1
|
Bhandari R, Gupta R, Vashishth A, Kuhad A. Transient Receptor Potential Vanilloid 1 (TRPV1) as a plausible novel therapeutic target for treating neurological complications in ZikaVirus. Med Hypotheses 2021; 156:110685. [PMID: 34592564 DOI: 10.1016/j.mehy.2021.110685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/31/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022]
Abstract
Zika virus was declared a national emergency by WHO (World Health Organization) in 2016 when its widespread outbreaks and life-threatening complications were reported, especially in newborns and adults. Numerous studies reported that neuroinflammation is one of the significant root-causes behind its major neurological complications like microcephaly and Guillain-Barré syndrome (GBS). In this hypothesis, we propose Transient Receptor Potential Vanilloid 1 channel (TRPV1) as a major culprit in triggering positive inflammatory loop, ultimately leading to sustained neuroinflammation, one of the key clinical findings in Zika induced microcephalic and GBS patients. Opening of TRPV1 channel also leads to calcium influx and oxidative stress that ultimately results in cellular apoptosis (like Schwann cell in GBS and developing fetal nerve cells in microcephaly), ultimately leading to these complications. Currently, no specific cure exists for these complications. Most of the antiviral candidates are under clinical trials. Though there is no direct research on TRPV1 as a cause of Zika virus's neurological complications, but similarity in mechanisms is undeniable. Thus, exploring pathobiological involvement of TRPV1 channels and various TRPV1 modulators in these complications can possibly prove to be an effective futuristic therapeutic strategy for treatment and management of these life-threatening complications.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Reetrakshi Gupta
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Anushka Vashishth
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh 160 014, India.
| |
Collapse
|
2
|
Zuo C, Zhang H, Liang S, Teng W, Bao C, Li D, Hu Y, Wang Q, Li Z, Li Y. The alleviation of lipid deposition in steatosis hepatocytes by capsaicin-loaded α-lactalbumin nanomicelles via promoted endocytosis and synergetic multiple signaling pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
3
|
Puglia C, Santonocito D, Bonaccorso A, Musumeci T, Ruozi B, Pignatello R, Carbone C, Parenti C, Chiechio S. Lipid Nanoparticle Inclusion Prevents Capsaicin-Induced TRPV1 Defunctionalization. Pharmaceutics 2020; 12:pharmaceutics12040339. [PMID: 32290081 PMCID: PMC7238012 DOI: 10.3390/pharmaceutics12040339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Capsaicin (CPS) is a highly selective agonist of the transient receptor potential vanilloid type 1 (TRPV1) with a nanomolar affinity. High doses or prolonged exposure to CPS induces TRPV1 defunctionalization and, although this effect is currently used for the treatment of thermal hyperalgesia in chronic pain conditions, it is responsible of detrimental effects, such as denervation of sensory fibers. The aim of the present study was to formulate CPS loaded lipid nanocarriers (CPS-LN) in order to optimize CPS release, thus preventing TRPV1 internalization and degradation. METHODS CPS-LNs were formulated and characterized by in vitro studies. The activation of TRPV1 receptors after CPS-LN administration was evaluated by measuring spontaneous pain that was induced by local injection into the plantar surface of the mouse hind-paw. Moreover, the expression of TRPV1 in the skin was evaluated by western blot analysis in CPS-LN injected mice and then compared to a standard CPS solution (CPS-STD). RESULTS CPS inclusion in LN induced a lower pain response when compared to CPS-STD; further, it prevented TRPV1 down-regulation in the skin, while CPS-STD induced a significant reduction of TRPV1 expression. CONCLUSIONS Drug encapsulation in lipid nanoparticles produced an optimization of CPS release, thus reducing mice pain behavior and avoiding the effects that are caused by TRPV1 defunctionalization related to a prolonged activation of this receptor.
Collapse
Affiliation(s)
- Carmelo Puglia
- Dipartimento di Scienze del Farmaco, Università di Catania, 95100 Catania, Italy; (D.S.); (A.B.); (T.M.); (R.P.); (C.C.); (C.P.); (S.C.)
- Correspondence: ; Tel.: +39-957384206
| | - Debora Santonocito
- Dipartimento di Scienze del Farmaco, Università di Catania, 95100 Catania, Italy; (D.S.); (A.B.); (T.M.); (R.P.); (C.C.); (C.P.); (S.C.)
| | - Angela Bonaccorso
- Dipartimento di Scienze del Farmaco, Università di Catania, 95100 Catania, Italy; (D.S.); (A.B.); (T.M.); (R.P.); (C.C.); (C.P.); (S.C.)
| | - Teresa Musumeci
- Dipartimento di Scienze del Farmaco, Università di Catania, 95100 Catania, Italy; (D.S.); (A.B.); (T.M.); (R.P.); (C.C.); (C.P.); (S.C.)
| | - Barbara Ruozi
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, 41100 Modena, Italy;
| | - Rosario Pignatello
- Dipartimento di Scienze del Farmaco, Università di Catania, 95100 Catania, Italy; (D.S.); (A.B.); (T.M.); (R.P.); (C.C.); (C.P.); (S.C.)
| | - Claudia Carbone
- Dipartimento di Scienze del Farmaco, Università di Catania, 95100 Catania, Italy; (D.S.); (A.B.); (T.M.); (R.P.); (C.C.); (C.P.); (S.C.)
| | - Carmela Parenti
- Dipartimento di Scienze del Farmaco, Università di Catania, 95100 Catania, Italy; (D.S.); (A.B.); (T.M.); (R.P.); (C.C.); (C.P.); (S.C.)
| | - Santina Chiechio
- Dipartimento di Scienze del Farmaco, Università di Catania, 95100 Catania, Italy; (D.S.); (A.B.); (T.M.); (R.P.); (C.C.); (C.P.); (S.C.)
- Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
4
|
Ilie MA, Caruntu C, Tampa M, Georgescu SR, Matei C, Negrei C, Ion RM, Constantin C, Neagu M, Boda D. Capsaicin: Physicochemical properties, cutaneous reactions and potential applications in painful and inflammatory conditions. Exp Ther Med 2019; 18:916-925. [PMID: 31384324 PMCID: PMC6639979 DOI: 10.3892/etm.2019.7513] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022] Open
Abstract
Capsaicin is a natural protoalkaloid recognized as the main pungent component in hot peppers (Capsicum annuum L.). The capsaicin receptor is highly expressed in the unmyelinated type C nerve fibers originating from small diameter sensory neurons in dorsal root ganglia and cranial nerve ganglia correspondents. Capsaicin and related vanilloids have a variety of effects on primary sensory neurons function, from sensory neuron excitation characterized by local burning sensation and neurogenic inflammation, followed by conduction blockage accompanied by reversible ultrastructural changes of peripheral nociceptive endings (desensitization), going as far as irreversible degenerative changes (neurotoxicity). The main role in capsaicin-induced neurogenic inflammation relies on the capsaicin sensitive, small diameter primary sensory neurons, therefore its evaluation could be used as a diagnostic instrument in functional alterations of cutaneous sensory nerve fibers. Moreover, capsaicin-induced desensitization and neurotoxicity explain the analgesic/anti-nociceptive and anti-inflammatory effects of topical capsaicin and its potential use in the management of painful and inflammatory conditions. In this study, we describe the effects of capsaicin on neurogenic inflammation and nociception, as well as its potential diagnostic value and therapeutic impact in various conditions involving impairment of sensory nerve fibers.
