant typical aspartic proteases, including tomato LeAspP, potato StAsp, and wheat WAP2. SPAP1 also contained conserved DTG and DSG amino acid residues within its catalytic domain and plant specific insert (PSI) at the C-terminus. The cDNA corresponding to the mature protein (starting from the 66th to 311th amino acid residues) without PSI domain was constructed with pET30a expression vector for fusion protein and antibody production. RT-PCR and protein blot hybridization showed that SPAP1 expression level was the highest in L3 mature leaves, then gradually declined until L5 completely yellow leaves. Ethephon, an ethylene-releasing compound, also enhanced SPAP1 expression at the time much earlier than the onset of leaf senescence. Exogenous application of SPAP1 fusion protein promoted ethephon-induced leaf senescence, which could be abolished by pre-treatment of SPAP1 fusion protein with (a) 95 °C for 5 min, (b) aspartic protease inhibitor pepstatin A, and (c) anti-SPAP1 antibody, respectively. Exogenous SPAP1 fusion protein, whereas, did not significantly affect leaf senescence under dark. These data conclude that sweet potato SPAP1 is a functional typical aspartic protease and participates in ethephon-mediated leaf senescence. The SPAP1-promoted leaf senescence and its activity are likely not associated with the PSI domain. Interaction of ethephon-inducible components for effective SPAP1 promotion on leaf senescence is also suggested.
Collapse
Affiliation(s)
- Hsien-Jung Chen
- Department of Biological Sciences, National Sun Yat-sen University, 804 Kaohsiung, Taiwan.
| | - Yu-Hsuan Huang
- Department of Biological Sciences, National Sun Yat-sen University, 804 Kaohsiung, Taiwan
| | - Guan-Jhong Huang
- Graduate Institute of Chinese Pharmaceutical Sciences, China Medical University, 404 Taichung, Taiwan
| | - Shyh-Shyun Huang
- Graduate Institute of Chinese Pharmaceutical Sciences, China Medical University, 404 Taichung, Taiwan
| | - Te-Jin Chow
- Department of Biotechnology, Fooyin University, 831 Kaohsiung, Taiwan
| | - Yaw-Huei Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, 115 Taipei, Taiwan.
| |
Collapse
|
31
|
Almeida CM, Gomes D, Faro C, Simões I. Engineering a cardosin B-derived rennet for sheep and goat cheese manufacture. Appl Microbiol Biotechnol 2014; 99:269-81. [DOI: 10.1007/s00253-014-5902-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 01/26/2023]
|
32
|
Ordiales E, Martín A, Benito MJ, Fernández M, Casquete R, de Guía Córdoba M. Influence of the technological properties of vegetable rennet (Cynara cardunculus) on the physicochemical, sensory and rheological characteristics of ‘Torta del Casar’ cheese. INT J DAIRY TECHNOL 2014. [DOI: 10.1111/1471-0307.12129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elena Ordiales
- Agricultura; Centro Tecnológico Agroalimentario Extremadura (CTAEX); Ctra. Villafranco a Balboa km. 1.2, Villafranco del Guadiana 06195 Badajoz Spain
| | - Alberto Martín
- Nutrición y Bromatología; Escuela de Ingenierías Agrarias; Universidad de Extremadura; Ctra. de Cáceres s/n 06071 Badajoz Spain
| | - María José Benito
- Nutrición y Bromatología; Escuela de Ingenierías Agrarias; Universidad de Extremadura; Ctra. de Cáceres s/n 06071 Badajoz Spain
| | - Margarita Fernández
- Nutrición y Bromatología; Escuela de Ingenierías Agrarias; Universidad de Extremadura; Ctra. de Cáceres s/n 06071 Badajoz Spain
| | - Rocío Casquete
- Nutrición y Bromatología; Escuela de Ingenierías Agrarias; Universidad de Extremadura; Ctra. de Cáceres s/n 06071 Badajoz Spain
| | - María de Guía Córdoba
