1
|
Pérez-Moreno AM, Aranda CJ, Torres MJ, Mayorga C, Paris JL. Immunomodulatory potential of rapamycin-loaded mesoporous silica nanoparticles: pore size-dependent drug loading, release, and in vitro cellular responses. Drug Deliv Transl Res 2024; 14:3467-3476. [PMID: 38561566 PMCID: PMC11499431 DOI: 10.1007/s13346-024-01575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Rapamycin is a potent immunosuppressive drug that has been recently proposed for a wide range of applications beyond its current clinical use. For some of these proposed applications, encapsulation in nanoparticles is key to ensure therapeutic efficacy and safety. In this work, we evaluate the effect of pore size on mesoporous silica nanoparticles (MSN) as rapamycin nanocarriers. The successful preparation of MSN with 4 different pore sizes was confirmed by dynamic light scattering, zeta potential, transmission electron microscopy and N2 adsorption. In these materials, rapamycin loading was pore size-dependent, with smaller pore MSN exhibiting greater loading capacity. Release studies showed sustained drug release from all MSN types, with larger pore MSN presenting faster release kinetics. In vitro experiments using the murine dendritic cell (DC) line model DC2.4 showed that pore size influenced the biological performance of MSN. MSN with smaller pore sizes presented larger nanoparticle uptake by DC2.4 cells, but were also associated with slightly larger cytotoxicity. Further evaluation of DC2.4 cells incubated with rapamycin-loaded MSN also demonstrated a significant effect of MSN pore size on their immunological response. Notably, the combination of rapamycin-loaded MSN with an inflammatory stimulus (lipopolysaccharide, LPS) led to changes in the expression of DC activation markers (CD40 and CD83) and in the production of the proinflammatory cytokine TNF-α compared to LPS-treated DC without nanoparticles. Smaller-pored MSN induced more substantial reductions in CD40 expression while eliciting increased CD83 expression, indicating potential immunomodulatory effects. These findings highlight the critical role of MSN pore size in modulating rapamycin loading, release kinetics, cellular uptake, and subsequent immunomodulatory responses.
Collapse
Affiliation(s)
- Ana M Pérez-Moreno
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina- IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - Carlos J Aranda
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina- IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain
| | - María José Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina- IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, España
| | - Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina- IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain.
- Allergy Unit, Hospital Regional Universitario de Málaga-HRUM, Málaga, Spain.
| | - Juan L Paris
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina- IBIMA Plataforma BIONAND. RICORS "Enfermedades inflamatorias", Málaga, Spain.
| |
Collapse
|
2
|
Al-Hajj S, Lemoine R, Chadet S, Goumard A, Legay L, Roxburgh E, Heraud A, Deluce N, Lamendour L, Burlaud-Gaillard J, Gatault P, Büchler M, Roger S, Halimi JM, Baron C. High extracellular sodium chloride concentrations induce resistance to LPS signal in human dendritic cells. Cell Immunol 2023; 384:104658. [PMID: 36566700 DOI: 10.1016/j.cellimm.2022.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Recent evidence showed that in response to elevated sodium dietary intakes, many body tissues retain Na+ ions for long periods of time and can reach concentrations up to 200 mM. This could modulate the immune system and be responsible for several diseases. However, studies brought contrasted results and the effects of external sodium on human dendritic cell (DC) responses to danger signals remain largely unknown. Considering their central role in triggering T cell response, we tested how NaCl-enriched medium influences human DCs properties. We found that DCs submitted to high extracellular Na+ concentrations up to 200 mM remain viable and maintain the expression of specific DC markers, however, their maturation, chemotaxis toward CCL19, production of pro-inflammatory cytokines and ROS in response to LPS were also partially inhibited. In line with these results, the T-cell allostimulatory capacity of DCs was also inhibited. Finally, our data indicate that high NaCl concentrations triggered the phosphorylation of SGK1 and ERK1/2 kinases. These results raised the possibility that the previously reported pro-inflammatory effects of high NaCl concentrations on T cells might be counterbalanced by a downregulation of DC activation.
