1
|
Vaas S, Zimmermann MO, Klett T, Boeckler FM. Synthesis of Amino Acids Bearing Halodifluoromethyl Moieties and Their Application to p53-Derived Peptides Binding to Mdm2/Mdm4. Drug Des Devel Ther 2023; 17:1247-1274. [PMID: 37128274 PMCID: PMC10148652 DOI: 10.2147/dddt.s406703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023] Open
Abstract
Introduction Therapeutic peptides are a significant class of drugs in the treatment of a wide range of diseases. To enhance their properties, such as stability or binding affinity, they are usually chemically modified. This includes, among other techniques, cyclization of the peptide chain by bridging, modifications to the backbone, and incorporation of unnatural amino acids. One approach previously established, is the use of halogenated aromatic amino acids. In principle, they are thereby enabled to form halogen bonds (XB). In this study, we focus on the -R-CF2X moiety (R = O, NHCO; X = Cl, Br) as an uncommon halogen bond donor. These groups enable more spatial variability in protein-protein interactions. The chosen approach via Fmoc-protected building blocks allows for the incorporation of these modified amino acids in peptides using solid-phase peptide synthesis. Results and Discussion Using a competitive fluorescence polarization assay to monitor binding to Mdm4, we demonstrate that a p53-derived peptide with Lys24Nle(εNHCOCF2X) exhibits an improved inhibition constant Ki compared to the unmodified peptide. Decreasing Ki values observed with the increasing XB capacity of the halogen atoms (F ≪ Cl < Br) indicates the formation of a halogen bond. By reducing the side chain length of Nle(εNHCOCF2X) to Abu(γNHCOCF2X) as control experiments and through quantum mechanical calculations, we suggest that the observed affinity enhancement is related to halogen bond-induced intramolecular stabilization of the α-helical binding mode of the peptide or a direct interaction with His54 in human Mdm4.
Collapse
Affiliation(s)
- Sebastian Vaas
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Laboratory for Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Markus O Zimmermann
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Laboratory for Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Theresa Klett
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Laboratory for Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
| | - Frank M Boeckler
- Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Laboratory for Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Tübingen, 72076, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
- Correspondence: Frank M Boeckler, Molecular Design and Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8 (Haus B), Tübingen, D-72076, Germany, Tel +49 7071 29 74567, Fax +49 7071 29 5637, Email
| |
Collapse
|
2
|
Windsor IW, Palte MJ, Lukesh JC, Gold B, Forest KT, Raines RT. Sub-picomolar Inhibition of HIV-1 Protease with a Boronic Acid. J Am Chem Soc 2018; 140:14015-14018. [PMID: 30346745 PMCID: PMC6249028 DOI: 10.1021/jacs.8b07366] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Boronic acids have been typecast as moieties for covalent complexation and are employed only rarely as agents for non-covalent recognition. By exploiting the profuse ability of a boronic acid group to form hydrogen bonds, we have developed an inhibitor of HIV-1 protease with extraordinary affinity. Specifically, we find that replacing an aniline moiety in darunavir with a phenylboronic acid leads to 20-fold greater affinity for the protease. X-ray crystallography demonstrates that the boronic acid group participates in three hydrogen bonds, more than the amino group of darunavir or any other analog. Importantly, the boronic acid maintains its hydrogen bonds and its affinity for the drug-resistant D30N variant of HIV-1 protease. The BOH···OC hydrogen bonds between the boronic acid hydroxy group and Asp30 (or Asn30) of the protease are short ( rO···O = 2.2 Å), and density functional theory analysis reveals a high degree of covalency. These data highlight the utility of boronic acids as versatile functional groups in the design of small-molecule ligands.
Collapse
Affiliation(s)
- Ian W. Windsor
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael J. Palte
- Medical Scientist Training Program, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Molecular & Cellular Pharmacology Graduate Training Program, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - John C. Lukesh
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Brian Gold
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Katrina T. Forest
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Windsor IW, Raines RT. A substrate selected by phage display exhibits enhanced side-chain hydrogen bonding to HIV-1 protease. Acta Crystallogr D Struct Biol 2018; 74:690-694. [PMID: 29968678 PMCID: PMC6038388 DOI: 10.1107/s2059798318006691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/01/2018] [Indexed: 11/11/2022] Open
Abstract
Crystal structures of inactive variants of HIV-1 protease bound to peptides have revealed how the enzyme recognizes its endogenous substrates. The best of the known substrates is, however, a nonnatural substrate that was identified by directed evolution. The crystal structure of the complex between this substrate and the D25N variant of the protease is reported at a resolution of 1.1 Å. The structure has several unprecedented features, especially the formation of additional hydrogen bonds between the enzyme and the substrate. This work expands the understanding of molecular recognition by HIV-1 protease and informs the design of new substrates and inhibitors.
Collapse
Affiliation(s)
- Ian W. Windsor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
4
|
Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, Case DA, Kuntz ID, Rizzo RC. DOCK 6: Impact of new features and current docking performance. J Comput Chem 2015; 36:1132-56. [PMID: 25914306 DOI: 10.1002/jcc.23905] [Citation(s) in RCA: 474] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 03/01/2015] [Accepted: 03/07/2015] [Indexed: 12/11/2022]
Abstract
This manuscript presents the latest algorithmic and methodological developments to the structure-based design program DOCK 6.7 focused on an updated internal energy function, new anchor selection control, enhanced minimization options, a footprint similarity scoring function, a symmetry-corrected root-mean-square deviation algorithm, a database filter, and docking forensic tools. An important strategy during development involved use of three orthogonal metrics for assessment and validation: pose reproduction over a large database of 1043 protein-ligand complexes (SB2012 test set), cross-docking to 24 drug-target protein families, and database enrichment using large active and decoy datasets (Directory of Useful Decoys [DUD]-E test set) for five important proteins including HIV protease and IGF-1R. Relative to earlier versions, a key outcome of the work is a significant increase in pose reproduction success in going from DOCK 4.0.2 (51.4%) → 5.4 (65.2%) → 6.7 (73.3%) as a result of significant decreases in failure arising from both sampling 24.1% → 13.6% → 9.1% and scoring 24.4% → 21.1% → 17.5%. Companion cross-docking and enrichment studies with the new version highlight other strengths and remaining areas for improvement, especially for systems containing metal ions. The source code for DOCK 6.7 is available for download and free for academic users at http://dock.compbio.ucsf.edu/.