Collapse
Affiliation(s)
- Mihaela Adriana Ilie
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
- Department of Biochemistry, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Constantin Caruntu
- Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest 020475, Romania
| | - Mircea Tampa
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Simona-Roxana Georgescu
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Clara Matei
- Department of Dermatology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
| | - Carolina Negrei
- Department of Toxicology, Faculty of Pharmacy, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - Rodica-Mariana Ion
- The National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Bucharest 060021, Romania
| | - Carolina Constantin
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, Bucharest 050096, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, Bucharest 050096, Romania
- Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Biochemistry, Faculty of Biology, University of Bucharest, Bucharest 020125, Romania
| | - Daniel Boda
- Dermatology Research Laboratory, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 020021, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, Bucharest 020475, Romania
| |
Collapse
|
5
|
Giorgi S, Nikolaeva-Koleva M, Alarcón-Alarcón D, Butrón L, González-Rodríguez S. Is TRPA1 Burning Down TRPV1 as Druggable Target for the Treatment of Chronic Pain? Int J Mol Sci 2019; 20:ijms20122906. [PMID: 31197115 PMCID: PMC6627658 DOI: 10.3390/ijms20122906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022] Open
Abstract
Over the last decades, a great array of molecular mediators have been identified as potential targets for the treatment of chronic pain. Among these mediators, transient receptor potential (TRP) channel superfamily members have been thoroughly studied. Namely, the nonselective cationic channel, transient receptor potential ankyrin subtype 1 (TRPA1), has been described as a chemical nocisensor involved in noxious cold and mechanical sensation and as rivalling TRPV1, which traditionally has been considered as the most important TRP channel involved in nociceptive transduction. However, few TRPA1-related drugs have succeeded in clinical trials. In the present review, we attempt to discuss the latest data on the topic and future directions for pharmacological intervention.
Collapse
Affiliation(s)
- Simona Giorgi
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Magdalena Nikolaeva-Koleva
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
- AntalGenics, SL. Ed. Quorum III, Parque Científico Universidad Miguel Hernández, Avda de la Universidad s/n, 03202 Elche, Spain.
| | - David Alarcón-Alarcón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Laura Butrón
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| | - Sara González-Rodríguez
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Avda de la Univesidad s/n, Universidad Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
6
|
Martínez-Ortega L, Mira A, Fernandez-Carvajal A, Mateo CR, Mallavia R, Falco A. Development of A New Delivery System Based on Drug-Loadable Electrospun Nanofibers for Psoriasis Treatment. Pharmaceutics 2019; 11:E14. [PMID: 30621136 PMCID: PMC6359116 DOI: 10.3390/pharmaceutics11010014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/19/2018] [Accepted: 12/23/2018] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a chronic autoimmune systemic disease with an approximate incidence of 2% worldwide; it is commonly characterized by squamous lesions on the skin that present the typical pain, stinging, and bleeding associated with an inflammatory response. In this work, poly(methyl vinyl ether-alt-maleic ethyl monoester) (PMVEMA-ES) nanofibers have been designed as a delivery vehicle for three therapeutic agents with palliative properties for the symptoms of this disease (salicylic acid, methyl salicylate, and capsaicin). For such a task, the production of these nanofibers by means of the electrospinning technique has been optimized. Their morphology and size have been characterized by optical microscopy and scanning electron microscopy (SEM). By selecting the optimal conditions to achieve the smallest and most uniform nanofibers, approximate diameters of up to 800⁻900 nm were obtained. It was also determined that the therapeutic agents that were used were encapsulated with high efficiency. The analysis of their stability over time by GC-MS showed no significant losses of the encapsulated compounds 15 days after their preparation, except in the case of methyl salicylate. Likewise, it was demonstrated that the therapeutic compounds that were encapsulated conserved, and even improved, their capacity to activate the transient receptor potential cation channel 1 (TRPV1) channel, which has been associated with the formation of psoriatic lesions.
Collapse
Affiliation(s)
- Leticia Martínez-Ortega
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| | - Amalia Mira
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| | - Asia Fernandez-Carvajal
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| | - C Reyes Mateo
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| | - Ricardo Mallavia
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| | - Alberto Falco
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| |
Collapse
|
7
|
Artero-Morales M, González-Rodríguez S, Ferrer-Montiel A. TRP Channels as Potential Targets for Sex-Related Differences in Migraine Pain. Front Mol Biosci 2018; 5:73. [PMID: 30155469 PMCID: PMC6102492 DOI: 10.3389/fmolb.2018.00073] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Chronic pain is one of the most debilitating human diseases and represents a social and economic burden for our society. Great efforts are being made to understand the molecular and cellular mechanisms underlying the pathophysiology of pain transduction. It is particularly noteworthy that some types of chronic pain, such as migraine, display a remarkable sex dimorphism, being up to three times more prevalent in women than in men. This gender prevalence in migraine appears to be related to sex differences arising from both gonadal and genetic factors. Indeed, the functionality of the somatosensory, immune, and endothelial systems seems modulated by sex hormones, as well as by X-linked genes differentially expressed during development. Here, we review the current data on the modulation of the somatosensory system functionality by gonadal hormones. Although this is still an area that requires intense investigation, there is evidence suggesting a direct regulation of nociceptor activity by sex hormones at the transcriptional, translational, and functional levels. Data are being accumulated on the effect of sex hormones on TRP channels such as TRPV1 that make pivotal contributions to nociceptor excitability and sensitization in migraine and other chronic pain syndromes. These data suggest that modulation of TRP channels' expression and/or activity by gonadal hormones provide novel pathways for drug intervention that may be useful for targeting the sex dimorphism observed in migraine.
Collapse
Affiliation(s)
- Maite Artero-Morales
- Instituto de Biología Molecular y Celular, Universitas Miguel Hernández, Elche, Spain
| | | | | |
Collapse
|
8
|
Understand spiciness: mechanism of TRPV1 channel activation by capsaicin. Protein Cell 2017; 8:169-177. [PMID: 28044278 PMCID: PMC5326624 DOI: 10.1007/s13238-016-0353-7] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/22/2016] [Indexed: 11/06/2022] Open
Abstract
Capsaicin in chili peppers bestows the sensation of spiciness. Since the discovery of its receptor, transient receptor potential vanilloid 1 (TRPV1) ion channel, how capsaicin activates this channel has been under extensive investigation using a variety of experimental techniques including mutagenesis, patch-clamp recording, crystallography, cryo-electron microscopy, computational docking and molecular dynamic simulation. A framework of how capsaicin binds and activates TRPV1 has started to merge: capsaicin binds to a pocket formed by the channel’s transmembrane segments, where it takes a “tail-up, head-down” configuration. Binding is mediated by both hydrogen bonds and van der Waals interactions. Upon binding, capsaicin stabilizes the open state of TRPV1 by “pull-and-contact” with the S4-S5 linker. Understanding the ligand-host interaction will greatly facilitate pharmaceutical efforts to develop novel analgesics targeting TRPV1.