Collapse
Affiliation(s)
- Sally Al-Hajj
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Roxane Lemoine
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Stéphanie Chadet
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Annabelle Goumard
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Laura Legay
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Ellena Roxburgh
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Audrey Heraud
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Nora Deluce
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Lucille Lamendour
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Julien Burlaud-Gaillard
- U1259 Morphogenesis and Antigenicity of HIV and Hepatitis virus (MAVIVH), University of Tours, Tours, France; IBISA Facility of Electronic Microscopy, University Hospital of Tours, Tours, France
| | - Philippe Gatault
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Mathias Büchler
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Sébastien Roger
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France.
| | - Jean-Michel Halimi
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Christophe Baron
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| |
Collapse
|
3
|
Wang D, Cassady K, Zou Z, Zhang X, Feng Y. Progress on the efficacy and potential mechanisms of rapamycin in the treatment of immune thrombocytopenia. Hematology 2022; 27:1282-1289. [DOI: 10.1080/16078454.2022.2151230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dan Wang
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | | | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University, Chongqing, People’s Republic of China
| | - Xi Zhang
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Yimei Feng
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
4
|
Machcińska M, Kotur M, Jankowska A, Maruszewska-Cheruiyot M, Łaski A, Kotkowska Z, Bocian K, Korczak-Kowalska G. Cyclosporine A, in Contrast to Rapamycin, Affects the Ability of Dendritic Cells to Induce Immune Tolerance Mechanisms. Arch Immunol Ther Exp (Warsz) 2021; 69:27. [PMID: 34632525 PMCID: PMC8502748 DOI: 10.1007/s00005-021-00632-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/16/2021] [Indexed: 12/25/2022]
Abstract
Following organ transplantation, it is essential that immune tolerance is induced in the graft recipient to reduce the risk of rejection and avoid complications associated with the long-term use of immunosuppressive drugs. Immature dendritic cells (DCs) are considered to promote transplant tolerance and may minimize the risk of graft rejection. The aim of the study was to evaluate the effects of immunosuppressive agents: rapamycin (Rapa) and cyclosporine A (CsA) on generation of human tolerogenic DCs (tolDCs) and also to evaluate the ability of these cells to induce mechanisms of immune tolerance. tolDCs were generated in the environment of Rapa or CsA. Next, we evaluated the effects of these agents on surface phenotypes (CD11c, MHC II, CD40, CD80, CD83, CD86, CCR7, TLR2, TLR4), cytokine production (IL-4, IL-6, IL-10, IL-12p70, TGF-β), phagocytic capacity and resistant to lipopolysaccharide activation of these DCs. Moreover, we assessed ability of such tolDCs to induce T cell activation and apoptosis, Treg differentiation and production of Th1- and Th2-characteristic cytokine profile. Data obtained in this study demonstrate that rapamycin is effective at generating maturation-resistant tolDCs, however, does not change the ability of these cells to induce mechanisms of immune tolerance. In contrast, CsA affects the ability of these cells to induce mechanisms of immune tolerance, but is not efficient at generating maturation-resistant tolDCs.
Collapse
Affiliation(s)
- Maja Machcińska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland. .,Present address: Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland.
| | - Monika Kotur
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Jankowska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marta Maruszewska-Cheruiyot
- Laboratory of Parasitology, General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Artur Łaski
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Zuzanna Kotkowska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Katarzyna Bocian
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Grażyna Korczak-Kowalska
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Zaza G, Leventhal J, Signorini L, Gambaro G, Cravedi P. Effects of Antirejection Drugs on Innate Immune Cells After Kidney Transplantation. Front Immunol 2019; 10:2978. [PMID: 31921213 PMCID: PMC6930910 DOI: 10.3389/fimmu.2019.02978] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Over the last decades, our understanding of adaptive immune responses to solid organ transplantation increased considerably and allowed development of immunosuppressive drugs targeting key alloreactive T cells mechanism. As a result, rates of acute rejection dropped and short-term graft survival improved significantly. However, long-term outcomes are still disappointing. Recently, increasing evidence supports that innate immune responses plays roles in allograft rejection and represents a valuable target to further improve long-term allograft survival. Innate immune cells are activated by molecules with stereotypical motifs produced during injury (i.e., damage-associated molecular patterns, DAMPS) or infection (i.e., pathogen-associated molecular patterns, PAMPs). Activated innate immune cells can exert direct pro- and anti-inflammatory effects, while also priming adaptive immune responses. These cells are activated after transplantation by multiple stimuli, including ischemia-reperfusion injury, rejection, and infections. Data from animal models of graft rejection, show that inhibition of innate immunity promotes development of tolerance. Therefore, understanding mechanisms of innate immunity is important to improve graft outcomes. This review discusses effects of currently used immunosuppressive agents on innate immune responses in kidney transplantation.