Collapse
Affiliation(s)
- William J Allen
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York, 11794
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Yedidi RS, Muhuhi JM, Liu Z, Bencze KZ, Koupparis K, O'Connor CE, Kovari IA, Spaller MR, Kovari LC. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease. Biochem Biophys Res Commun 2013; 438:703-8. [PMID: 23921229 DOI: 10.1016/j.bbrc.2013.07.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/28/2013] [Indexed: 10/26/2022]
Abstract
Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: 1TW7), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded active site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC50: 4.4nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6a against both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of (15)N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.
Collapse
Affiliation(s)
- Ravikiran S Yedidi
- Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Alvizo O, Mittal S, Mayo SL, Schiffer CA. Structural, kinetic, and thermodynamic studies of specificity designed HIV-1 protease. Protein Sci 2012; 21:1029-41. [PMID: 22549928 DOI: 10.1002/pro.2086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/23/2012] [Accepted: 04/10/2012] [Indexed: 02/02/2023]
Abstract
HIV-1 protease recognizes and cleaves more than 12 different substrates leading to viral maturation. While these substrates share no conserved motif, they are specifically selected for and cleaved by protease during viral life cycle. Drug resistant mutations evolve within the protease that compromise inhibitor binding but allow the continued recognition of all these substrates. While the substrate envelope defines a general shape for substrate recognition, successfully predicting the determinants of substrate binding specificity would provide additional insights into the mechanism of altered molecular recognition in resistant proteases. We designed a variant of HIV protease with altered specificity using positive computational design methods and validated the design using X-ray crystallography and enzyme biochemistry. The engineered variant, Pr3 (A28S/D30F/G48R), was designed to preferentially bind to one out of three of HIV protease's natural substrates; RT-RH over p2-NC and CA-p2. In kinetic assays, RT-RH binding specificity for Pr3 increased threefold compared to the wild-type (WT), which was further confirmed by isothermal titration calorimetry. Crystal structures of WT protease and the designed variant in complex with RT-RH, CA-p2, and p2-NC were determined. Structural analysis of the designed complexes revealed that one of the engineered substitutions (G48R) potentially stabilized heterogeneous flap conformations, thereby facilitating alternate modes of substrate binding. Our results demonstrate that while substrate specificity could be engineered in HIV protease, the structural pliability of protease restricted the propagation of interactions as predicted. These results offer new insights into the plasticity and structural determinants of substrate binding specificity of the HIV-1 protease.
Collapse
Affiliation(s)
- Oscar Alvizo
- Division of Biology, Biochemistry and Molecular Biophysics Option, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
7
|
Pecina A, Přenosil O, Fanfrlík J, Řezáč J, Granatier J, Hobza P, Lepšík M. On the reliability of the corrected semiempirical quantum chemical method (PM6-DH2) for assigning the protonation states in HIV-1 protease/inhibitor complexes. ACTA ACUST UNITED AC 2011. [DOI: 10.1135/cccc2011035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A novel computational protocol for determining the most probable protonation states in protein/ligand complexes is presented. The method consists in treating large parts of the enzyme using the corrected semiempirical quantum chemical (QM) method – PM6-D2 for optimization and PM6-DH2 for single-point energies – while the rest is calculated using molecular mechanics (MM) within a hybrid QM/MM fashion. The surrounding solvent is approximated by an implicit model. This approach is applied to two model systems, two different carboxylate pairs in one general and one unique HIV-1 protease/inhibitor complex. The effect of the size of the movable QM part is investigated in a series of several sizes, 3-, 6-, 8- and 10-Å regions surrounding the inhibitor. For the smallest region (< 450 atoms) the computationally more costly DFT QM/MM optimizations are performed as a check of the correctness. Proton transfer (PT) phenomena occur at both the PM6-D2 and DFT levels, which underlines the requirement for a QM approach. The barriers of PT are checked in model carboxylic acid pairs using the highly accurate MP2 and CCSD(T) values. An important result of this study is the fine-tuning of the protocol which can be used in further applications; its limitations are also shown, pointing to future developments. The calculations reveal which protonation variants of the active site are the most stable. In conclusion, the presented protocol can also be utilized for defining probable isomers in biomolecular systems. It can also serve as a preparatory step for further interaction-energy and binding-score calculations.
Collapse
|
8
|
Ishima R, Gong Q, Tie Y, Weber IT, Louis JM. Highly conserved glycine 86 and arginine 87 residues contribute differently to the structure and activity of the mature HIV-1 protease. Proteins 2010; 78:1015-25. [PMID: 19899162 DOI: 10.1002/prot.22625] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The structural and functional role of conserved residue G86 in HIV-1 protease (PR) was investigated by NMR and crystallographic analyses of substitution mutations of glycine to alanine and serine (PR(G86A) and PR(G86S)). While PR(G86S) had undetectable catalytic activity, PR(G86A) exhibited approximately 6000-fold lower catalytic activity than PR. (1)H-(15)N NMR correlation spectra revealed that PR(G86A) and PR(G86S) are dimeric, exhibiting dimer dissociation constants (K(d)) of approximately 0.5 and approximately 3.2 muM, respectively, which are significantly lower than that seen for PR with R87K mutation (K(d) > 1 mM). Thus, the G86 mutants, despite being partially dimeric under the assay conditions, are defective in catalyzing substrate hydrolysis. NMR spectra revealed no changes in the chemical shifts even in the presence of excess substrate, indicating very poor binding of the substrate. Both NMR chemical shift data and crystal structures of PR(G86A) and PR(G86S) in the presence of active-site inhibitors indicated high structural similarity to previously described PR/inhibitor complexes, except for specific perturbations within the active site loop and around the mutation site. The crystal structures in the presence of the inhibitor showed that the region around residue 86 was connected to the active site by a conserved network of hydrogen bonds, and the two regions moved further apart in the mutants. Overall, in contrast to the role of R87 in contributing significantly to the dimer stability of PR, G86 is likely to play an important role in maintaining the correct geometry of the active site loop in the PR dimer for substrate binding and hydrolysis. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA.
| | | | | | | | | |
Collapse
|
9
|
Kaushik-Basu N, Basu A, Harris D. Peptide inhibition of HIV-1: current status and future potential. BioDrugs 2008; 22:161-75. [PMID: 18481899 DOI: 10.2165/00063030-200822030-00003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
More than 2 decades of intensive research has focused on defining replication mechanisms of HIV type 1 (HIV-1), the etiologic agent of AIDS. The delineation of strategies for combating this viral infection has yielded many innovative approaches toward this end. HIV-1 is a lentivirus in the family retroviridae that is relatively small with regard to both structure and genome size, having a diploid RNA genome of approximately 9 kb, with only three major genes and several gene products resulting from alternate splicing and translational frameshifting. Most marketed drugs for treating AIDS are inhibitors of HIV-1 reverse transcriptase or protease enzymes, but new targets include the integrase enzyme, cell surface interactions that facilitate viral entry, and also virus particle maturation and assembly. The emergence of drug-resistant variants of HIV-1 has been the main impediment to successful treatment of AIDS. Thus, there is a pressing need to develop novel treatment strategies targeting multiple stages of the virus life-cycle. Research efforts aimed at developing successful means for combating HIV-1 infection have included development of peptide inhibitors of HIV-1. This article summarizes past and current endeavors in the development of peptides that inhibit replication of HIV-1 and the role of peptide inhibitors in the search for new anti-HIV drugs.