- Nutrición y Bromatología; Escuela de Ingenierías Agrarias; Universidad de Extremadura; Ctra. de Cáceres s/n 06071 Badajoz Spain
| |
Collapse
|
33
|
Proteolytic effect of Cynara cardunculus rennet for use in the elaboration of ‘Torta del Casar’ cheese. J DAIRY RES 2013; 80:429-38. [DOI: 10.1017/s0022029913000411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The purpose of this work was to analyse the influence of rennet from different Cynara cardunculus plants, selected for its clotting and proteolytic activity on caseins, on the characteristics of manufactured ‘Torta del Casar’ cheeses. After classifying the cardoon according to proteolytic activity into five groups of greater or lesser activity, 16 batches of cheeses were made with rennet derived from different wild cardoon plants. We observed a major development of the proteolysis during ripening leading to the generation of non-protein nitrogen compounds. Especially noteworthy was the relationship of amino acid nitrogen (AN) generation with rennet clotting activity after 24 h of maceration, and the fact that the production of biogenic amines was not related to the proteolytic activity of the rennet. The activities of the rennet observed ‘in vitro’ were also developed ‘in vivo’ in the cheeses, with the different rennets used affecting the final sensory characteristics of cheeses. The rennet with high clotting activity after 24 h of maceration was positively correlated with the creaminess, viscosity, and acceptability of the cheese. However, the high proteolytic activity rennet negatively influenced the acidity, bitterness, and creaminess parameters. Therefore the most appropriate cardoons for making this cheese are those with higher clotting activities and moderate proteolytic activities especially on β-casein. The use of controlled and characterised cardoons in the manufacturing process of Torta del Casar is fundamental to obtaining the homogeneous product demanded by the Torta del Casar Registry of the Protected Designation of Origin.
Collapse
|
34
|
Vairo Cavalli S, Lufrano D, Colombo ML, Priolo N. Properties and applications of phytepsins from thistle flowers. PHYTOCHEMISTRY 2013; 92:16-32. [PMID: 23701679 DOI: 10.1016/j.phytochem.2013.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/28/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Aqueous extracts of thistle flowers from the genus Cynara-Cardueae tribe Cass. (Cynareae Less.), Asteraceae Dumortier-are traditionally used in the Mediterranean region for production of artisanal cheeses. This is because of the presence of aspartic proteases (APs) with the ability to coagulate milk. Plant APs, collectively known as phytepsins (EC 3.4.23.40), are bilobed endopeptidases present in an ample variety of plant species with activity mainly at acidic pHs, and have two aspartic residues located on each side of a catalytic cleft that are responsible for catalysis. The cleavage of the scissile peptide-bond occurs primarily between residues with large hydrophobic side-chains. Even when aspartylendopeptidase activity in plants is normally present at relatively low levels overall, the flowers of several species of the Cardueae tribe possess APs with extremely high specific activities in certain tissues. For this reason, in the last two decades, APs present in thistle flowers have been the subject of intensive study. Present here is a compilation of work that summarizes the known chemical and biological properties of these proteases, as well as their biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Sandra Vairo Cavalli
- Laboratorio de Investigación de Proteínas Vegetales, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina.
