1
|
Steinhauser C, Yakac A, Markgraf W, Kromnik S, Döcke A, Talhofer P, Thiele C, Malberg H, Sommer U, Baretton GB, Füssel S, Thomas C, Putz J. Assessing Biomarkers of Porcine Kidneys under Normothermic Machine Perfusion-Can We Gain Insight into a Marginal Organ? Int J Mol Sci 2024; 25:10280. [PMID: 39408610 PMCID: PMC11476884 DOI: 10.3390/ijms251910280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
To identify potentially transplantable organs in a pool of marginal kidneys, 33 porcine slaughterhouse kidneys were perfused for 4 h with whole blood. During the normothermic perfusion, plasma, urine, and tissue samples were taken. Several biomarkers for tubule injury, endothelial activation, and inflammatory response were evaluated for a potential correlation with macroscopic appearance, histology, and filtration activity. Generally, biomarker levels increased during perfusion. TLR-4, EDN-1, and NGAL were not associated with any classification. In contrast, a steeper increase in NAG and IL-6 in plasma correlated with a poor macroscopic appearance at 4 h, indicating a higher inflammatory response in the kidneys with worse macroscopy early on, potentially due to more damage at the tubules. Although long-term effects on the graft could not be assessed in this setting, early observation under machine perfusion with whole blood was feasible. It allowed the assessment of kidneys under conditions comparable to reperfusion. This setting could give surgeons further insight into the quality of marginal kidneys and an opportunity to pre-treat them.
Collapse
Affiliation(s)
- Carla Steinhauser
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Abdulbaki Yakac
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Wenke Markgraf
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Susanne Kromnik
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Andreas Döcke
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Philipp Talhofer
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Christine Thiele
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Hagen Malberg
- Institute of Biomedical Engineering, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Ulrich Sommer
- Institute of Pathology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Gustavo B. Baretton
- Institute of Pathology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Susanne Füssel
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Christian Thomas
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| | - Juliane Putz
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01309 Dresden, Germany
| |
Collapse
|
2
|
Zhai X, Lou H, Hu J. Five-gene signature predicts acute kidney injury in early kidney transplant patients. Aging (Albany NY) 2022; 14:2628-2644. [PMID: 35320116 PMCID: PMC9004575 DOI: 10.18632/aging.203962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/18/2021] [Indexed: 12/04/2022]
Abstract
Patients with acute kidney injury (AKI) show high morbidity and mortality, and a lack of effective biomarkers increases difficulty in its early detection. Weighted gene co-expression network analysis (WGCNA) detected a total of 22 gene modules and 6 miRNA modules, of which 4 gene modules and 3 miRNA modules were phenotypically co-related. Functional analysis revealed that these modules were related to different molecular pathways, which mainly involved PI3K-Akt signaling pathway and ECM-receptor interaction. The brown modules related to transplantation mainly involved immune-related pathways. Finally, five genes with the highest AUC were used to establish a diagnosis and prediction model of AKI. The model showed a high area under curve (AUC) in the training set and validation set, and their prediction accuracy for AKI was as high as 100%. Similarly, the prediction accuracy of AKI after 24 h in the 0 h transplant sample was 100%. This study may provide new features for the diagnosis and prediction of AKI after kidney transplantation, and facilitate the diagnosis and drug development of AKI in kidney transplant patients.
Collapse
Affiliation(s)
- Xia Zhai
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua 321000, China
| | - Hongqiang Lou
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua 321000, China
| | - Jing Hu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua 321000, China
| |
Collapse
|
3
|
Bi H, Zhang M, Wang J, Long G. The mRNA landscape profiling reveals potential biomarkers associated with acute kidney injury AKI after kidney transplantation. PeerJ 2020; 8:e10441. [PMID: 33312771 PMCID: PMC7703406 DOI: 10.7717/peerj.10441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background This study aims to identify potential biomarkers associated with acute kidney injury (AKI) post kidney transplantation. Material and Methods Two mRNA expression profiles from Gene Expression Omnibus repertory were downloaded, including 20 delayed graft function (DGF) and 68 immediate graft function (IGF) samples. Differentially expressed genes (DEGs) were identified between DGF and IGF group. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis of DEGs were performed. Then, a protein-protein interaction analysis was performed to extract hub genes. The key genes were searched by literature retrieval and cross-validated based on the training dataset. An external dataset was used to validate the expression levels of key genes. Receiver operating characteristic curve analyses were performed to evaluate diagnostic performance of key genes for AKI. Results A total of 330 DEGs were identified between DGF and IGF samples, including 179 up-regulated and 151 down-regulated genes. Of these, OLIG3, EBF3 and ETV1 were transcription factor genes. Moreover, LEP, EIF4A3, WDR3, MC4R, PPP2CB, DDX21 and GPT served as hub genes in PPI network. EBF3 was significantly up-regulated in validation GSE139061 dataset, which was consistently with our initial gene differential expression analysis. Finally, we found that LEP had a great diagnostic value for AKI (AUC = 0.740). Conclusion EBF3 may be associated with the development of AKI following kidney transplantation. Furthermore, LEP had a good diagnostic value for AKI. These findings provide deeper insights into the diagnosis and management of AKI post renal transplantation.