Collapse
Affiliation(s)
- Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
10
|
Altman MD, Nalivaika EA, Prabu-Jeyabalan M, Schiffer CA, Tidor B. Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV-1 protease. Proteins 2008; 70:678-94. [PMID: 17729291 PMCID: PMC2802840 DOI: 10.1002/prot.21514] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Drug resistance in HIV-1 protease, a barrier to effective treatment, is generally caused by mutations in the enzyme that disrupt inhibitor binding but still allow for substrate processing. Structural studies with mutant, inactive enzyme, have provided detailed information regarding how the substrates bind to the protease yet avoid resistance mutations; insights obtained inform the development of next generation therapeutics. Although structures have been obtained of complexes between substrate peptide and inactivated (D25N) protease, thermodynamic studies of peptide binding have been challenging due to low affinity. Peptides that bind tighter to the inactivated protease than the natural substrates would be valuable for thermodynamic studies as well as to explore whether the structural envelope observed for substrate peptides is a function of weak binding. Here, two computational methods-namely, charge optimization and protein design-were applied to identify peptide sequences predicted to have higher binding affinity to the inactivated protease, starting from an RT-RH derived substrate peptide. Of the candidate designed peptides, three were tested for binding with isothermal titration calorimetry, with one, containing a single threonine to valine substitution, measured to have more than a 10-fold improvement over the tightest binding natural substrate. Crystal structures were also obtained for the same three designed peptide complexes; they show good agreement with computational prediction. Thermodynamic studies show that binding is entropically driven, more so for designed affinity enhanced variants than for the starting substrate. Structural studies show strong similarities between natural and tighter-binding designed peptide complexes, which may have implications in understanding the molecular mechanisms of drug resistance in HIV-1 protease.
Collapse
Affiliation(s)
- Michael D. Altman
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | - Moses Prabu-Jeyabalan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605
- Corresponding Authors: (CAS) and (BT)
| | - Bruce Tidor
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Biological Engineering Division, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
11
|
Kovalevsky AY, Chumanevich AA, Liu F, Louis JM, Weber IT. Caught in the Act: the 1.5 A resolution crystal structures of the HIV-1 protease and the I54V mutant reveal a tetrahedral reaction intermediate. Biochemistry 2007; 46:14854-64. [PMID: 18052235 DOI: 10.1021/bi700822g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
HIV-1 protease (PR) is the target for several important antiviral drugs used in AIDS therapy. The drugs bind inside the active site cavity of PR where normally the viral polyprotein substrate is bound and hydrolyzed. We report two high-resolution crystal structures of wild-type PR (PRWT) and the multi-drug-resistant variant with the I54V mutation (PRI54V) in complex with a peptide at 1.46 and 1.50 A resolution, respectively. The peptide forms a gem-diol tetrahedral reaction intermediate (TI) in the crystal structures. Distinctive interactions are observed for the TI binding in the active site cavity of PRWT and PRI54V. The mutant PRI54V/TI complex has lost water-mediated hydrogen bond interactions with the amides of Ile50 and Ile50' in the flap. Hence, the structures provide insight into the mechanism of drug resistance arising from this mutation. The structures also illustrate an intermediate state in the hydrolysis reaction. One of the gem-diol hydroxide groups in the PRWT complex forms a very short (2.3 A) hydrogen bond with the outer carboxylate oxygen of Asp25. Quantum chemical calculations based on this TI structure are consistent with protonation of the inner carboxylate oxygen of Asp25', in contrast to several theoretical studies. These TI complexes and quantum calculations are discussed in relation to the chemical mechanism of the peptide bond hydrolysis catalyzed by PR.
Collapse
Affiliation(s)
- Andrey Y Kovalevsky
- Department of Biology and Chemistry, Molecular Basis of Disease Program, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | |
Collapse
|
12
|
Louis JM, Ishima R, Torchia DA, Weber IT. HIV-1 protease: structure, dynamics, and inhibition. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:261-98. [PMID: 17586318 DOI: 10.1016/s1054-3589(07)55008-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
13
|
Fehér A, Boross P, Sperka T, Miklóssy G, Kádas J, Bagossi P, Oroszlan S, Weber IT, Tözsér J. Characterization of the murine leukemia virus protease and its comparison with the human immunodeficiency virus type 1 protease. J Gen Virol 2006; 87:1321-1330. [PMID: 16603535 DOI: 10.1099/vir.0.81382-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protease (PR) of Murine leukemia virus (MLV) was expressed in Escherichia coli, purified to homogeneity and characterized by using various assay methods, including HPLC-based, photometric and fluorometric activity measurements. The specificity of the bacterially expressed PR was similar to that of virion-extracted PR. Compared with human immunodeficiency virus type 1 (HIV-1) PR, the pH optimum of the MLV enzyme was higher. The specificity of the MLV PR was further compared with that of HIV-1 PR by using various oligopeptides representing naturally occurring cleavage sites in MLV and HIV-1, as well as by using bacterially expressed proteins having part of the MLV Gag. Inhibitors designed against HIV-1 PR were also active on MLV PR, although all of the tested ones were substantially less potent on this enzyme than on HIV-1 PR. Nevertheless, amprenavir, the most potent inhibitor against MLV PR, was also able to block Gag processing in MLV-infected cells. These results indicate that, in spite of the similar function in the life cycle of virus infection, the two PRs are only distantly related in their specificity.