| | | | | | | |
Collapse
|
35
|
Shah MA, Mir SA, Paray MA. Plant proteases as milk-clotting enzymes in cheesemaking: a review. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13594-013-0144-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Yegin S, Dekker P. Progress in the field of aspartic proteinases in cheese manufacturing: structures, functions, catalytic mechanism, inhibition, and engineering. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13594-013-0137-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Technological characterisation by free zone capillary electrophoresis (FCZE) of the vegetable rennet (Cynara cardunculus) used in “Torta del Casar” cheese-making. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Almeida CM, Pereira C, da Costa DS, Pereira S, Pissarra J, Simões I, Faro C. Chlapsin, a chloroplastidial aspartic proteinase from the green algae Chlamydomonas reinhardtii. PLANTA 2012; 236:283-296. [PMID: 22349731 DOI: 10.1007/s00425-012-1605-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/26/2012] [Indexed: 05/31/2023]
Abstract
Aspartic proteinases have been extensively characterized in land plants but up to now no evidences for their presence in green algae group have yet been reported in literature. Here we report on the identification of the first (and only) typical aspartic proteinase from Chlamydomonas reinhardtii. This enzyme, named chlapsin, was shown to maintain the primary structure organization of typical plant aspartic proteinases but comprising distinct features, such as similar catalytic motifs DTG/DTG resembling those from animal and microbial counterparts, and an unprecedentedly longer plant specific insert domain with an extra segment of 80 amino acids, rich in alanine residues. Our results also demonstrated that chlapsin accumulates in Chlamydomonas chloroplast bringing this new enzyme to a level of uniqueness among typical plant aspartic proteinases. Chlapsin was successfully expressed in Escherichia coli and it displayed the characteristic enzymatic properties of typical aspartic proteinases, like optimum activity at acidic pH and complete inhibition by pepstatin A. Another difference to plant aspartic proteinases emerged as chlapsin was produced in an active form without its putative prosegment domain. Moreover, recombinant chlapsin showed a restricted enzymatic specificity and a proteolytic activity influenced by the presence of redox agents and nucleotides, further differentiating it from typical plant aspartic proteinases and anticipating a more specialized/regulated function for this Chlamydomonas enzyme. Taken together, our results revealed a pattern of complexity for typical plant aspartic proteinases in what concerns sequence features, localization and biochemical properties, raising new questions on the evolution and function of this vast group of plant enzymes.
Collapse
Affiliation(s)
- Carla Malaquias Almeida
- Biocant, Biotechnology Innovation Center, Molecular Biotechnology Unit, Parque Tecnológico de Cantanhede, Núcleo 4 Lote 3, 3060-197, Cantanhede, Portugal
| | | | | | | | | | | | | |
Collapse
|
39
|
Tavares TG, Xavier Malcata F. The Portuguese Paradox: Why do some inhabitants of Portugal appear to live so long when their diet is based on whey cheese? Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.09.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Fraga AS, Esteves AC, Micaelo N, Cruz PF, Brito RMM, Nutley M, Cooper A, Barros MMT, Pires EMV. Functional and conformational changes in the aspartic protease cardosin A induced by TFE. Int J Biol Macromol 2012; 50:323-30. [PMID: 22212471 DOI: 10.1016/j.ijbiomac.2011.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 12/01/2022]
Abstract
Conformational and functional changes of cardosin A, an aspartic protease of vegetal origin, in the presence of 2,2,2-trifluoroethanol (TFE), were assessed. TFE induced alterations of cardosin activity and conformation that differed with the solvent concentration. MD simulations showed that there are significant local alterations in protein flexibility and TFE molecules were found to replace several hydration molecules in the active site of the enzyme. This may explain some of the activity loss observed in the presence of TFE, especially at low TFE concentrations, as well as the recovery of enzyme activity upon aqueous dilution, indicating the release of the TFE molecules from the active site.
Collapse
Affiliation(s)
- Ana Sofia Fraga
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tavares T, Monteiro K, Possenti A, Pintado M, Carvalho J, Malcata F. Antiulcerogenic activity of peptide concentrates obtained from hydrolysis of whey proteins by proteases from Cynara cardunculus. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2011.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
González-Rábade N, Badillo-Corona JA, Aranda-Barradas JS, Oliver-Salvador MDC. Production of plant proteases in vivo and in vitro--a review. Biotechnol Adv 2011; 29:983-96. [PMID: 21889977 DOI: 10.1016/j.biotechadv.2011.08.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/10/2011] [Accepted: 08/19/2011] [Indexed: 12/30/2022]
Abstract
In the latest two decades, the interest received by plant proteases has increased significantly. Plant enzymes such as proteases are widely used in medicine and the food industry. Some proteases, like papain, bromelain and ficin are used in various processes such as brewing, meat softening, milk-clotting, cancer treatment, digestion and viral disorders. These enzymes can be obtained from their natural source or through in vitro cultures, in order to ensure a continuous source of plant enzymes. The focus of this review will be the production of plant proteases both in vivo and in vitro, with particular emphasis on the different types of commercially important plant proteases that have been isolated and characterized from naturally grown plants. In vitro approaches for the production of these proteases is also explored, focusing on the techniques that do not involve genetic transformation of the plants and the attempts that have been made in order to enhance the yield of the desired proteases.