Collapse
|
9
|
Omari SA, Adams MJ, Geraghty DP. TRPV1 Channels in Immune Cells and Hematological Malignancies. ADVANCES IN PHARMACOLOGY 2017; 79:173-198. [DOI: 10.1016/bs.apha.2017.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Diaz-Franulic I, Poblete H, Miño-Galaz G, González C, Latorre R. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels. Annu Rev Biophys 2016; 45:371-98. [DOI: 10.1146/annurev-biophys-062215-011034] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ignacio Diaz-Franulic
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago 8370146, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile; ,
- Fraunhofer Chile Research, Las Condes 7550296, Santiago, Chile
| | - Horacio Poblete
- Institute of Computational Comparative Medicine, Nanotechnology Innovation Center of Kansas State, Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506-5802
| | - Germán Miño-Galaz
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago 8370146, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile; ,
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile; ,
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103, Chile; ,
| |
Collapse
|
11
|
Lee Y, Hong S, Cui M, Sharma PK, Lee J, Choi S. Transient receptor potential vanilloid type 1 antagonists: a patent review (2011 - 2014). Expert Opin Ther Pat 2015; 25:291-318. [PMID: 25666693 DOI: 10.1517/13543776.2015.1008449] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Transient receptor potential vanilloid type 1 (TRPV1) is a nonselective cation channel that can be activated by noxious heat, low pH and vanilloid compounds such as capsaicin. Since TRPV1 acts as an integrator of painful stimuli, TRPV1 antagonists can be used as promising therapeutics for new types of analgesics. AREAS COVERED This review article covers the patents that claim TRPV1 antagonists and were published during 2011 - 2014. The patent evaluation is organized according to the applicant companies, and the representative chemical entities with important in vitro and in vivo data are summarized. EXPERT OPINION Many pharmaceutical companies showed promising results in the discovery of potent small molecule TRPV1 antagonists, and recently, a number of small molecule TRPV1 antagonists have been advanced into clinical trials. Unfortunately, several candidate molecules showed critical side effects such as hyperthermia and impaired noxious heat sensation in humans, leading to their withdrawal from clinical trials. Some TRPV1 antagonists patented in recent years (2011 - 2014) overcame these undesirable side effects, making the development of TRPV1 antagonists much more promising.
Collapse
Affiliation(s)
- Yoonji Lee
- Ewha Womans University, National Leading Research Laboratory of Molecular Modeling and Drug Design, College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top 5 Research Program , Seoul 120-750 , Korea +82 2 3277 4503 ; +82 2 3277 2851 ;
| | | | | | | | | | | |
Collapse
|
12
|
Planells-Cases1 R, Ferrer-Montiel A. Drug design and development through the vanilloid receptor. Expert Opin Drug Discov 2015; 2:1053-63. [PMID: 23484872 DOI: 10.1517/17460441.2.8.1053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The vanilloid receptor (TRPV1) has attracted a great expectation in pain therapeutics for the treatment of chronic inflammatory conditions. As a result, several drug discovery programmes were launched in the past years that yielded a large number of receptor agonists and antagonists. However, despite the claimed therapeutic potential of TRPV1 modulators, a disappointing number of candidates have progressed into clinical trials and those were only for dental pain and migraine, indicating that our understanding of the role of TRPV1 in pain is still very limited. The widespread distribution of TRPV1 in different tissues suggests an involvement in body functions other than pain. Indeed, new findings indicate that TRPV1 is tonically active in physiological conditions and its pharmacological blockade leads to hyperthermia. Furthermore, the full abrogation of TRPV1 in some models of chronic pain results in enhanced pain. Therefore, a remaining challenge is the development of drugs that preserve the physiological activity of TRPV1 and downregulate the function of overactive receptors.
Collapse
|
13
|
Fawley JA, Hofmann ME, Largent-Milnes TM, Andresen MC. Temperature differentially facilitates spontaneous but not evoked glutamate release from cranial visceral primary afferents. PLoS One 2015; 10:e0127764. [PMID: 25992717 PMCID: PMC4439140 DOI: 10.1371/journal.pone.0127764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/20/2015] [Indexed: 11/19/2022] Open
Abstract
Temperature is fundamentally important to all biological functions including synaptic glutamate release. Vagal afferents from the solitary tract (ST) synapse on second order neurons in the nucleus of the solitary tract, and glutamate release at this first central synapse controls autonomic reflex function. Expression of the temperature-sensitive Transient Receptor Potential Vanilloid Type 1 receptor separates ST afferents into C-fibers (TRPV1+) and A-fibers (TRPV1-). Action potential-evoked glutamate release is similar between C- and A-fiber afferents, but TRPV1 expression facilitates a second form of synaptic glutamate release in C-fibers by promoting substantially more spontaneous glutamate release. The influence of temperature on different forms of glutamate release is not well understood. Here we tested how temperature impacts the generation of evoked and spontaneous release of glutamate and its relation to TRPV1 expression. In horizontal brainstem slices of rats, activation of ST primary afferents generated synchronous evoked glutamate release (ST-eEPSCs) at constant latency whose amplitude reflects the probability of evoked glutamate release. The frequency of spontaneous EPSCs in these same neurons measured the probability of spontaneous glutamate release. We measured both forms of glutamate from each neuron during ramp changes in bath temperature of 4-5 °C. Spontaneous glutamate release from TRPV1+ closely tracked with these thermal changes indicating changes in the probability of spontaneous glutamate release. In the same neurons, temperature changed axon conduction registered as latency shifts but ST-eEPSC amplitudes were constant and independent of TRPV1 expression. These data indicate that TRPV1-operated glutamate release is independent of action potential-evoked glutamate release in the same neurons. Together, these support the hypothesis that evoked and spontaneous glutamate release originate from two pools of vesicles that are independently modulated and are distinct processes.
Collapse
Affiliation(s)
- Jessica A. Fawley
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| | - Mackenzie E. Hofmann
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Tally M. Largent-Milnes
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Michael C. Andresen
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
14
|
Shp-1 dephosphorylates TRPV1 in dorsal root ganglion neurons and alleviates CFA-induced inflammatory pain in rats. Pain 2015; 156:597-608. [DOI: 10.1097/01.j.pain.0000460351.30707.c4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Reactive airways dysfunction syndrome and considerations of irritant-induced Asthma. J Occup Environ Med 2014; 55:1118-20. [PMID: 23969509 DOI: 10.1097/jom.0b013e318229a679] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Occupational Medicine Forum is prepared by the ACOEM Occupational and Environmental Medical Practice Committee and does not necessarily represent an official ACOEM position. The Forum is intended for health professionals and is not intended to provide medical or legal advice, including illness prevention, diagnosis or treatment, or regulatory compliance. Such advice should be obtained directly from a physician and/or attorney.
Collapse
|
16
|
Steinberg X, Lespay-Rebolledo C, Brauchi S. A structural view of ligand-dependent activation in thermoTRP channels. Front Physiol 2014; 5:171. [PMID: 24847275 PMCID: PMC4017155 DOI: 10.3389/fphys.2014.00171] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/11/2014] [Indexed: 11/26/2022] Open
Abstract
Transient Receptor Potential (TRP) proteins are a large family of ion channels, grouped into seven sub-families. Although great advances have been made regarding the activation and modulation of TRP channel activity, detailed molecular mechanisms governing TRP channel gating are still needed. Sensitive to electric, chemical, mechanical, and thermal cues, TRP channels are tightly associated with the detection and integration of sensory input, emerging as a model to study the polymodal activation of ion channel proteins. Among TRP channels, the temperature-activated kind constitute a subgroup by itself, formed by Vanilloid receptors 1–4, Melastatin receptors 2, 4, 5, and 8, TRPC5, and TRPA1. Some of the so-called “thermoTRP” channels participate in the detection of noxious stimuli making them an interesting pharmacological target for the treatment of pain. However, the poor specificity of the compounds available in the market represents an important obstacle to overcome. Understanding the molecular mechanics underlying ligand-dependent modulation of TRP channels may help with the rational design of novel synthetic analgesics. The present review focuses on the structural basis of ligand-dependent activation of TRPV1 and TRPM8 channels. Special attention is drawn to the dissection of ligand-binding sites within TRPV1, PIP2-dependent modulation of TRP channels, and the structure of natural and synthetic ligands.