Collapse
Affiliation(s)
- Anita Fehér
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Péter Boross
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Tamás Sperka
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Gabriella Miklóssy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - János Kádas
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Péter Bagossi
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Stephen Oroszlan
- HIV Drug Resistant Program, National Cancer Institute at Frederick, MD, USA
| | - Irene T Weber
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - József Tözsér
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| |
Collapse
|
14
|
Prabu-Jeyabalan M, Nalivaika EA, Romano K, Schiffer CA. Mechanism of substrate recognition by drug-resistant human immunodeficiency virus type 1 protease variants revealed by a novel structural intermediate. J Virol 2006; 80:3607-16. [PMID: 16537628 PMCID: PMC1440387 DOI: 10.1128/jvi.80.7.3607-3616.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 01/17/2006] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) protease processes and cleaves the Gag and Gag-Pol polyproteins, allowing viral maturation, and therefore is an important target for antiviral therapy. Ligand binding occurs when the flaps open, allowing access to the active site. This flexibility in flap geometry makes trapping and crystallizing structural intermediates in substrate binding challenging. In this study, we report two crystal structures of two HIV-1 protease variants bound with their corresponding nucleocapsid-p1 variant. One of the flaps in each of these structures exhibits an unusual "intermediate" conformation. Analysis of the flap-intermediate and flap-closed crystal structures reveals that the intermonomer flap movements may be asynchronous and that the flap which wraps over the P3 to P1 (P3-P1) residues of the substrate might close first. This is consistent with our hypothesis that the P3-P1 region is crucial for substrate recognition. The intermediate conformation is conserved in both the wild-type and drug-resistant variants. The structural differences between the variants are evident only when the flaps are closed. Thus, a plausible structural model for the adaptability of HIV-1 protease to recognize substrates in the presence of drug-resistant mutations has been proposed.
Collapse
Affiliation(s)
- Moses Prabu-Jeyabalan
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
15
|
Tie Y, Boross PI, Wang YF, Gaddis L, Liu F, Chen X, Tozser J, Harrison RW, Weber IT. Molecular basis for substrate recognition and drug resistance from 1.1 to 1.6 angstroms resolution crystal structures of HIV-1 protease mutants with substrate analogs. FEBS J 2005; 272:5265-77. [PMID: 16218957 PMCID: PMC1360291 DOI: 10.1111/j.1742-4658.2005.04923.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HIV-1 protease (PR) and two drug-resistant variants--PR with the V82A mutation (PR(V82A)) and PR with the I84V mutation (PR(I84V))--were studied using reduced peptide analogs of five natural cleavage sites (CA-p2, p2-NC, p6pol-PR, p1-p6 and NC-p1) to understand the structural and kinetic changes. The common drug-resistant mutations V82A and I84V alter residues forming the substrate-binding site. Eight crystal structures were refined at resolutions of 1.10-1.60 A. Differences in the PR-analog interactions depended on the peptide sequence and were consistent with the relative inhibition. Analog p6(pol)-PR formed more hydrogen bonds of P2 Asn with PR and fewer van der Waals contacts at P1' Pro compared with those formed by CA-p2 or p2-NC in PR complexes. The P3 Gly in p1-p6 provided fewer van der Waals contacts and hydrogen bonds at P2-P3 and more water-mediated interactions. PR(I84V) showed reduced van der Waals interactions with inhibitor compared with PR, which was consistent with kinetic data. The structures suggest that the binding affinity for mutants is modulated by the conformational flexibility of the substrate analogs. The complexes of PR(V82A) showed smaller shifts of the main chain atoms of Ala82 relative to PR, but more movement of the peptide analog, compared to complexes with clinical inhibitors. PR(V82A) was able to compensate for the loss of interaction with inhibitor caused by mutation, in agreement with kinetic data, but substrate analogs have more flexibility than the drugs to accommodate the structural changes caused by mutation. Hence, these structures help to explain how HIV can develop drug resistance while retaining the ability of PR to hydrolyze natural substrates.
Collapse
Affiliation(s)
- Yunfeng Tie
- Department of Chemistry, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
| | - Peter I. Boross
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Yuan-Fang Wang
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
| | - Laquasha Gaddis
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
| | - Fengling Liu
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
| | - Xianfeng Chen
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
| | - Jozsef Tozser
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Robert W. Harrison
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
- Department of Computer Science, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
| | - Irene T. Weber
- Department of Chemistry, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
- Department of Biology, Molecular Basis of Disease, Georgia State University, Atlanta, GA, USA
- Correspondence I. T. Weber, Department of Biology, PO Box 4010, Georgia State University, Atlanta, GA 30302-4010, USA, Fax: +1 404 651 2509, Tel: +1 404 651 0098, E-mail:
| |
Collapse
|
16
|
Morellet N, Druillennec S, Lenoir C, Bouaziz S, Roques BP. Helical structure determined by NMR of the HIV-1 (345-392)Gag sequence, surrounding p2: implications for particle assembly and RNA packaging. Protein Sci 2005; 14:375-86. [PMID: 15659370 PMCID: PMC2253411 DOI: 10.1110/ps.041087605] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Gag protein oligomerization, an essential step during virus assembly, results in budding of spherical virus particles. This process is critically dependent on the spacer p2, located between the capsid and the nucleocapsid proteins. P2 contributes also, in association with NCp7, to specific recognition of the HIV-1 packaging signal resulting in viral genome encapsidation. There is no structural information about the 20 last amino acids of the C-terminal part of capsid (CA[CTD]) and p2, in the molecular mechanism of Gag assembly. In this study the structure of a peptide encompassing the 14 residues of p2 with the upstream 21 residues and the downstream 13 residues was determined by (1)H NMR in 30% trifluoroethanol (TFE). The main structural motif is a well-defined amphipathic alpha-helix including p2, the seven last residues of the CA(CTD), and the two first residues of NCp7. Peptides containing the p2 domain have a strong tendency to aggregate in solution, as shown by gel filtration analyses in pure H(2)O. To take into account the aggregation phenomena, models of dimer and trimer formed through hydrophobic or hydrophilic interfaces were constructed by molecular dynamic simulations. Gel shift experiments demonstrate that the presence of at least p2 and the 13 first residues of NCp7 is required for RNA binding. A computer-generated model of the Gag polyprotein segment (282-434)Gag interacting with the packaging element SL3 is proposed, illustrating the importance of p2 and NCp7 in genomic encapsidation.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Capsid
- Capsid Proteins/chemistry
- Chromatography, Gel
- Databases, Protein
- Dimerization
- Gene Products, gag/chemistry
- Genes, gag
- Genome, Viral
- HIV-1/chemistry
- Magnetic Resonance Spectroscopy/methods
- Models, Molecular
- Molecular Sequence Data
- Peptide Fragments/chemistry
- Peptides/chemistry
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA/chemistry
- RNA, Viral/chemistry
- Software
- Virus Assembly
- Water/chemistry
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Nelly Morellet
- Unite de Pharmacologie Chimique et Genetique, INSERM U640, CNRS UMR 8151, UFR des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l'Observatoire, 75270 Paris Cedex 06, France.