Collapse
Affiliation(s)
- Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Jeremy Leventhal
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lorenzo Signorini
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Giovanni Gambaro
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Cangemi M, Montico B, Faè DA, Steffan A, Dolcetti R. Dissecting the Multiplicity of Immune Effects of Immunosuppressive Drugs to Better Predict the Risk of de novo Malignancies in Solid Organ Transplant Patients. Front Oncol 2019; 9:160. [PMID: 30972289 PMCID: PMC6445870 DOI: 10.3389/fonc.2019.00160] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/25/2019] [Indexed: 12/15/2022] Open
Abstract
De novo malignancies constitute an emerging cause of morbidity after solid organ transplant (SOT), significantly affecting the long-term survival of transplant recipients. Pharmacologic immunosuppression may functionally impair the immunosurveillance in these patients, thereby increasing the risk of cancer development. Nevertheless, the multiplicity and heterogeneity of the immune effects induced by immunosuppressive drugs limit the current possibilities to reliably predict the risk of de novo malignancy in SOT patients. Therefore, there is the pressing need to better characterize the immune dysfunctions induced by the different immunosuppressive regimens administered to prevent allograft rejection to tailor more precisely the therapeutic schedule and decrease the risk of de novo malignancies. We herein highlight the impact exerted by different classes of immunosuppressants on the most relevant immune cells, with a particular focus on the effects on dendritic cells (DCs), the main regulators of the balance between immunosurveillance and tolerance.
Collapse
Affiliation(s)
- Michela Cangemi
- Immunopathology and Cancer Biomarkers, Translational Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers, Translational Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Damiana A Faè
- Immunopathology and Cancer Biomarkers, Translational Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Translational Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Riccardo Dolcetti
- Translational Research Institute, University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Stead SO, McInnes SJP, Kireta S, Rose PD, Jesudason S, Rojas-Canales D, Warther D, Cunin F, Durand JO, Drogemuller CJ, Carroll RP, Coates PT, Voelcker NH. Manipulating human dendritic cell phenotype and function with targeted porous silicon nanoparticles. Biomaterials 2017; 155:92-102. [PMID: 29175084 DOI: 10.1016/j.biomaterials.2017.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DC) are the most potent antigen-presenting cells and are fundamental for the establishment of transplant tolerance. The Dendritic Cell-Specific Intracellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN; CD209) receptor provides a target for dendritic cell therapy. Biodegradable and high-surface area porous silicon (pSi) nanoparticles displaying anti-DC-SIGN antibodies and loaded with the immunosuppressant rapamycin (Sirolimus) serve as a fit-for-purpose platform to target and modify DC. Here, we describe the fabrication of rapamycin-loaded DC-SIGN displaying pSi nanoparticles, the uptake efficiency into DC and the extent of nanoparticle-induced modulation of phenotype and function. DC-SIGN antibody displaying pSi nanoparticles favourably targeted and were phagocytosed by monocyte-derived and myeloid DC in whole human blood in a time- and dose-dependent manner. DC preconditioning with rapamycin-loaded nanoparticles, resulted in a maturation resistant phenotype and significantly suppressed allogeneic T-cell proliferation.