Collapse
Affiliation(s)
- Ximena Steinberg
- Faculty of Medicine, Institute of Physiology, Universidad Austral de Chile Campus Isla Teja, Valdivia, Chile ; Faculty of Sciences, Graduate School, Universidad Austral de Chile Campus Isla Teja, Valdivia, Chile
| | - Carolyne Lespay-Rebolledo
- Faculty of Chemical and Pharmaceutical Sciences, Graduate School, Universidad de Chile Santiago, Chile
| | - Sebastian Brauchi
- Faculty of Medicine, Institute of Physiology, Universidad Austral de Chile Campus Isla Teja, Valdivia, Chile
| |
Collapse
|
17
|
Pharmacodynamics of TRPV1 agonists in a bioassay using human PC-3 cells. ScientificWorldJournal 2014; 2014:184526. [PMID: 24688365 PMCID: PMC3929291 DOI: 10.1155/2014/184526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/05/2013] [Indexed: 12/22/2022] Open
Abstract
PURPOSE TRPV1 is a multimodal channel mainly expressed in sensory neurons. We aimed to explore the pharmacodynamics of the TRPV1 agonists, capsaicin, natural capsaicinoids, and piperine in an in vitro bioassay using human PC-3 cells and to examine desensitization and the effect of the specific antagonist SB366791. METHODS PC-3 cells expressing TRPV1 were incubated with Fluo-4. Fluorescence emission changes following exposition to agonists with and without preincubation with antagonists were assessed and referred to maximal fluorescence following the addition of ionomycin. Concentration-response curves were fitted to the Hill equation. RESULTS Capsaicin and piperine had similar pharmacodynamics (E max 204.8 ± 184.3% piperine versus 176.6 ± 35.83% capsaicin, P = 0.8814, Hill coefficient 0.70 ± 0.50 piperine versus 1.59 ± 0.86 capsaicin, P = 0.3752). In contrast, capsaicinoids had lower E max (40.99 ± 6.14% capsaicinoids versus 176.6 ± 35.83% capsaicin, P < 0.001). All the TRPV1 agonists showed significant desensitization after the second exposition and their effects were strongly inhibited by SB366791. CONCLUSION TRPV1 receptor is successfully stimulated by capsaicin, piperine, and natural capsaicinoids. These agonists present desensitization and their effect is significantly reduced by a TRPV1-specific antagonist. In addition, PC-3 cell bioassays proved useful in the study of TRPV1 pharmacodynamics.
Collapse
|
18
|
Chen YF, Zhang JY, Zhao MH, Yan M, Zhao QC, Wu Q, Jin H, Shi GB. The analgesic activity and possible mechanisms of deacetyl asperulosidic acid methyl ester from Ji shi teng in mice. Pharmacol Biochem Behav 2012; 102:585-92. [DOI: 10.1016/j.pbb.2012.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/02/2012] [Accepted: 07/11/2012] [Indexed: 11/29/2022]
|
19
|
Palazzo E, Luongo L, de Novellis V, Rossi F, Marabese I, Maione S. Transient receptor potential vanilloid type 1 and pain development. Curr Opin Pharmacol 2012; 12:9-17. [DOI: 10.1016/j.coph.2011.10.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 02/06/2023]
|
20
|
Brooks SM, Bernstein IL. Irritant-induced airway disorders. Immunol Allergy Clin North Am 2012; 31:747-68, vi. [PMID: 21978855 DOI: 10.1016/j.iac.2011.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Thousands of persons experience accidental high-level irritant exposures each year but most recover and few die. Irritants function differently than allergens because their actions proceed nonspecifically and by nonimmunologic mechanisms. For some individuals, the consequence of a single massive exposure to an irritant, gas, vapor or fume is persistent airway hyperresponsiveness and the clinical picture of asthma, referred to as reactive airways dysfunction syndrome (RADS). Repeated irritant exposures may lead to chronic cough and continual airway hyperresponsiveness. Cases of asthma attributed to repeated irritant-exposures may be the result of genetic and/or host factors.
Collapse
Affiliation(s)
- Stuart M Brooks
- Colleges of Public Health & Medicine, USF Health Science Center, University of South Florida, 13201 Bruce B. Downs Boulevard, Tampa, FL 33612, USA.
| | | |
Collapse
|
21
|
Shi GB, Zhao MH, Zhao QC, Huang Y, Chen YF. Mechanisms involved in the antinociception of petroleum ether fraction from the EtOH extract of Chrysanthemum indicum in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:609-616. [PMID: 21112199 DOI: 10.1016/j.phymed.2010.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/30/2010] [Accepted: 10/14/2010] [Indexed: 05/27/2023]
Abstract
The petroleum ether fraction (PEF) from the EtOH extract of flowers and buds of Chrysanthemum indicum was evaluated on antinociception in mice using chemical and thermal models of nociception. PEF administered orally at doses of 188 and 376 mg/kg produced significant inhibitions on chemical nociception induced by intraperitoneal acetic acid, subplantar formalin or capsaicin injections and on thermal nociception in the tail-flick test and the hot plate test. In the pentobarbital sodium-induced sleep time test and the open-field test, PEF neither enhanced the pentobarbital sodium-induced sleep time nor impaired the motor performance, indicating that the observed antinociception was unrelated to sedation or motor abnormality. In a measurement of core body temperature, PEF did not affect temperature within 80 min. Moreover, PEF-induced antinociception in the capsaicin test was insensitive to naloxone, yohimbine or methylene blue, but was significantly antagonized by atropine and glibenclamide. These results suggested that PEF-produced antinociception might be involvement in the ATP sensitive K+ channels and the mAChRs-ATP sensitive K+ channels pathway. In additional, the antinociception of PEF might attribute to the synergic effects of these two compounds, 2-[[2-[2-[(2-ethylcyclopropyl)methyl] cyclop Cyclopropaneoctanoic and n-hexadecanoic acid, or the property of a single compound, which merited exploring further.
Collapse
Affiliation(s)
- Guo-bing Shi
- Department of Pharmacy, Shen-yang North Hospital, 83# Wenhua Road, Shen-yang 110840, PR China
| | | | | | | | | |
Collapse
|
22
|
Abstract
In recent years, natural products have emerged as modulators of many cellular responses, with potential applications as therapeutic drugs in many disorders. Among them, capsaicin, the pungent agent in chili peppers, has been demonstrated to have a role as a tumor suppressor for prostate cancer. Capsaicin potently suppresses the growth of human prostate carcinoma cells in vitro and in vivo. The antiproliferative activity of capsaicin correlates with oxidative stress induction and apoptosis. Capsaicin also induces ceramide accumulation and endoplasmic reticulum stress in androgen-resistant prostate cells. In androgen-sensitive prostate cancer cells, capsaicin exerts a biphasic effect, promoting growth at low doses and inducing apoptosis at doses over 200 µM. This article will draw upon multiple lines of evidence to provide a comprehensive description on the current state of knowledge that implicates the effect of capsaicin on prostate cancer cells.
Collapse
Affiliation(s)
- Inés Díaz-Laviada
- Department of Biochemistry & Molecular Biology, School of Medicine, University of Alcala, Alcalá de Henares, 28871 Madrid, Spain.
| |
Collapse
|
23
|
Bernabò N, Pistilli MG, Falasca G, Curini V, Garofalo MLA, Turriani M, Mattioli M, Barboni B. Role of TRPV1 channels during the acquisition of fertilizing ability in boar spermatozoa. Vet Res Commun 2011; 34 Suppl 1:S5-8. [PMID: 20437275 DOI: 10.1007/s11259-010-9367-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recently, the transient receptor potential vanilloid type 1 (TRPV1) channel was shown to be involved in capacitation, the process that allows mammalian spermatozoa to acquire their fertilizing ability within the female genital tract. Unfortunately, the role of TRPV1 in this process is still unclear. Thus, the aims of the present work were to 1) investigate the function of TRPV1 in the male gamete signaling system and 2) modulate TRPV1 activity by administering a specific activator, capsaicin, or a specific inhibitor, capsazepin, to spermatozoa during in vitro capacitation. Using confocal microscopy, cellular responses were assessed in terms of changes in 1) cell membrane resting potential, 2) intracellular calcium concentrations, and 3) actin polymerization dynamics. As a result, TRPV1 channels were shown to act as specific cationic channels: their activation led to membrane depolarization and, consequently, the opening of voltage-gated calcium channels and an increase in intracellular calcium concentrations. These ionic events promote actin cytoskeletal depolymerization and a loss of acrosome structure integrity. In contrast, TRPV1 inhibition caused a slowing of the capacitation-dependent increase in intracellular calcium concentrations, a reduction in actin polymerization, and acrosome rupture. In conclusion, these results suggest that TRPV1 channels modulate the major pathways involved in capacitation.