Collapse
Affiliation(s)
- Hui Bi
- Department of Nephrology, Tianjin Union Medical Center, Tianjin, China
| | - Min Zhang
- Department of Nephrology, Tianjin Union Medical Center, Tianjin, China
| | - Jialin Wang
- Department of Nephrology, Tianjin Union Medical Center, Tianjin, China
| | - Gang Long
- Department of Nephrology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
4
|
von Moos S, Akalin E, Mas V, Mueller TF. Assessment of Organ Quality in Kidney Transplantation by Molecular Analysis and Why It May Not Have Been Achieved, Yet. Front Immunol 2020; 11:833. [PMID: 32477343 PMCID: PMC7236771 DOI: 10.3389/fimmu.2020.00833] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022] Open
Abstract
Donor organ shortage, growing waiting lists and substantial organ discard rates are key problems in transplantation. The critical importance of organ quality in determining long-term function is becoming increasingly clear. However, organ quality is difficult to predict. The lack of good measures of organ quality is a serious challenge in terms of acceptance and allocation of an organ. The underlying review summarizes currently available methods used to assess donor organ quality such as histopathology, clinical scores and machine perfusion characteristics with special focus on molecular analyses of kidney quality. The majority of studies testing molecular markers of organ quality focused on identifying organs at risk for delayed graft function, yet without prediction of long-term graft outcome. Recently, interest has emerged in looking for molecular markers associated with biological age to predict organ quality. However, molecular gene sets have not entered the clinical routine or impacted discard rates so far. The current review critically discusses the potential reasons why clinically applicable molecular quality assessment using early kidney biopsies might not have been achieved yet. Besides a critical analysis of the inherent limitations of surrogate markers used for organ quality, i.e., delayed graft function, the intrinsic methodological limitations of studies assessing organ quality will be discussed. These comprise the multitude of unpredictable hits as well as lack of markers of nephron mass, functional reserve and regenerative capacity.
Collapse
Affiliation(s)
- Seraina von Moos
- Division of Nephrology, University Hospital Zürich, Zurich, Switzerland
| | - Enver Akalin
- Division of Transplantation Surgery, Montefiore Medical Center, New York City, NY, United States
| | - Valeria Mas
- Division Transplantation Surgery, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Thomas F. Mueller
- Division of Nephrology, University Hospital Zürich, Zurich, Switzerland
| |
Collapse
|
5
|
Cheng Q, Wang L. LncRNA XIST serves as a ceRNA to regulate the expression of ASF1A, BRWD1M, and PFKFB2 in kidney transplant acute kidney injury via sponging hsa-miR-212-3p and hsa-miR-122-5p. Cell Cycle 2020; 19:290-299. [PMID: 31914881 PMCID: PMC7028162 DOI: 10.1080/15384101.2019.1707454] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/17/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022] Open
Abstract
We aimed to identify potential mechanism associated with acute kidney injury (AKI) after kidney transplantation. The dataset GSE53771, which contained 18 zero-hour (ZERO group) and 18 selected post-transplant (POST group) biopsy samples from 18 kidney allografts (8 AKI and 10 controls) was downloaded from GEO database. Differentially expressed miRNAs (DEMIs) were screened using limma package, and bidirectional hierarchical clustering of the DEMIs was performed using the pheatmap package. Target genes of DEMIs were predicted by miRWalk 2.0, miRNA-target genes networks were presented using Cytoscape, protein-protein interaction (PPI) networks were constructed by STRING (version:10.0) database, and competing endogenous RNAs (ceRNA) regulating network were constructed using Cytoscape. In ZERO and POST groups, a total of 4 and 24 differentially expressed miRNAs were obtained in AKI samples compared with control, respectively. Specifically, 71 lncRNAs were obtained to interact with five miRNAs (hsa-miR-215-5p, hsa-miR-192-5p, hsa-miR-422a, hsa-miR-212-3p and hsa-miR-122-5p). Histone chaperone ASF1A (ASF1A) and bromodomain and WD repeat-containing protein 1(BRWD1) were targeted by hsa-miR-212-3p in PPI network. In ceRNA network, lncRNA XIST could interact with four miRNAs (hsa-miR-212-3p, hsa-miR-122-5p, hsa-miR-215-5p, and hsa-miR-192-5p). LncRNA XIST might serve as a ceRNA to sponge hsa-miR-212-3p to regulate the development of AKI via altering the expression of ASF1A/BRWD1. Furthermore, lncRNA XIST could also interact with hsa-miR-122-5p to modulate the expression of PFKFB2 in thyroid hormone signaling pathway and AMPK signaling pathway. LncRNA XIST can serve as a ceRNA to sponge hsa-miR-212-3p and hsa-miR-122-5p to regulate AKI progression via modulating the expression of ASF1A, BRWD1, and PFKFB2.[Figure: see text].