Collapse
|
43
|
Native and Biotechnologically Engineered Plant Proteases with Industrial Applications. FOOD BIOPROCESS TECH 2010. [DOI: 10.1007/s11947-010-0431-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
|
45
|
Kumar A, Grover S, Sharma J, Batish VK. Chymosin and other milk coagulants: sources and biotechnological interventions. Crit Rev Biotechnol 2010; 30:243-58. [DOI: 10.3109/07388551.2010.483459] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Sarmento AC, Lopes H, Oliveira CS, Vitorino R, Samyn B, Sergeant K, Debyser G, Van Beeumen J, Domingues P, Amado F, Pires E, Domingues MRM, Barros MT. Multiplicity of aspartic proteinases from Cynara cardunculus L. PLANTA 2009; 230:429-439. [PMID: 19488781 DOI: 10.1007/s00425-009-0948-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 05/04/2009] [Indexed: 05/27/2023]
Abstract
Aspartic proteinases (AP) play major roles in physiologic and pathologic scenarios in a wide range of organisms from vertebrates to plants or viruses. The present work deals with the purification and characterisation of four new APs from the cardoon Cynara cardunculus L., bringing the number of APs that have been isolated, purified and biochemically characterised from this organism to nine. This is, to our knowledge, one of the highest number of APs purified from a single organism, consistent with a specific and important biological function of these protein within C. cardunculus. These enzymes, cardosins E, F, G and H, are dimeric, glycosylated, pepstatin-sensitive APs, active at acidic pH, with a maximum activity around pH 4.3. Their primary structures were partially determined by N- and C-terminal sequence analysis, peptide mass fingerprint analysis on a MALDI-TOF/TOF instrument and by LC-MS/MS analysis on a Q-TRAP instrument. All four enzymes are present on C. cardunculus L. pistils, along with cyprosins and cardosins A and B. Their micro-heterogeneity was detected by 2D-electrophoresis and mass spectrometry. The enzymes resemble cardosin A more than they resemble cardosin B or cyprosin, with cardosin E and cardosin G being more active than cardosin A, towards the synthetic peptide KPAEFF(NO(2))AL. The specificity of these enzymes was investigated and it is shown that cardosin E, although closely related to cardosin A, exhibits different specificity.
Collapse
|
47
|
Sarmento AC, Oliveira CS, Pereira A, Esteves VI, Moir AJ, Saraiva J, Pires E, Barros M. Unfolding of cardosin A in organic solvents and detection of intermediaries. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Mazorra-Manzano MA, Yada RY. Expression and characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana. PHYTOCHEMISTRY 2008; 69:2439-2448. [PMID: 18796341 DOI: 10.1016/j.phytochem.2008.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/16/2008] [Accepted: 07/16/2008] [Indexed: 05/26/2023]
Abstract
The present study reports the recombinant expression, purification, and partial characterization of a typical aspartic proteinase from Arabidopsis thaliana (AtAP A1). The cDNA encoding the precursor of AtAP A1 was expressed as a functional protein using the yeast Pichia pastoris. The mature form of the rAtAP A1 was found to be a heterodimeric glycosylated protein with a molecular mass of 47kDa consisting of heavy and light chain components, approx. 32 and 16kDa, respectively, linked by disulfide bonds. Glycosylation occurred via the plant specific insert in the light chain. The catalytic properties of the rAtAP A1 were similar to other plant aspartic proteinases with activity in acid pH range, maximal activity at pH 4.0, K(m) of 44 microM, and k(cat) of 55 s(-1) using a synthetic substrate. The enzyme was inhibited by pepstatin A.