Collapse
Affiliation(s)
- N Bernabò
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kumar PG, Shoeb M. The Role of TRP Ion Channels in Testicular Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:881-908. [DOI: 10.1007/978-94-007-0265-3_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
|
26
|
Palazzo E, Luongo L, de Novellis V, Berrino L, Rossi F, Maione S. Moving towards supraspinal TRPV1 receptors for chronic pain relief. Mol Pain 2010; 6:66. [PMID: 20937102 PMCID: PMC2959024 DOI: 10.1186/1744-8069-6-66] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 10/11/2010] [Indexed: 12/20/2022] Open
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) receptor is a non selective ligand-gated cation channel activated by capsaicin, heat, protons and endogenous lipids termed endovanilloids. As well as peripheral primary afferent neurons and dorsal root ganglia, TRPV1 receptor is also expressed in spinal and supraspinal structures such as those belonging to the endogenous antinociceptive descending pathway which is a circuitry of the supraspinal central nervous system whose task is to counteract pain. It includes periaqueductal grey (PAG) and rostral ventromedial medulla (RVM) whose activation leads to analgesia. Such an effect is associated with a glutamate increase and the activation of OFF and inhibition of ON cell population in the rostral ventromedial medulla (RVM). Activation of the antinociceptive descending pathway via TPRV1 receptor stimulation in the PAG may be a novel strategy for producing analgesia in chronic pain. This review will summarize the more recent insights into the role of TRPV1 receptor within the antinociceptive descending pathway and its possible exploitation as a target for new pain-killer agents in chronic pain conditions, with particular emphasis on the most untreatable pain state: neuropathic pain.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, The Second University of Naples, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Bernabò N, Pistilli MG, Mattioli M, Barboni B. Role of TRPV1 channels in boar spermatozoa acquisition of fertilizing ability. Mol Cell Endocrinol 2010; 323:224-31. [PMID: 20219627 DOI: 10.1016/j.mce.2010.02.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 02/01/2010] [Accepted: 02/19/2010] [Indexed: 01/18/2023]
Abstract
Recently the transient receptor potential vanilloid type 1 (TRPV1) has been described to be involved in the capacitation, the process leading mammalian spermatozoa to acquire full fertilizing ability within the female genital tract. TRPV1 immunolocalization during capacitation and the effect of TRPV1 inhibition by the capsazepin (CPZ) or activation by the capsaicin (CPS) on membrane resting potential, calcium clearance and actin polymerization have been investigated. It was found that the capacitation promoted the translocation of TRPV1 from the post-acrosomal to the apical region of sperm head. Moreover the CPZ induced the progressive drop in intracellular Ca2+ levels during capacitation and the inhibition of actin polymerization in the acrosomal region. On the contrary, the CPS caused the sperm membrane depolarization due to the Na+ influx and the consequent voltage gated calcium channels (VGCC) opening. In conclusion it was suggested that TRPV1 channels modulate the major pathways involved in capacitation.
Collapse
Affiliation(s)
- N Bernabò
- Department of Comparative Biomedical Sciences, University of Teramo, P.zza Aldo Moro 45, 64100 Teramo, Italy
| | | | | | | |
Collapse
|
28
|
Messeguer A, Planells-Cases R, Ferrer-Montiel A. Physiology and pharmacology of the vanilloid receptor. Curr Neuropharmacol 2010; 4:1-15. [PMID: 18615132 DOI: 10.2174/157015906775202995] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The identification and cloning of the vanilloid receptor 1 (TRPV1) represented a significant step for the understanding of the molecular mechanisms underlying the transduction of noxious chemical and thermal stimuli by peripheral nociceptors. TRPV1 is a non-selective cation channel gated by noxious heat, vanilloids and extracellular protons. TRPV1 channel activity is remarkably potentiated by pro-inflammatory agents, a phenomenon that is thought to underlie the peripheral sensitisation of nociceptors that leads to thermal hyperalgesia. Cumulative evidence is building a strong case for the involvement of this receptor in the etiology of both peripheral and visceral inflammatory pain, such as inflammatory bowel disease, bladder inflammation and cancer pain. The validation of TRPV1 receptor as a key therapeutic target for pain management has thrust intensive drug discovery programs aimed at developing orally active antagonists of the receptor protein. Nonetheless, the real challenge of these drug discovery platforms is to develop antagonists that preserve the physiological activity of TRPV1 receptors while correcting over-active channels. This is a condition to ensure normal pro-prioceptive and nociceptive responses that represent a safety mechanism to prevent tissue injury. Recent and exciting advances in the function, dysfunction and modulation of this receptor will be the focus of this review.
Collapse
Affiliation(s)
- Angel Messeguer
- Department of Biological Organic Chemistry, IIQAB-CSIC, J. Girona 23, 080034 Barcelona, Spain
| | | | | |
Collapse
|
29
|
The analgesic effect and mechanism of the combination of sodium ferulate and oxymatrine. Neurochem Res 2010; 35:1368-75. [PMID: 20521101 DOI: 10.1007/s11064-010-0193-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
Sodium ferulate (SF) and Oxymatrine (OMT) were compounds extracted from Chinese herbs, and have been used in clinical treatment of heart and hepatic diseases, respectively, in China for many years. The objective of this study was to examine the analgesic effect and the mechanism of the combined treatment of SF and OMT. Using the animal pain models by applying Acetic Acid Writhing Test and Formalin Test, the combination of SF and OMT showed significant analgesic effect in dose-dependent manner. In vitro, the combined treatment inhibited the increase in intracellular calcium concentration evoked by capsaicin in the dorsal root ganglion neurons. Importantly, a synergistic inhibitory effect of SF and OMT on the capsaicin-induced currents was demonstrated by whole-cell patch-clamp. Our results suggest that SF and OMT cause significant analgesic effect which maybe related to the synergistic inhibition of transient receptor potential vanilloid-1.
Collapse
|
30
|
Abstract
Historically, drug research targeted to pain treatment has focused on trying to prevent the propagation of action potentials in the periphery from reaching the brain rather than pinpointing the molecular basis underlying the initial detection of the nociceptive stimulus: the receptor itself. This has now changed, given that many receptors of nociceptive stimuli have been identified and/or cloned. Transient Receptor Potential (TRP) channels have been implicated in several physiological processes such as mechanical, chemical and thermal stimuli detection. Ten years after the cloning of TRPV1, compelling data has been gathered on the role of this channel in inflammatory and neuropathic states. TRPV1 activation in nociceptive neurons, where it is normally expressed, triggers the release of neuropeptides and transmitters resulting in the generation of action potentials that will be sent to higher CNS areas where they will often be perceived as pain. Its activation also will evoke the peripheral release of pro-inflammatory compounds that may sensitize other neurons to physical, thermal or chemical stimuli. For these reasons as well as because its continuous activation causes analgesia, TRPV1 has become a viable drug target for clinical use in the management of pain. This review will provide a general picture of the physiological and pathophysiological roles of the TRPV1 channel and of its structural, pharmacological and biophysical properties. Finally, it will provide the reader with an overall view of the status of the discovery of potential therapeutic agents for the management of chronic and neuropathic pain.