Collapse
Affiliation(s)
- Qian Cheng
- Nephrology Department, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Lin Wang
- Cardiology Department, Dalian Central Hospital, Dalian, Liaoning, China
| |
Collapse
|
6
|
HAVCR1 Affects the MEK/ERK Pathway in Gastric Adenocarcinomas and Influences Tumor Progression and Patient Outcome. Gastroenterol Res Pract 2019; 2019:6746970. [PMID: 31885544 PMCID: PMC6914876 DOI: 10.1155/2019/6746970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 08/16/2019] [Accepted: 10/03/2019] [Indexed: 01/09/2023] Open
Abstract
The hepatitis A virus cellular receptor 1 (HAVCR1) gene as a sensitive and specific biomarker has been reported in various diseases. Especially, HAVCR1 overexpression promotes the development and progression of several human cancers. Hence, we aimed to detect the effects of HAVCR1 on gastric adenocarcinoma (GAC). We first determined the expression of HAVCR1 in GAC tissues compared with normal gastric tissues based on the Cancer Genome Atlas (TCGA) database using bioinformatics analysis methods. Then, we assessed the biological function of HAVCR1 in GAC cells using quantitative real-time reverse transcription-PCR (qRT-PCR), western blot, cell counting kit-8- (CCK-) 8, colony formation assay, wound healing assay, and transwell assay. Our results showed that HAVCR1 expression was upregulated in GAC tissues and positively associated with poor survival. Loss-of-function analyses indicated that knockdown of HAVCR1 inhibited the proliferation, colony formation, migration, and invasion of GAC cells. Furthermore, reduction of HAVCR1 in GAC cells can decrease the expression of phosphorylated MEK/ERK. These findings suggested that HAVCR1 may represent a potential biomarker for GAC prognosis, as well as a novel therapeutic target for GAC treatment.
Collapse
|
7
|
The Small RNA Repertoire of Small Extracellular Vesicles Isolated From Donor Kidney Preservation Fluid Provides a Source for Biomarker Discovery for Organ Quality and Posttransplantation Graft Function. Transplant Direct 2019; 5:e484. [PMID: 31579812 PMCID: PMC6739040 DOI: 10.1097/txd.0000000000000929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
Supplemental Digital Content is available in the text. Delayed graft function (DGF) after kidney transplantation is negatively associated with long-term graft function and survival. Kidney function after transplantation depends on multiple factors, both donor- and recipient-associated. Prediction of posttransplantation graft function would allow timely intervention to optimize patient care and survival. Currently, graft-based predictions can be made based on histological and molecular analyses of 0-hour biopsy samples. However, such analyses are currently not implemented, as biopsy samples represent only a very small portion of the entire graft and are not routinely analyzed in all transplantation centers. Alternatives are thus required.