| | | | | | | | | |
Collapse
|
17
|
Prabu-Jeyabalan M, Nalivaika EA, King NM, Schiffer CA. Structural basis for coevolution of a human immunodeficiency virus type 1 nucleocapsid-p1 cleavage site with a V82A drug-resistant mutation in viral protease. J Virol 2004; 78:12446-54. [PMID: 15507631 PMCID: PMC525094 DOI: 10.1128/jvi.78.22.12446-12454.2004] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 07/12/2004] [Indexed: 11/20/2022] Open
Abstract
Maturation of human immunodeficiency virus (HIV) depends on the processing of Gag and Pol polyproteins by the viral protease, making this enzyme a prime target for anti-HIV therapy. Among the protease substrates, the nucleocapsid-p1 (NC-p1) sequence is the least homologous, and its cleavage is the rate-determining step in viral maturation. In the other substrates of HIV-1 protease, P1 is usually either a hydrophobic or an aromatic residue, and P2 is usually a branched residue. NC-p1, however, contains Asn at P1 and Ala at P2. In response to the V82A drug-resistant protease mutation, the P2 alanine of NC-p1 mutates to valine (AP2V). To provide a structural rationale for HIV-1 protease binding to the NC-p1 cleavage site, we solved the crystal structures of inactive (D25N) WT and V82A HIV-1 proteases in complex with their respective WT and AP2V mutant NC-p1 substrates. Overall, the WT NC-p1 peptide binds HIV-1 protease less optimally than the AP2V mutant, as indicated by the presence of fewer hydrogen bonds and fewer van der Waals contacts. AlaP2 does not fill the P2 pocket completely; PheP1' makes van der Waals interactions with Val82 that are lost with the V82A protease mutation. This loss is compensated by the AP2V mutation, which reorients the peptide to a conformation more similar to that observed in other substrate-protease complexes. Thus, the mutant substrate not only binds the mutant protease more optimally but also reveals the interdependency between the P1' and P2 substrate sites. This structural interdependency results from coevolution of the substrate with the viral protease.
Collapse
Affiliation(s)
- Moses Prabu-Jeyabalan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605-2324, USA
| | | | | | | |
Collapse
|
18
|
Tie Y, Boross PI, Wang YF, Gaddis L, Hussain AK, Leshchenko S, Ghosh AK, Louis JM, Harrison RW, Weber IT. High resolution crystal structures of HIV-1 protease with a potent non-peptide inhibitor (UIC-94017) active against multi-drug-resistant clinical strains. J Mol Biol 2004; 338:341-52. [PMID: 15066436 DOI: 10.1016/j.jmb.2004.02.052] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 02/13/2004] [Accepted: 02/19/2004] [Indexed: 11/21/2022]
Abstract
The compound UIC-94017 (TMC-114) is a second-generation HIV protease inhibitor with improved pharmacokinetics that is chemically related to the clinical inhibitor amprenavir. UIC-94017 is a broad-spectrum potent inhibitor active against HIV-1 clinical isolates with minimal cytotoxicity. We have determined the high-resolution crystal structures of UIC-94017 in complexes with wild-type HIV-1 protease (PR) and mutant proteases PR(V82A) and PR(I84V) that are common in drug-resistant HIV. The structures were refined at resolutions of 1.10-1.53A. The crystal structures of PR and PR(I84V) with UIC-94017 ternary complexes show that the inhibitor binds to the protease in two overlapping positions, while the PR(V82A) complex had one ordered inhibitor. In all three structures, UIC-94017 forms hydrogen bonds with the conserved main-chain atoms of Asp29 and Asp30 of the protease. These interactions are proposed to be critical for the potency of this compound against HIV isolates that are resistant to multiple protease inhibitors. Other small differences were observed in the interactions of the mutants with UIC-94017 as compared to PR. PR(V82A) showed differences in the position of the main-chain atoms of residue 82 compared to PR structure that better accommodated the inhibitor. Finally, the 1.10A resolution structure of PR(V82A) with UIC-94017 showed an unusual distribution of electron density for the catalytic aspartate residues, which is discussed in relation to the reaction mechanism.
Collapse
Affiliation(s)
- Yunfeng Tie
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kádas J, Weber IT, Bagossi P, Miklóssy G, Boross P, Oroszlan S, Tözsér J. Narrow substrate specificity and sensitivity toward ligand-binding site mutations of human T-cell Leukemia virus type 1 protease. J Biol Chem 2004; 279:27148-57. [PMID: 15102858 DOI: 10.1074/jbc.m401868200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is associated with a number of human diseases; therefore, its protease is a potential target for chemotherapy. To compare the specificity of HTLV-1 protease with that of human immunodeficiency virus type 1 (HIV-1) protease, oligopeptides representing naturally occurring cleavage sites in various retroviruses were tested. The number of hydrolyzed peptides as well as the specificity constants suggested a substantially broader specificity of the HIV protease. Amino acid residues of HTLV-1 protease substrate-binding sites were replaced by equivalent ones of HIV-1 protease. Most of the single and multiple mutants had altered specificity and a dramatically reduced folding and catalytic capability, suggesting that mutations are not well tolerated in HTLV-1 protease. The catalytically most efficient mutant was that with the flap residues of HIV-1 protease. The inhibition profile of the mutants was also determined for five inhibitors used in clinical practice and inhibitor analogs of HTLV-1 cleavage sites. Except for indinavir, the HIV-1 protease inhibitors did not inhibit wild type and most of the mutant HTLV-1 proteases. The wild type HTLV-1 protease was inhibited by the reduced peptide bond-containing substrate analogs, whereas the mutants showed various degrees of weakened binding capability. Most interesting, the enzyme with HIV-1-like residues in the flap region was the most sensitive to the HIV-1 protease inhibitors and least sensitive to the HTLV-1 protease inhibitors, indicating that the flap plays an important role in defining the specificity differences of retroviral proteases.