Collapse
Affiliation(s)
| | - Steven J P McInnes
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Svjetlana Kireta
- Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Australia
| | - Peter D Rose
- University of Adelaide, Department of Medicine, Adelaide, Australia
| | - Shilpanjali Jesudason
- University of Adelaide, Department of Medicine, Adelaide, Australia; Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Australia
| | - Darling Rojas-Canales
- Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Australia
| | - David Warther
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS -ENSCM-UM2-UM1, Ecole Nationale Supérieure de Chimie de Montpellier, 34296, Montpellier, France
| | - Frédérique Cunin
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS -ENSCM-UM2-UM1, Ecole Nationale Supérieure de Chimie de Montpellier, 34296, Montpellier, France
| | - Jean-Olivier Durand
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS -ENSCM-UM2-UM1, Ecole Nationale Supérieure de Chimie de Montpellier, 34296, Montpellier, France
| | - Christopher J Drogemuller
- University of Adelaide, Department of Medicine, Adelaide, Australia; Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Australia
| | - Robert P Carroll
- University of Adelaide, Department of Medicine, Adelaide, Australia; Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Australia
| | - P Toby Coates
- University of Adelaide, Department of Medicine, Adelaide, Australia; Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Australia.
| | - Nicolas H Voelcker
- Future Industries Institute, University of South Australia, Adelaide, Australia; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, Australia; Monash Institute of Medical Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
8
|
Campos-Acuña J, Pérez F, Narváez E, Campos-Mora M, Gajardo T, Catalán D, Aguillón JC, Pino-Lagos K. Rapamycin-conditioned dendritic cells activated with monophosphoryl lipid-A promote allograft acceptance in vivo. Immunotherapy 2015; 7:101-10. [PMID: 25713986 DOI: 10.2217/imt.14.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIM To date, there is no human dendritic cell (DC) based therapy to prevent allograft rejection in transplanted patients. Here, we evaluate a potential protocol using a murine in vivo transplant model. MATERIALS & METHODS We generated murine bone marrow-derived DCs (BM-DCs), modulated with rapamycin (Rapa) and activated with monophosphoryl lipid A (Rapamycin-treated and monophosphoryl lipid A-matured DCs [Rapa-mDCs]). DCs phenotype was evaluated by flow cytometry, cytokine production by ELISA and their T-cell stimulatory ability was tested in co-cultures with CD4(+) T cells. Using an in vivo skin graft model, we evaluated DCs tolerogenicity. RESULTS In vitro, Rapa-mDCs exhibit a semi-mature phenotype given by intermediate levels of co-stimulatory molecules and cytokines, and inhibit CD4(+) T-cell proliferation. In vivo, skin-grafted mice treated with Rapa-mDCs show high allograft survival, accumulation of Foxp3(+) Tregs and cytokine pattern modification. CONCLUSION Rapa-mDCs re-educate the inflammatory microenvironment, promoting skin-allograft survival.
Collapse
Affiliation(s)
- Javier Campos-Acuña
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, 3er Piso, Pabellon I, Santiago 8380453, Chile
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The innate immune system is central for the maintenance of tissue homeostasis and quickly responds to local or systemic perturbations by pathogenic or sterile insults. This rapid response must be metabolically supported to allow cell migration and proliferation and to enable efficient production of cytokines and lipid mediators. This Review focuses on the role of mammalian target of rapamycin (mTOR) in controlling and shaping the effector responses of innate immune cells. mTOR reconfigures cellular metabolism and regulates translation, cytokine responses, antigen presentation, macrophage polarization and cell migration. The mTOR network emerges as an integrative rheostat that couples cellular activation to the environmental and intracellular nutritional status to dictate and optimize the inflammatory response. A detailed understanding of how mTOR metabolically coordinates effector responses by myeloid cells will provide important insights into immunity in health and disease.
Collapse
Affiliation(s)
- Thomas Weichhart
- Medical University of Vienna, Institute of Medical Genetics, Währingerstrasse 10, 1090 Vienna, Austria
| | - Markus Hengstschläger
- Medical University of Vienna, Institute of Medical Genetics, Währingerstrasse 10, 1090 Vienna, Austria
| | - Monika Linke
- Medical University of Vienna, Institute of Medical Genetics, Währingerstrasse 10, 1090 Vienna, Austria
| |
Collapse
|
10
|
The emerging role of mTOR signalling in antibacterial immunity. Immunol Cell Biol 2014; 92:346-53. [PMID: 24518980 DOI: 10.1038/icb.2014.3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/14/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic homeostasis that is highly conserved in evolution. Recent evidence has revealed the existence of a complex interplay between mTOR signalling and immunity. We review here the emerging role of mTOR signalling in the regulation of Toll-like receptor-dependent innate responses and in the activation of T cells and antigen-presenting cells. We also highlight the importance of amino-acid starvation-driven mTOR inhibition in the control of autophagy and intracellular bacterial clearance.