Collapse
Affiliation(s)
- Andrés Jara-Oseguera
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | | | | |
Collapse
|
31
|
Brooks SM. Occupational, Environmental, and Irritant-Induced Cough. Otolaryngol Clin North Am 2010; 43:85-96, ix. [DOI: 10.1016/j.otc.2009.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Membrane-delimited coupling of TRPV1 and mGluR5 on presynaptic terminals of nociceptive neurons. J Neurosci 2009; 29:10000-9. [PMID: 19675234 DOI: 10.1523/jneurosci.5030-08.2009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1) and metabotropic glutamate receptor 5 (mGluR5) located on peripheral sensory terminals have been shown to play critical roles in the transduction and modulation of pain sensation. To date, however, very little is known regarding the significance of functional expression of mGluR5 and TRPV1 on the central terminals of sensory neurons in the dorsal horn of the spinal cord. Here we show that TRPV1 on central presynaptic terminals is coupled to mGluR5 in a membrane-delimited manner, thereby contributing to the modulation of nociceptive synaptic transmission in the substantia gelatinosa neurons of the spinal cord. Further, our results demonstrate that TRPV1 is involved in the pain behaviors induced by spinal mGluR5 activation, and diacylglycerol produced by the activation of mGluR5 mediates functional coupling of mGluR5 and TRPV1 on the presynaptic terminals. Thus, mGluR5-TRPV1 coupling on the central presynaptic terminals of nociceptive neurons may be an important mechanism underlying central sensitization under pathological pain conditions.
Collapse
|
33
|
Saunders CI, Fassett RG, Geraghty DP. Up-regulation of TRPV1 in mononuclear cells of end-stage kidney disease patients increases susceptibility to N-arachidonoyl-dopamine (NADA)-induced cell death. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1019-26. [PMID: 19619644 DOI: 10.1016/j.bbadis.2009.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/19/2009] [Accepted: 07/13/2009] [Indexed: 01/06/2023]
Abstract
Transient receptor potential vanilloid (TRPV) 1 channels function as sensors for a variety of noxious and inflammatory signals, including capsaicin, heat and protons, and are up-regulated under inflammatory conditions. As end-stage kidney disease (ESKD) is associated with chronic inflammation, impaired immunity and depressed lymphocyte numbers, we sought to determine whether altered TRPV1 (and related TRPV2) expression in immune cells might be a contributing factor. TRPV1 and TRPV2 mRNA expression in peripheral blood mononuclear cells (PBMC) was similar in controls and ESKD patients by quantitative real-time RT-PCR. However, using immunocytochemistry, TRPV1-immunoreactivity was significantly higher and TRPV2-immunoreactivity was significantly lower in PBMC from ESKD patients compared to controls. The plant-derived TRPV1 agonists, capsaicin and resiniferatoxin (RTX) and the putative endovanilloid/endocannabinoids, N-arachidonoyl-dopamine (NADA) and N-oleoyl-dopamine (OLDA), induced concentration-dependent death of PBMC from healthy donors with a rank order of potency of RTX>NADA>OLDA>>capsaicin. TRPV1 (5'-iodoresiniferatoxin) and cannabinoid (CB2; AM630) receptor antagonists blocked the cytotoxic effect of NADA. In subsequent experiments, PBMC from ESKD patients exhibited significantly increased susceptibility to NADA-induced death compared to PBMC from controls. The apparent up-regulation of TRPV1 may be a response to the inflammatory milieu in which PBMC exist in ESKD and may be responsible for the increased susceptibility of these cells to NADA-induced death, providing a possible explanation as to why ESKD patients have reduced lymphocyte counts and impaired immune function. Thus, TRPV1 (and possibly CB2) antagonists may have potential for the treatment of immune dysfunction in ESKD.
Collapse
Affiliation(s)
- Cassandra I Saunders
- School of Human Life Sciences, University of Tasmania, Locked Bag 1320, Launceston, Tasmania, 7250, Australia
| | | | | |
Collapse
|
34
|
Benedikt J, Samad A, Ettrich R, Teisinger J, Vlachova V. Essential role for the putative S6 inner pore region in the activation gating of the human TRPA1 channel. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1279-88. [PMID: 19422860 DOI: 10.1016/j.bbamcr.2009.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 04/06/2009] [Accepted: 04/27/2009] [Indexed: 11/28/2022]
Abstract
The ankyrin transient receptor potential channel TRPA1 is a sensory neuron-specific channel that is gated by various proalgesic agents such as allyl isothiocyanate (AITC), deep cooling or highly depolarizing voltages. How these disparate stimuli converge on the channel protein to open/close its ion-conducting pore is unknown. We identify several residues within the S6 inner pore-forming region of human TRPA1 that contribute to AITC and voltage-dependent gating. Alanine substitution in the conserved mid-S6 proline (P949A) strongly affected the activation/deactivation and ion permeation. The P949A was functionally restored by substitution with a glycine but not by the introduction of a proline at positions -1, -2 or +1, which indicates that P949 is structurally required for the normal functioning of the TRPA1 channel. Mutation N954A generated a constitutively open phenotype, suggesting a role in stabilizing the closed conformation. Alanine substitutions in the distal GXXXG motif decreased the relative permeability of the channel for Ca(2+) and strongly affected its activation/deactivation properties, indicating that the distal G962 stabilizes the open conformation. G958, on the other hand, provides additional tuning leading to decreased channel activity. Together these findings provide functional support for the critical role of the putative inner pore region in controlling the conformational changes that determine the transitions between the open and close states of the TRPA1 channel.
Collapse
Affiliation(s)
- Jan Benedikt
- Department of Cellular Neurophysiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
35
|
Cross-inhibition between native and recombinant TRPV1 and P2X3 receptors. Pain 2009; 143:26-36. [DOI: 10.1016/j.pain.2009.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 12/16/2008] [Accepted: 01/05/2009] [Indexed: 11/19/2022]
|
36
|
Jara-Oseguera A, Llorente I, Rosenbaum T, Islas LD. Properties of the inner pore region of TRPV1 channels revealed by block with quaternary ammoniums. ACTA ACUST UNITED AC 2009; 132:547-62. [PMID: 18955595 PMCID: PMC2571972 DOI: 10.1085/jgp.200810051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) nonselective cationic channel is a polymodal receptor that activates in response to a wide variety of stimuli. To date, little structural information about this channel is available. Here, we used quaternary ammonium ions (QAs) of different sizes in an effort to gain some insight into the nature and dimensions of the pore of TRPV1. We found that all four QAs used, tetraethylammonium (TEA), tetrapropylammonium (TPrA), tetrabutylammonium, and tetrapentylammonium, block the TRPV1 channel from the intracellular face of the channel in a voltage-dependent manner, and that block by these molecules occurs with different kinetics, with the bigger molecules becoming slower blockers. We also found that TPrA and the larger QAs can only block the channel in the open state, and that they interfere with the channel's activation gate upon closing, which is observed as a slowing of tail current kinetics. TEA does not interfere with the activation gate, indicating that this molecule can reside in its blocking site even when the channel is closed. The dependence of the rate constants on the size of the blocker suggests a size of around 10 A for the inner pore of TRPV1 channels.