Collapse
Affiliation(s)
- János Kádas
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, H-4012 Debrecen, P. O. Box 6, Hungary
| | | | | | | | | | | | | |
Collapse
|
20
|
Tözsér J, Shulenin S, Kádas J, Boross P, Bagossi P, Copeland TD, Nair BC, Sarngadharan MG, Oroszlan S. Human immunodeficiency virus type 1 capsid protein is a substrate of the retroviral proteinase while integrase is resistant toward proteolysis. Virology 2003; 310:16-23. [PMID: 12788626 DOI: 10.1016/s0042-6822(03)00074-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The capsid protein of human immunodeficiency virus type 1 was observed to undergo proteolytic cleavage in vitro when viral lysate was incubated in the presence of dithiothreitol at acidic pH. Purified HIV-1 capsid protein was also found to be a substrate of the viral proteinase in a pH-dependent manner; acidic pH (<7) was necessary for cleavage, and decreasing the pH toward 4 increased the degree of processing. Based on N-terminal sequencing of the cleavage products, the capsid protein was found to be cleaved at two sites, between residues 77 and 78 as well as between residues 189 and 190. Oligopeptides representing these cleavage sites were also cleaved at the expected peptide bonds. The presence of cyclophilin A decreased the degree of capsid protein processing. Unlike the capsid protein, integrase was found to be resistant toward proteolysis in good agreement with its presence in the preintegration complex.
Collapse
Affiliation(s)
- József Tözsér
- Department of Biochemistry and Molecular Biology, University of Debrecen, Faculty of Medicine, H-4012 Debrecen, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Torshin IY, Harrison RW, Weber IT. Close pairs of carboxylates: a possibility of multicenter hydrogen bonds in proteins. Protein Eng Des Sel 2003; 16:201-7. [PMID: 12702800 DOI: 10.1093/proeng/gzg027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Covalent attachment of hydrogen to the donor atom may be not an essential characteristic of stable hydrogen bonds. A positively charged particle (such as a proton), located between the two negatively charged residues, may lead to a stable interaction of the two negative residues. This paper analyzes close Asp-Glu pairs of residues in a large set of protein chains; 840 such pairs of residues were identified, of which 28% were stabilized by a metal ion, 12% by a positive residue nearby and 60% are likely to be stabilized by a proton. The absence of apparent structural constraints, secondary structure preferences, somewhat lower B-factors and a distinct correlation between pH and the minimal O-O distance in carboxylate pairs suggest that most of the abnormally close pairs could indeed be stabilized by a shared proton. Implications for protein stability and modeling are discussed.
Collapse
Affiliation(s)
- Ivan Y Torshin
- Biology Department, Georgia State University, Atlanta, GA 30303, USA.
| | | | | |
Collapse
|
22
|
Prabu-Jeyabalan M, Nalivaika EA, King NM, Schiffer CA. Viability of a drug-resistant human immunodeficiency virus type 1 protease variant: structural insights for better antiviral therapy. J Virol 2003; 77:1306-15. [PMID: 12502847 PMCID: PMC140781 DOI: 10.1128/jvi.77.2.1306-1315.2003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2002] [Accepted: 10/11/2002] [Indexed: 11/20/2022] Open
Abstract
Under the selective pressure of protease inhibitor therapy, patients infected with human immunodeficiency virus (HIV) often develop drug-resistant HIV strains. One of the first drug-resistant mutations to arise in the protease, particularly in patients receiving indinavir or ritonavir treatment, is V82A, which compromises the binding of these and other inhibitors but allows the virus to remain viable. To probe this drug resistance, we solved the crystal structures of three natural substrates and two commercial drugs in complex with an inactive drug-resistant mutant (D25N/V82A) HIV-1 protease. Through structural analysis and comparison of the protein-ligand interactions, we found that Val82 interacts more closely with the drugs than with the natural substrate peptides. The V82A mutation compromises these interactions with the drugs while not greatly affecting the substrate interactions, which is consistent with previously published kinetic data. Coupled with our earlier observations, these findings suggest that future inhibitor design may reduce the probability of the appearance of drug-resistant mutations by targeting residues that are essential for substrate recognition.
Collapse
Affiliation(s)
- Moses Prabu-Jeyabalan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester 01605, USA
| | | | | | | |
Collapse
|
23
|
Mahalingam B, Boross P, Wang YF, Louis JM, Fischer CC, Tozser J, Harrison RW, Weber IT. Combining mutations in HIV-1 protease to understand mechanisms of resistance. Proteins 2002; 48:107-16. [PMID: 12012342 DOI: 10.1002/prot.10140] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
HIV-1 develops resistance to protease inhibitors predominantly by selecting mutations in the protease gene. Studies of resistant mutants of HIV-1 protease with single amino acid substitutions have shown a range of independent effects on specificity, inhibition, and stability. Four double mutants, K45I/L90M, K45I/V82S, D30N/V82S, and N88D/L90M were selected for analysis on the basis of observations of increased or decreased stability or enzymatic activity for the respective single mutants. The double mutants were assayed for catalysis, inhibition, and stability. Crystal structures were analyzed for the double mutants at resolutions of 2.2-1.2 A to determine the associated molecular changes. Sequence-dependent changes in protease-inhibitor interactions were observed in the crystal structures. Mutations D30N, K45I, and V82S showed altered interactions with inhibitor residues at P2/P2', P3/P3'/P4/P4', and P1/P1', respectively. One of the conformations of Met90 in K45I/L90M has an unfavorably close contact with the carbonyl oxygen of Asp25, as observed previously in the L90M single mutant. The observed catalytic efficiency and inhibition for the double mutants depended on the specific substrate or inhibitor. In particular, large variation in cleavage of p6(pol)-PR substrate was observed, which is likely to result in defects in the maturation of the protease from the Gag-Pol precursor and hence viral replication. Three of the double mutants showed values for stability that were intermediate between the values observed for the respective single mutants. D30N/V82S mutant showed lower stability than either of the two individual mutations, which is possibly due to concerted changes in the central P2-P2' and S2-S2' sites. The complex effects of combining mutations are discussed.
Collapse
|
24
|
Prabu-Jeyabalan M, Nalivaika E, Schiffer CA. Substrate shape determines specificity of recognition for HIV-1 protease: analysis of crystal structures of six substrate complexes. Structure 2002; 10:369-81. [PMID: 12005435 DOI: 10.1016/s0969-2126(02)00720-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The homodimeric HIV-1 protease is the target of some of the most effective antiviral AIDS therapy, as it facilitates viral maturation by cleaving ten asymmetric and nonhomologous sequences in the Gag and Pol polyproteins. Since the specificity of this enzyme is not easily determined from the sequences of these cleavage sites alone, we solved the crystal structures of complexes of an inactive variant (D25N) of HIV-1 protease with six peptides that correspond to the natural substrate cleavage sites. When the protease binds to its substrate and buries nearly 1000 A2 of surface area, the symmetry of the protease is broken, yet most internal hydrogen bonds and waters are conserved. However, no substrate side chain hydrogen bond is conserved. Specificity of HIV-1 protease appears to be determined by an asymmetric shape rather than a particular amino acid sequence.