Collapse
|
11
|
Wang GY, Zhang Q, Yang Y, Chen WJ, Liu W, Jiang N, Chen GH. Rapamycin combined with allogenic immature dendritic cells selectively expands CD4+CD25+Foxp3+ regulatory T cells in rats. Hepatobiliary Pancreat Dis Int 2012; 11:203-208. [PMID: 22484590 DOI: 10.1016/s1499-3872(12)60149-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dendritic cells (DCs) can initiate the expansion of regulatory T cells (Tregs), which play an indispensable role in inducing transplantation tolerance. Some studies have investigated the effect of the immunosuppressant rapamycin (Rapa) on Tregs in vitro. However, the in vivo effect of Rapa combined with immature DCs (iDCs) on Tregs is unknown. This study was undertaken to determine whether allogenic iDCs combined with a short course of Rapa have the ability to selectively expand the CD4+CD25+Foxp3+ Tregs in a rat model. METHODS Brown Norway rats were injected intravenously with 2X10(6) Lewis iDCs followed by 1 mg/kg per day Rapa intraperitoneally for 7 consecutive days. On day 8, the levels of CD4+CD25+Foxp3+ Treg cells in peripheral blood and spleen cells were analyzed by flow cytometry. IL-2, IL-4, TGF-beta1, and IFN-gamma levels in serum were assessed by ELISA. The experimental animals were divided into four groups: control, Rapa-treated, iDC-treated, and combination-treated. RESULTS CD4+CD25+Foxp3+ Tregs comprised 7%-8% of CD4+ T cells in control rats. Rapa combined with iDCs enhanced this percentage in the peripheral blood and spleen. However, the levels of Tregs did not significantly change after treatment with Rapa or iDCs alone. The levels of CD4+CD25-Foxp3+ T cells and CD4+CD25+Foxp3- T cells in CD4+ T cells did not significantly change in the combined group. The TGF-beta1 level in serum from the combined group increased significantly compared with the other groups. CONCLUSIONS A significantly higher percentage of CD4+ CD25+ Foxp3+ Tregs was found in rats treated with allogenic iDCs and a short course of Rapa, along with an increase in the TGF-beta1 level in serum. This improved protocol may be a promising therapeutic strategy to increase Tregs, which are beneficial to the induction of peritransplant tolerance.
Collapse
Affiliation(s)
- Guo-Ying Wang
- Liver Transplantation Center, Third Affiliated Hospital, Transplantation Research Institute, Sun Yat-Sen University, Organ Transplantation Research Center of Guangdong Province, Guangzhou 510630, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Wang GY, Yang Y, Li H, Zhang J, Li MR, Zhang Q, Chen GH. Rapamycin combined with donor immature dendritic cells promotes liver allograft survival in association with CD4(+) CD25(+) Foxp3(+) regulatory T cell expansion. Hepatol Res 2012; 42:192-202. [PMID: 22103959 DOI: 10.1111/j.1872-034x.2011.00909.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIM To determine whether donor immature dendritic cells (imDCs) combined with a short postoperative course of rapamycin (Rapa) has the ability to expand the CD4(+) CD25(+) Foxp3(+) regulatory T (Treg) cells and prolong liver allograft survival. METHODS Orthotopic liver transplantation (OLT) was performed from Lewis rats to Brown Norway recipients. Three days before transplantation, animals were injected intravenously with 2 × 10(6) donor bone marrow-derived imDCs. Recipient rats (the combined treated group) also received Rapa for 7 d after liver transplantation. Additional groups received either imDCs alone, Rapa alone, or saline alone. Every six recipients from each group were killed at 14 days, 28 days after OLT. The changes of CD4(+) CD25(+) Foxp3(+) Treg cells in peripheral blood and spleen, histological changes of liver grafts, and serum cytokine levels were investigated. The other six recipients were left in each group to observe the animal survival. RESULTS Donor imDCs followed by a short postoperative course of Rapa induced long-term allograft survival. The percentage of CD4(+) CD25(+) Foxp3(+) Treg cells in CD4(+) T cells in the combination treatment group were significantly higher compared with the acute rejection group. Moreover, within the CD4(+) CD25(+) T cell population the combination treatment recipients maintained a higher incidence of Foxp3(+) T cells compared with the other groups. Despite the lower serum levels of interleukin (IL)-2, IL-12, and interferon-γ in the combined treated group, the cytokine levels in the combined treated group at 7 days after OLT was nearly twice that at 3 days after OLT but decreased significantly compared with the other groups at 28 days after OLT. Serum IL-10 level in the combined treated group was higher than the other groups. CONCLUSIONS A single imDC infusion followed by a short postoperative course of Rapa prolongs liver allograft survival and enhances the expansion of Treg cells. This optimal protocol may be a promising administration protocol for the peritransplant tolerance induction.