Collapse
Affiliation(s)
- Andrés Jara-Oseguera
- Departamento de Fisiología, Facultad de Medicina, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, D.F., 04510, México
| | | | | | | |
Collapse
|
37
|
Zhang P, Luo Y, Chasan B, González-Perrett S, Montalbetti N, Timpanaro GA, Cantero MDR, Ramos AJ, Goldmann WH, Zhou J, Cantiello HF. The multimeric structure of polycystin-2 (TRPP2): structural-functional correlates of homo- and hetero-multimers with TRPC1. Hum Mol Genet 2009; 18:1238-51. [PMID: 19193631 DOI: 10.1093/hmg/ddp024] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Polycystin-2 (PC2, TRPP2), the gene product of PKD2, whose mutations cause autosomal dominant polycystic kidney disease (ADPKD), belongs to the superfamily of TRP channels. PC2 is a non-selective cation channel, with multiple subconductance states. In this report, we explored structural and functional properties of PC2 and whether the conductance substates represent monomeric contributions to the channel complex. A kinetic analysis of spontaneous channel currents of PC2 showed that four intrinsic, non-stochastic subconductance states, which followed a staircase behavior, were both pH- and voltage-dependent. To confirm the oligomeric contributions to PC2 channel function, heteromeric PC2/TRPC1 channel complexes were also functionally assessed by single channel current analysis. Low pH inhibited the PC2 currents in PC2 homomeric complexes, but failed to affect PC2 currents in PC2/TRPC1 heteromeric complexes. Amiloride, in contrast, abolished PC2 currents in both the homomeric PC2 complexes and the heteromeric PC2/TRPC1 complexes, thus PC2/TRPC1 complexes have distinct functional properties from the homomeric complexes. The topological features of the homomeric PC2-, TRPC1- and heteromeric PC2/TRPC1 channel complexes, assessed by atomic force microscopy, were consistent with structural tetramers. TRPC1 homomeric channels had different average diameter and protruding height when compared with the PC2 homomers. The contribution of individual monomers to the PC2/TRPC1 hetero-complexes was easily distinguishable. The data support tetrameric models of both the PC2 and TRPC1 channels, where the overall conductance of a particular channel will depend on the contribution of the various functional monomers in the complex.
Collapse
Affiliation(s)
- Peng Zhang
- Nephrology Division and Electrophysiology Core, Massachusetts General Hospital East, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Monet M, Gkika D, Lehen'kyi V, Pourtier A, Vanden Abeele F, Bidaux G, Juvin V, Rassendren F, Humez S, Prevarsakaya N. Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:528-39. [PMID: 19321128 DOI: 10.1016/j.bbamcr.2009.01.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 12/30/2008] [Accepted: 01/05/2009] [Indexed: 10/21/2022]
Abstract
The physiological role, the mechanisms of activation, as well as the endogenous regulators for the non-selective cationic channel TRPV2 are not known so far. In the present work we report that endogenous lysophospholipids such as lysophosphatidylcholine (LPC) and lysophosphatidylinositol (LPI) induce a calcium influx via TRPV2 channel. This activation is dependent on the length of the side-chain and the nature of the lysophospholipid head-group. TRPV2-mediated calcium uptake stimulated by LPC and LPI occurred via Gq/Go-protein and phosphatidylinositol-3,4 kinase (PI3,4K) signalling. We have shown that the mechanism of TRPV2 activation induced by LPC and LPI is due to the TRPV2 channel translocation to the plasma membrane. The activation of TRPV2 channel by LPC and LPI leads to an increase in the cell migration of the prostate cancer cell line PC3. We have demonstrated that TRPV2 is directly involved in both steady-state and lysophospholipid-stimulated cancer cell migration. Thus, for the first time, we have identified one of the natural regulators of TRPV2 channel, one of the mechanisms of TRPV2 activation and regulation, as well as its pathophysiological role in cancer.
Collapse
Affiliation(s)
- Michaël Monet
- Inserm, U-800, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, F-59655 France; Université des Sciences et Technologies de Lille (USTL), Villeneuve d'Ascq, F-59655, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Korepanova A, Pereda-Lopez A, Solomon LR, Walter KA, Lake MR, Bianchi BR, McDonald HA, Neelands TR, Shen J, Matayoshi ED, Moreland RB, Chiu ML. Expression and purification of human TRPV1 in baculovirus-infected insect cells for structural studies. Protein Expr Purif 2008; 65:38-50. [PMID: 19121396 DOI: 10.1016/j.pep.2008.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/11/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
TRPV1 is a ligand-gated cation channel that is involved in acute thermal nociception and neurogenic inflammation. By using the GP67 signal peptide, high levels of full-length human TRPV1 was expressed in High Five insect cells using the baculovirus expression system. The functional activity of the expressed TRPV1 was confirmed by whole-cell ligand-gated ion flux recordings in the presence of capsaicin and low pH and via specific ligand binding to the isolated cellular membranes. Efficient solubilization and purification protocols have resulted in milligram amounts of detergent-solubilized channel at 80-90% purity after Ni2+ IMAC chromatography and size exclusion chromatography. Western blot analysis of amino and carboxyl terminal domains and MS of tryptic digestions of purified protein confirmed the presence of the full-length human TRPV1. Specific ligand binding experiments confirmed the protein integrity of the purified human TRPV1.
Collapse
Affiliation(s)
- Alla Korepanova
- Department of Structural Biology, R46Y, Abbott Laboratories, Bldg. AP10-LL8, 100 Abbott Park Rd., Abbott Park, IL 60064-6098, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Malagarie-Cazenave S, Olea-Herrero N, Vara D, Díaz-Laviada I. Capsaicin, a component of red peppers, induces expression of androgen receptor via PI3K and MAPK pathways in prostate LNCaP cells. FEBS Lett 2008; 583:141-7. [DOI: 10.1016/j.febslet.2008.11.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 11/19/2008] [Accepted: 11/22/2008] [Indexed: 11/29/2022]
|
41
|
Woo DH, Jung SJ, Zhu MH, Park CK, Kim YH, Oh SB, Lee CJ. Direct activation of transient receptor potential vanilloid 1(TRPV1) by diacylglycerol (DAG). Mol Pain 2008; 4:42. [PMID: 18826653 PMCID: PMC2576176 DOI: 10.1186/1744-8069-4-42] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 10/01/2008] [Indexed: 02/07/2023] Open
Abstract
The capsaicin receptor, known as transient receptor potential channel vanilloid subtype 1 (TRPV1), is activated by a wide range of noxious stimulants and putative ligands such as capsaicin, heat, pH, anandamide, and phosphorylation by protein kinase C (PKC). However, the identity of endogenous activators for TRPV1 under physiological condition is still debated. Here, we report that diacylglycerol (DAG) directly activates TRPV1 channel in a membrane-delimited manner in rat dorsal root ganglion (DRG) neurons. 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane-permeable DAG analog, elicited intracellular Ca2+ transients, cationic currents and cobalt uptake that were blocked by TRPV1-selective antagonists, but not by inhibitors of PKC and DAG lipase in rat DRG neurons or HEK 293 cells heterologously expressing TRPV1. OAG induced responses were about one fifth of capsaicin induced signals, suggesting that OAG displays partial agonism. We also found that endogenously produced DAG can activate rat TRPV1 channels. Mutagenesis of rat TRPV1 revealed that DAG-binding site is at Y511, the same site for capsaicin binding, and PtdIns(4,5)P2binding site may not be critical for the activation of rat TRPV1 by DAG in heterologous system. We propose that DAG serves as an endogenous ligand for rat TRPV1, acting as an integrator of Gq/11-coupled receptors and receptor tyrosine kinases that are linked to phospholipase C.