Collapse
|
49
|
Sampaio PN, Fortes AM, Cabral JMS, Pais MS, Fonseca LP. Production and characterization of recombinant cyprosin B in Saccharomyces cerevisiae (W303-1A) strain. J Biosci Bioeng 2008; 105:305-12. [PMID: 18499044 DOI: 10.1263/jbb.105.305] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 12/22/2007] [Indexed: 11/17/2022]
Abstract
The Saccharomyces cerevisiae W303-1A strain transformed with a centromeric plasmid containing CYPRO11, which codifies the aspartic protease cyprosin B, was grown in a 3 l bioreactor under aerobic conditions. Expression of cyprosin B is directly dependent on the concentration of galactose used as the inducer and carbon source in 1% yeast extract, 2% bactopeptone, and 4% galactose in culture medium. For 4% of galactose, 209 mg.l(-1) total protein, and 1036 U.ml(-1) recombinant cyprosin B activity were obtained from 6.1 g dcw.l(-1) biomass. The recombinant cyprosin B, purified by two consecutive anion-exchange chromatographies (diethyl amino-ethyl [DEAE]-Sepharose and Q-Sepharose XK-16 columns), shows a specific activity of 62 x 10(3) U.mg(-1), corresponding to a purification degree of 12.5-fold and a recovery yield of 25.6% relative to that in fermentation broth. The proteolytic activity of recombinant cyprosin B is optimal at 42 degrees C and pH 4.5. The recombinant cyprosin B activity is 95% inhibited by pepstatin A, which confirms its aspartic protease nature. The pure recombinant cyprosin B is composed of two subunits, one with 14 and the other with 32 kDa. It exhibits clotting activity, similar to that of the natural enzyme from Cynara cardunculus flowers. The results reported here show that recombinant cyprosin B, the first clotting protease of plant origin produced in a bioreactor, can now be produced in large scale and may constitute a new and efficient alternative to enzymes of animal or fungal origin that are widely used in cheese making.
Collapse
Affiliation(s)
- Pedro N Sampaio
- Unidade de Biologia Molecular e Biotecnologia de Plantas, Instituto de Ciência Aplicada e Tecnologia, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
50
|
Sales-Gomes M, Margarida Cavaco A, Lima-Costa ME. Allocation of proteolytic activity in the seedling of Cynara cardunculus L. in the initial growth stages. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:1041-1048. [PMID: 17997191 DOI: 10.1016/j.jplph.2007.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 05/25/2023]
Abstract
Cynara cardunculus L. seeds were germinated in vitro under environmentally controlled conditions. Seeds showed a 60% germination rate, and three growth stages were established based on the seedling mean relative growth rate (RGR). Root, stem and cotyledons were compared in these stages with respect to the emergence of total proteases and cardosin activity and its allocation in the seedling. In growth stage I (1st-5th post-germinative days), seedlings grew very slowly. Total proteases and cardosins were already active at the onset of seedlings in the stem. Total soluble protein remained constant in cardoon seedlings during stage I, and the content of all free amino acids (aa) but proline (Pro) was equally allocated on the 1st post-germinative day. In growth stage II (5th-10th post-germinative days), seedlings grew intensively and exhibited fully developed cotyledons. A pronounced increase in the content of all free aa up to the middle of growth stage II in both stems and roots was observed. In addition, the allocation of the total proteolytic activity and cardosins followed a gradient from the root to the seedling shoot. However, the whole seedling soluble protein remained constant up to the 7th day in and tended to peak on the 10th post-germinative day, being allocated mainly to the seedling stem. In growth stage III (10th-15th post-germinative days), cardoon seedlings exhibited the lowest mean RGR and the highest R/S growth ratio. An intensive degradation of total soluble protein present in the whole seedling except for cotyledons (ca. 5-fold) was observed. Nevertheless, in growth stage III, both the gradients exhibited by total proteases and cardosins activities between the root and the seedling shoot were enhanced, as were contents of all aa except Pro, exhibiting the highest levels in cotyledons on the 15th post-germinative day.
Collapse
|