Collapse
Affiliation(s)
- Guo-Ying Wang
- Liver Transplantation Center, the Third Affiliated Hospital, Sun Yat-sen University Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Rapamycin and IL-2 reduce lethal acute graft-versus-host disease associated with increased expansion of donor type CD4+CD25+Foxp3+ regulatory T cells. Blood 2011; 118:2342-50. [PMID: 21734238 DOI: 10.1182/blood-2010-10-313684] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous work has demonstrated that both rapamycin (RAPA) and IL-2 enhance CD4⁺CD25⁺Foxp3⁺ regulatory T-cell (Treg) proliferation and function in vitro. We investigated whether the combination of RAPA plus IL-2 could impact acute GVHD induction after bone marrow transplantation (BMT). RAPA plus IL-2 resulted in improved survival and a reduction in acute GVHD lethality associated with an increased expansion of donor type CD4⁺Foxp3⁺ Tregs and reduced CD4⁺CD25⁻ conventional T cells (Tcons). RAPA plus IL-2, but not either drug alone, increased both expansion of donor natural Tregs and conversion of induced Tregs from donor CD25⁻ Tcons while IL-2 alone increased conversion of Tregs from CD25⁻ Tcon. RAPA plus IL-2 treatment resulted in less production of IFN-γ and TNF, cytokines known to be important in the initiation of acute GVHD. These studies indicate that the pharmacologic stimulation of T cells with IL-2 and the suppression of Tcon proliferation with RAPA result in a selective expansion of functional Tregs and suppression of acute GVHD.
Collapse
|
14
|
McMahon G, Weir MR, Li XC, Mandelbrot DA. The evolving role of mTOR inhibition in transplantation tolerance. J Am Soc Nephrol 2011; 22:408-15. [PMID: 21355051 DOI: 10.1681/asn.2010040351] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) plays a key role in the immune response. mTOR inhibitors suppress T cell activation and proliferation and are effective immunosuppressants. Today there is growing interest in their potential role in inducing tolerance after transplantation. mTOR inhibitors induce anergy in naïve T cells, promote the expansion of regulatory T cells, and inhibit the maturation of dendritic cells, thus promoting immunologic tolerance. Here we review the mechanisms by which mTOR inhibitors promote tolerance. We discuss the clinical relevance of these mechanisms and suggest how they might be used in the design of future protocols to induce tolerance.