Collapse
Affiliation(s)
- Dong Ho Woo
- Center for Neural Science, Future Fusion Technology Laboratory, Korea Institute of Science and Technology, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Molecular modeling of the full-length human TRPV1 channel in closed and desensitized states. J Membr Biol 2008; 223:161-72. [PMID: 18791833 DOI: 10.1007/s00232-008-9123-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
The transient receptor potential vanilloid subtype 1 (TRPV1) is a member of the TRP family gated by vanilloids, heat, and protons. Structurally, TRPV1 subunits have a modular architecture underlying different functionalities, namely stimuli recognition, channel gating, ion selectivity, subunit oligomerization, and regulation by intracellular signaling molecules. Considering modular organization and recent structural information in the ion channel field, we have modeled a full-length TRPV1 by assembly of its major modules: the cytosolic N-terminal, C-terminal, and membrane-spanning region. For N-terminal, we used the ankyrin repeat structure fused with the N-end segment. The membrane domain was modeled with the structure of the eukaryotic, voltage-gated Kv1.2 K+ channel. The C-terminus was cast using the coordinates of HCN channels. The extensive structure-function data available for TRPV1 was used to validate the models in terms of the location of molecular determinants of function in the structure. Additionally, the current information allowed the modeling of the vanilloid receptor in the closed and desensitized states. The closed state shows the N-terminal module highly exposed and accessible to adenosine triphosphate and the C-terminal accessible to phosphoinositides. In contrast, the desensitized state depicts the N-terminal and C-terminal modules close together, compatible with an interaction mediated by Ca2+ -calmodulin complex. These models identify potential previously unrecognized intra- and interdomain interactions that may play an important functional role. Although the molecular models should be taken with caution, they provide a helpful tool that yields testable hypothesis that further our understanding on ion channels work in terms of underlying protein structure.
Collapse
|
44
|
Cheung WS, Calvo RR, Tounge BA, Zhang SP, Stone DR, Brandt MR, Hutchinson T, Flores CM, Player MR. Discovery of piperidine carboxamide TRPV1 antagonists. Bioorg Med Chem Lett 2008; 18:4569-72. [DOI: 10.1016/j.bmcl.2008.07.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/08/2008] [Accepted: 07/10/2008] [Indexed: 11/30/2022]
|
45
|
Larrucea C, Castro P, Sepulveda FJ, Wandersleben G, Roa J, Aguayo LG. Sustained increase of Ca+2 oscillations after chronic TRPV1 receptor activation with capsaicin in cultured spinal neurons. Brain Res 2008; 1218:70-6. [DOI: 10.1016/j.brainres.2008.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 04/10/2008] [Accepted: 04/18/2008] [Indexed: 12/17/2022]
|
46
|
Molecular processes in biological thermosensation. JOURNAL OF BIOPHYSICS 2008; 2008:602870. [PMID: 20130806 PMCID: PMC2814129 DOI: 10.1155/2008/602870] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 04/16/2008] [Indexed: 12/30/2022]
Abstract
Since thermal gradients are almost everywhere, thermosensation could represent one of the oldest sensory transduction processes that evolved in organisms. There are many examples of temperature changes affecting the physiology of living cells. Almost all classes of biological macromolecules in a cell (nucleic acids, lipids, proteins) can present a target of the temperature-related stimuli. This review discusses some features of different classes of temperature-sensing molecules as well as molecular and biological processes that involve thermosensation. Biochemical, structural, and thermodynamic approaches are applied in the paper to organize the existing knowledge on molecular mechanisms of thermosensation. Special attention is paid to the fact that thermosensitive function cannot be assigned to any particular functional group or spatial structure but is rather of universal nature. For instance, the complex of thermodynamic, structural, and functional features of hemoglobin family proteins suggests their possible accessory role as “molecular thermometers”.
Collapse
|
47
|
Kim SR, Chung YC, Chung ES, Park KW, Won SY, Bok E, Park ES, Jin BK. Roles of transient receptor potential vanilloid subtype 1 and cannabinoid type 1 receptors in the brain: neuroprotection versus neurotoxicity. Mol Neurobiol 2008; 35:245-54. [PMID: 17917113 DOI: 10.1007/s12035-007-0030-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/30/1999] [Accepted: 01/05/2007] [Indexed: 12/18/2022]
Abstract
Transient receptor potential vanilloid subtype 1 (TRPV1), also known as vanilloid receptor 1 (VR1), is a nonselective cation channel that is activated by a variety of ligands, such as exogenous capsaicin (CAP) or endogenous anandamide (AEA), as well as products of lipoxygenases. Cannabinoid type 1 (CB1) receptor belongs to the G protein-coupled receptor superfamily and is activated by cannabinoids such as AEA and exogenous Delta-9-tetrahydrocannabinol (THC). TRPV1 and CB1 receptors are widely expressed in the brain and play many significant roles in various brain regions; however, the issue of whether TRPV1 or CB1 receptors mediate neuroprotection or neurotoxicity remains controversial. Furthermore, functional crosstalk between these two receptors has been recently reported. It is therefore timely to review current knowledge regarding the functions of these two receptors and to consider new directions of investigation on their roles in the brain.
Collapse
Affiliation(s)
- Sang R Kim
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, 443-479, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Mizrak SC, van Dissel-Emiliani FMF. Transient receptor potential vanilloid receptor-1 confers heat resistance to male germ cells. Fertil Steril 2008; 90:1290-3. [PMID: 18222434 DOI: 10.1016/j.fertnstert.2007.10.081] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/22/2007] [Accepted: 10/22/2007] [Indexed: 11/28/2022]
Abstract
Testicular hyperthermia in mice lacking transient receptor potential vanilloid receptor-1 results in a much more rapid and massive germ cell depletion from the seminiferous tubules than in wild-type animals, indicating that this receptor protects germ cells against heat stress.
Collapse
Affiliation(s)
- Sefika Canan Mizrak
- Fertility Laboratory, Center for Reproductive Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
49
|
Conway SJ. TRPing the switch on pain: an introduction to the chemistry and biology of capsaicin and TRPV1. Chem Soc Rev 2008; 37:1530-45. [DOI: 10.1039/b610226n] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Susankova K, Ettrich R, Vyklicky L, Teisinger J, Vlachova V. Contribution of the putative inner-pore region to the gating of the transient receptor potential vanilloid subtype 1 channel (TRPV1). J Neurosci 2007; 27:7578-85. [PMID: 17626219 PMCID: PMC6672601 DOI: 10.1523/jneurosci.1956-07.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The transient receptor potential vanilloid receptor-1 (TRPV1) is a sensory neuron-specific nonselective cation channel that is gated in response to various noxious stimuli: pungent vanilloids, low pH, noxious heat, and depolarizing voltages. By its analogy to K+ channels, the S6 inner helix domain of TRPV1 (Y666-G683) is a prime candidate to form the most constricted region of the permeation pathway and might therefore encompass an as-yet-unmapped gate of the channel. Using alanine-scanning mutagenesis, we identified 16 of 17 residues, that when mutated affected the functionality of the TRPV1 channel with respect to at least one stimulus modality. T670A was the only substitution producing the wild-type channel phenotype, whereas Y666A and N676A were nonfunctional but present at the plasma membrane. The periodicity of the functional effects of mutations within the TRPV1 inner pore region is consistent with an alpha-helical structure in which T670 and A680 might play the roles of two bending "hinges."
Collapse
Affiliation(s)
- Klara Susankova
- Department of Cellular Neurophysiology, Institute of Physiology, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic, and
| | - Rudiger Ettrich
- Laboratory of High Performance Computing, Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic and Institute of Physical Biology, University of South Bohemia, 373 33 Nove Hrady, Czech Republic
| | - Ladislav Vyklicky
- Department of Cellular Neurophysiology, Institute of Physiology, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic, and
| | - Jan Teisinger
- Department of Cellular Neurophysiology, Institute of Physiology, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic, and
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic, and
| |
Collapse
|