Collapse
Affiliation(s)
- Moses Prabu-Jeyabalan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | |
Collapse
|
25
|
Mahalingam B, Louis JM, Hung J, Harrison RW, Weber IT. Structural implications of drug-resistant mutants of HIV-1 protease: high-resolution crystal structures of the mutant protease/substrate analogue complexes. Proteins 2001; 43:455-64. [PMID: 11340661 DOI: 10.1002/prot.1057] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Emergence of drug-resistant mutants of HIV-1 protease is an ongoing problem in the fight against AIDS. The mechanisms governing resistance are both complex and varied. We have determined crystal structures of HIV-1 protease mutants, D30N, K45I, N88D, and L90M complexed with peptide inhibitor analogues of CA-p2 and p2-NC cleavage sites in the Gag-pol precursor in order to study the structural mechanisms underlying resistance. The structures were determined at 1.55-1.9-A resolution and compared with the wild-type structure. The conformational disorder seen for most of the hydrophobic side-chains around the inhibitor binding site indicates flexibility of binding. Eight water molecules are conserved in all 9 structures; their location suggests that they are important for catalysis as well as structural stability. Structural differences among the mutants were analyzed in relation to the observed changes in protease activity and stability. Mutant L90M shows steric contacts with the catalytic Asp25 that could destabilize the catalytic loop at the dimer interface, leading to its observed decreased dimer stability and activity. Mutant K45I reduces the mobility of the flap and the inhibitor and contributes to an enhancement in structural stability and activity. The side-chain variations at residue 30 relative to wild-type are the largest in D30N and the changes are consistent with the altered activity observed with peptide substrates. Polar interactions in D30N are maintained, in agreement with the observed urea sensitivity. The side-chains of D30N and N88D are linked through a water molecule suggesting correlated changes at the two sites, as seen with clinical inhibitors. Structural changes seen in N88D are small; however, water molecules that mediate interactions between Asn88 and Thr74/Thr31/Asp30 in other complexes are missing in N88D.
Collapse
Affiliation(s)
- B Mahalingam
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | |
Collapse
|
26
|
Louis JM, Weber IT, Tözsér J, Clore GM, Gronenborn AM. HIV-1 protease: maturation, enzyme specificity, and drug resistance. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 49:111-46. [PMID: 11013762 DOI: 10.1016/s1054-3589(00)49025-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- J M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes, Bethesda, Maryland 20892-0580, USA
| | | | | | | | | |
Collapse
|
27
|
Ishima R, Louis JM, Torchia DA. Characterization of two hydrophobic methyl clusters in HIV-1 protease by NMR spin relaxation in solution. J Mol Biol 2001; 305:515-21. [PMID: 11152609 DOI: 10.1006/jmbi.2000.4321] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nearly 50 % of the amino acid residues of HIV-1 protease contain methyl side-chains, most of which appear to be organized into two clusters: the inner cluster that nearly surrounds the active site and the outer cluster that contains the hydrophobic core which stabilizes the inhibitor-free protease structure. NMR relaxation experiments sensitive to motions of methyl groups on the sub-nanosecond and the milli-microsecond time-scales revealed flexible methyl groups in residues that link the two clusters, the methyl groups of L10, L23, V75, and L76. We hypothesize that flexibility at the junctions of these clusters allows the protease to minimize conformational changes upon drug-binding. The two-methyl cluster motif appears to be a common structural feature among retroviral proteases and may play a similar role throughout this family of enzymes.
Collapse
Affiliation(s)
- R Ishima
- Molecular Structural Biology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
28
|
Prabu-Jeyabalan M, Nalivaika E, Schiffer CA. How does a symmetric dimer recognize an asymmetric substrate? A substrate complex of HIV-1 protease. J Mol Biol 2000; 301:1207-20. [PMID: 10966816 DOI: 10.1006/jmbi.2000.4018] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structure of an actual HIV-1 protease-substrate complex is presented at 2.0 A resolution (R-value of 19.7 % (R(free) 23.3 %)) between an inactive variant (D25N) of HIV-1 protease and a long substrate peptide, Lys-Ala-Arg-Val-Leu-Ala-Glu-Ala-Met-Ser, which covers a full binding epitope of capsid(CA)-p2, cleavage site. The substrate peptide is asymmetric in both size and charge distribution. To accommodate this asymmetry the two protease monomers adopt different conformations burying a total of 1038 A(2) of surface area at the protease-substrate interface. The specificity for the CA-p2 substrate peptide is mainly hydrophobic, as most of the hydrogen bonds are made with the backbone of the peptide substrate. Two water molecules bridge the two monomers through the loops Gly49-Gly52 (Gly49'-Gly52') and Pro79'-Val82' (Pro79-Val82). When other complexes are compared, the mobility of these loops is correlated with the content of the P1 and P1' sites. Interdependence of the conformational changes allows the protease to exhibit its wide range of substrate specificity.
Collapse
Affiliation(s)
- M Prabu-Jeyabalan
- Department of Pharmacology and Molecular Toxicology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | | | | |
Collapse
|
29
|
Serio D, Singh SP, Cartas MA, Weber IT, Harrison RW, Louis JM, Srinivasan A. Antiviral agent based on the non-structural protein targeting the maturation process of HIV-1: expression and susceptibility of chimeric Vpr as a substrate for cleavage by HIV-1 protease. PROTEIN ENGINEERING 2000; 13:431-6. [PMID: 10877854 DOI: 10.1093/protein/13.6.431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The processing of precursor proteins (Gag and Gag-pol) by the viral protease is absolutely required in order to generate infectious particles. This prompted us to consider novel strategies that target viral maturation. Towards this end, we have engineered an HIV-1 virion associated protein, Vpr, to contain protease cleavage signal sequences from Gag and Gag-pol precursor proteins. We previously reported that virus particles derived from HIV-1 proviral DNA, encoding chimeric Vpr, showed a lack of infectivity, depending on the fusion partner. As an extension of that work, the potential of chimeric Vpr as a substrate for HIV-1 protease was tested utilizing an epitope-based assay. Chimeric Vpr molecules were modified such that the Flag epitope is removed following cleavage, thus allowing us to determine the efficiency of protease cleavage. Following incubation with the protease, the resultant products were analyzed by radioimmunoprecipitation using antibodies directed against the Flag epitope. Densitometric analysis of the autoradiograms showed processing to be both rapid and specific. Further, the analysis of virus particles containing chimeric Vpr by immunoblot showed reactivities to antibodies against the Flag epitope similar to the data observed in vitro. These results suggest that the pseudosubstrate approach may provide another avenue for developing antiviral agents.