Collapse
Affiliation(s)
- Gearoid McMahon
- Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
15
|
|
16
|
Double umbilical cord blood transplantation with reduced intensity conditioning and sirolimus-based GVHD prophylaxis. Bone Marrow Transplant 2010; 46:659-67. [PMID: 20697368 DOI: 10.1038/bmt.2010.192] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The main limitations to umbilical cord blood (UCB) transplantation (UCBT) in adults are delayed engraftment, poor immunological reconstitution and high rates of non-relapse mortality (NRM). Double UCBT (DUCBT) has been used to circumvent the issue of low cell dose, but acute GVHD remains a significant problem. We describe our experience in 32 subjects, who underwent DUCBT after reduced-intensity conditioning with fludarabine/melphalan/antithymocyte globulin and who received sirolimus and tacrolimus to prevent acute GVHD. Engraftment of neutrophils occurred in all patients at a median of 21 days, and platelet engraftment occurred at a median of 42 days. Three subjects had grade II-IV acute GVHD (9.4%) and chronic GVHD occurred in four subjects (cumulative incidence 12.5%). No deaths were caused by GVHD and NRM at 100 days was 12.5%. At 2 years, NRM, PFS and OS were 34.4, 31.2 and 53.1%, respectively. As expected, immunologic reconstitution was slow, but PFS and OS were associated with reconstitution of CD4(+) and CD8(+) lymphocyte subsets, suggesting that recovery of adaptive immunity is required for the prevention of infection and relapse after transplantation. In summary, sirolimus and tacrolimus provide excellent GVHD prophylaxis in DUCBT, and this regimen is associated with low NRM after DUCBT.
Collapse
|
17
|
Wang GY, Chen GH, Li H, Huang Y, Zhang J, Jiang N, Chen WJ. Rapamycin inhibits activator protein-1 but not nuclear factor-kappaB activity of mature bone marrow-derived dendritic cells. Transplant Proc 2010; 42:1881-1883. [PMID: 20620542 DOI: 10.1016/j.transproceed.2010.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 04/09/2010] [Indexed: 01/28/2023]
Abstract
Rapamycin (Rapa), a recently introduced immunosuppressive drug, appears to be effective in preventing acute allograft rejection episodes. Its effects on differentiation and maturation of dendritic cells (DCs) have been studied. In this report, we evaluated the effects of Rapa on the intracellular signal transduction pathways in mature DCs. The results showed that Rapa did not depress p65, p50, or IkappaBalpha expression. However, it dramatically reduced activator protein-1 activation. The fact that Rapa exerts a specific effect on activator protein-1 activity in mature DCs may contribute to its unique actions to prevent allograft rejection and induce immune tolerance.
Collapse
Affiliation(s)
- G-Y Wang
- Liver Transplantation Institution, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | |
Collapse
|
18
|
van de Laar L, Buitenhuis M, Wensveen FM, Janssen HLA, Coffer PJ, Woltman AM. Human CD34-derived myeloid dendritic cell development requires intact phosphatidylinositol 3-kinase-protein kinase B-mammalian target of rapamycin signaling. THE JOURNAL OF IMMUNOLOGY 2010; 184:6600-11. [PMID: 20488790 DOI: 10.4049/jimmunol.0903089] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are composed of different subsets that exhibit distinct functionality in the induction and regulation of immune responses. The myeloid DC subsets, including interstitial DCs and Langerhans cells (LCs), develop from CD34+ hematopoietic progenitors via direct DC precursors or monocytes. The molecular mechanisms regulating DC development are still largely unknown and mostly studied in mice. Phosphatidylinositol 3-kinase (PI3K) regulates multiple processes in myeloid cells. This study investigated the role of PI3K signaling in the development of human CD34-derived myeloid DCs. Pharmacologic inhibition of PI3K or one of its downstream targets mTOR reduced interstitial DC and LC numbers in vitro. Increased activity of this signaling module by introduction of constitutively active protein kinase B (PKB/c-Akt) increased the yields of human DC precursors in vitro as well as in transplanted beta2-microglobulin-/- NOD/SCID mice in vivo. Signaling inhibition during differentiation did not affect the acquisition of a DC phenotype, whereas proliferation and survival strongly depended on intact PI3K-PKB-mTOR signaling. Interestingly, however, this pathway became redundant for survival regulation upon terminal differentiation, which was associated with an altered expression of apoptosis regulating genes. Although dispensable for costimulatory molecule expression, the PI3K-PKB-mTOR signaling module was required for other important processes associated with DC function, including Ag uptake, LPS-induced cytokine secretion, CCR7 expression, and T cell stimulation. Thus, PI3K-PKB-mTOR signaling plays a crucial role in the development of functional CD34-derived myeloid DCs. These findings could be used as a strategy to manipulate DC subset distribution and function to regulate immunity.
Collapse
Affiliation(s)
- Lianne van de Laar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|