Collapse
Affiliation(s)
- D Serio
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Wlodawer A, Gustchina A. Structural and biochemical studies of retroviral proteases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:16-34. [PMID: 10708846 DOI: 10.1016/s0167-4838(99)00267-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Retroviral proteases form a unique subclass of the family of aspartic proteases. These homodimeric enzymes from a number of viral sources have by now been extensively characterized, both structurally and biochemically. The importance of such knowledge to the development of new drugs against AIDS has been, to a large extent, the driving force behind this progress. High-resolution structures are now available for enzymes from human immunodeficiency virus types 1 and 2, simian immunodeficiency virus, feline immunodeficiency virus, Rous sarcoma virus, and equine infectious anemia virus. In this review, structural and biochemical data for retroviral proteases are compared in order to analyze the similarities and differences between the enzymes from different sources and to enhance our understanding of their properties.
Collapse
Affiliation(s)
- A Wlodawer
- Macromolecular Crystallography Laboratory, Program in Structural Biology, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702, USA.
| | | |
Collapse
|
31
|
Ishima R, Freedberg DI, Wang YX, Louis JM, Torchia DA. Flap opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease, and their implications for function. Structure 1999; 7:1047-55. [PMID: 10508781 DOI: 10.1016/s0969-2126(99)80172-5] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND (1)H and (15)N transverse relaxation measurements on perdeuterated proteins are ideally suited for detecting backbone conformational fluctuations on the millisecond-microsecond timescale. The identification of conformational exchange on this timescale by measuring the relaxation of both (1)H and (15)N holds great promise for the elucidation of functionally relevant conformational changes in proteins. RESULTS We measured the transverse (1)H and (15)N relaxation rates of backbone amides of HIV-1 protease in its free and inhibitor-bound forms. An analysis of these rates, obtained as a function of the effective rotating frame field, provided information about the timescale of structural fluctuations in several regions of the protein. The flaps that cover the active site of the inhibitor-bound protein undergo significant changes of backbone (φ,psi) angles, on the 100 micros timescale, in the free protein. In addition, the intermonomer beta-sheet interface of the bound form, which from protease structure studies appears to be rigid, was found to fluctuate on the millisecond timescale. CONCLUSIONS We present a working model of the flap-opening mechanism in free HIV-1 protease which involves a transition from a semi-open to an open conformation that is facilitated by interaction of the Phe53 ring with the substrate. We also identify a surprising fluctuation of the beta-sheet intermonomer interface that suggests a structural requirement for maturation of the protease. Thus, slow conformational fluctuations identified by (1)H and (15)N transverse relaxation measurements can be related to the biological functions of proteins.
Collapse
Affiliation(s)
- R Ishima
- Molecular Structural Biology Unit National Institute of Dental and Craniofacial Research National Institutes of Health Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
32
|
Boross P, Bagossi P, Copeland TD, Oroszlan S, Louis JM, Tözsér J. Effect of substrate residues on the P2' preference of retroviral proteinases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:921-9. [PMID: 10491141 DOI: 10.1046/j.1432-1327.1999.00687.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The substrate sequence requirements for preference toward P2' Glu residue by human immunodeficiency virus type 1 (HIV-1) proteinase were studied in both the matrix protein/ capsid protein (MA/CA) and CA/p2 cleavage site sequence contexts. These sequences represent typical type 1 (-aromatic*Pro-) and type 2 (-hydrophobic* hydrophobic-) cleavage site sequences, respectively. While in the type 1 sequence context, the preference for P2' Glu over Ile or Gln was found to be strongly dependent on the ionic strength and the residues being outside the P2-P2' region of the substrate, it remained preferable in the type 2 substrates when typical type 1 substrate sequence residues were substituted into the outside regions. The pH profile of the specificity constants suggested a lower pH optimum for substrates having P2' Glu in contrast to those having uncharged residues, in both sequence contexts. The very low frequency of P2' Glu in naturally occurring retroviral cleavage sites of various retroviruses including equine infectious anemia virus (EIAV) and murine leukemia virus (MuLV) suggests that such a residue may not have a general regulatory role in the retroviral life cycle. In fact, unlike HIV-1 and HIV-2, EIAV and MuLV proteinases do not favor P2' Glu in either the MA/CA or CA/p2 sequence contexts.
Collapse
Affiliation(s)
- P Boross
- Department of Biochemistry, University Medical School of Debreen, Hungary
| | | | | | | | | | | |
Collapse
|
33
|
Mahalingam B, Louis JM, Reed CC, Adomat JM, Krouse J, Wang YF, Harrison RW, Weber IT. Structural and kinetic analysis of drug resistant mutants of HIV-1 protease. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:238-45. [PMID: 10429209 DOI: 10.1046/j.1432-1327.1999.00514.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutants of HIV-1 protease that are commonly selected on exposure to different drugs, V82S, G48V, N88D and L90M, showed reduced catalytic activity compared to the wild-type protease on cleavage site peptides, CA-p2, p6pol-PR and PR-RT, critical for viral maturation. Mutant V82S is the least active (2-20% of wild-type protease), mutants N88D, R8Q, and L90M exhibit activities ranging from 20 to 40% and G48V from 50 to 80% of the wild-type activity. In contrast, D30N is variable in its activity on different substrates (10-110% of wild-type), with the PR-RT site being the most affected. Mutants K45I and M46L, usually selected in combination with other mutations, showed activities that are similar to (60-110%) or greater than (110-530%) wild-type, respectively. No direct relationship was observed between catalytic activity, inhibition, and structural stability. The mutants D30N and V82S were similar to wild-type protease in their stability toward urea denaturation, while R8Q, G48V, and L90M showed 1.5 to 2.7-fold decreased stability, and N88D and K45I showed 1.6 to 1.7-fold increased stability. The crystal structures of R8Q, K45I and L90M mutants complexed with a CA-p2 analog inhibitor were determined at 2.0, 1.55 and 1.88 A resolution, respectively, and compared to the wild-type structure. The intersubunit hydrophobic contacts observed in the crystal structures are in good agreement with the relative structural stability of the mutant proteases. All these results suggest that viral resistance does not arise by a single mechanism.
Collapse
Affiliation(s)
- B Mahalingam
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | | | | | | | | | | | | | | |
Collapse
|