Collapse
|
8
|
van Balkom BW, Gremmels H, Ooms LS, Toorop RJ, Dor FJ, de Jong OG, Michielsen LA, de Borst GJ, de Jager W, Abrahams AC, van Zuilen AD, Verhaar MC. Proteins in Preservation Fluid as Predictors of Delayed Graft Function in Kidneys from Donors after Circulatory Death. Clin J Am Soc Nephrol 2017; 12:817-824. [PMID: 28476951 PMCID: PMC5477220 DOI: 10.2215/cjn.10701016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Kidney transplantation is the preferred treatment for ESRD, and donor kidney shortage urges proper donor-recipient matching. Zero-hour biopsies provide predictive values for short- and long-term transplantation outcomes, but are invasive and may not reflect the entire organ. Alternative, more representative methods to predict transplantation outcome are required. We hypothesized that proteins accumulating in preservation fluid during cold ischemic storage can serve as biomarkers to predict post-transplantation graft function. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Levels of 158 proteins were measured in preservation fluids from kidneys donated after circulatory death (Maastricht category III) collected in two Dutch centers (University Medical Center Utrecht and Erasmus Medical Center Rotterdam) between 2013 and 2015. Five candidate biomarkers identified in a discovery set of eight kidneys with immediate function (IF) versus eight with delayed graft function (DGF) were subsequently analyzed in a verification set of 40 additional preservation fluids to establish a prediction model. RESULTS Variables tested for their contribution to a prediction model included five proteins (leptin, periostin, GM-CSF, plasminogen activator inhibitor-1, and osteopontin) and two clinical parameters (recipient body mass index [BMI] and dialysis duration) that distinguished between IF and DGF in the discovery set. Stepwise multivariable logistic regression provided a prediction model on the basis of leptin and GM-CSF. Receiver operating characteristic analysis showed an area under the curve (AUC) of 0.87, and addition of recipient BMI generated a model with an AUC of 0.89, outperforming the Kidney Donor Risk Index and the DGF risk calculator, showing AUCs of 0.55 and 0.59, respectively. CONCLUSIONS We demonstrate that donor kidney preservation fluid harbors biomarkers that, together with information on recipient BMI, predict short-term post-transplantation kidney function. Our approach is safe, easy, and performs better than current prediction algorithms, which are only on the basis of clinical parameters.
Collapse
Affiliation(s)
| | | | - Liselotte S.S. Ooms
- Division of Hepato-Pancreato-Biliary and Transplant Surgery, Department of Surgery, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | | | - Frank J.M.F. Dor
- Division of Hepato-Pancreato-Biliary and Transplant Surgery, Department of Surgery, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
- Directorate of Renal and Transplant Services, Imperial College Healthcare National Health Service Trust, London, United Kingdom; and
| | - Olivier G. de Jong
- Departments of Nephrology and Hypertension and
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | - Wilco de Jager
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
9
|
Oda T, Ishimura T, Yokoyama N, Ogawa S, Miyake H, Fujisaw M. Hypoxia-Inducible Factor-1α Expression in Kidney Transplant Biopsy Specimens After Reperfusion Is Associated With Early Recovery of Graft Function After Cadaveric Kidney Transplantation. Transplant Proc 2017; 49:68-72. [PMID: 28104162 DOI: 10.1016/j.transproceed.2016.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Ischemia/reperfusion injury during kidney transplantation (KTx) delays allograft recovery. Hypoxia-inducible factor-1α (HIF-1α) is the key regulator of the protective response to ischemia/reperfusion injury. We evaluated the impact of the HIF-1α signaling pathway on allograft recovery during cadaveric KTx. METHODS Between 1996 and 2015, 46 patients underwent cadaveric KTx. The expression levels of HIF-1α-related proteins, including phosphoinositide 3-kinase, phosphorylated (p)-Akt, p-mammalian target of rapamycin, p-Eukaryotic translation initiation factor 4E, p-S6 ribosomal protein, and HIF-1α, were immunohistochemically evaluated and semi-quantitatively scored in graft biopsy specimens after 1 hour of revascularization. Ten kidney biopsy specimens collected during donor nephrectomy for living KTx were used as controls. Delayed graft function (DGF) was defined as the need for dialysis within 1 week of KTx. We compared the staining scores of each protein and several clinical parameters between patients with and those without DGF. RESULTS Expression levels of all six proteins in specimens after revasculization were elevated compared with those in controls. Thirty-five patients had DGF. Expression levels of PI3K, p-AKT, p-mTOR, p-eIF4E, and HIF-1α were significantly higher in patients without DGF than in those with DGF. Univariate analysis identified expression levels of p-Akt, p-S6, and HIF-1α, in addition to donor type (heart beating/non-heart beating), cold ischemic time, and donor age as significant predictors of DGF. Of these, only expression levels of HIF-1α and donor type were independently associated with DGF in multivariate analysis. CONCLUSIONS Up-regulation of HIF-1α in allografts after reperfusion may be a predictor of early recovery after cadaveric KTx.
Collapse
Affiliation(s)
- T Oda
- Division of Urology, Department of Surgery Related, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - T Ishimura
- Division of Urology, Department of Surgery Related, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - N Yokoyama
- Division of Urology, Department of Surgery Related, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - S Ogawa
- Division of Urology, Department of Surgery Related, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - H Miyake
- Division of Urology, Department of Surgery Related, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - M Fujisaw
- Division of Urology, Department of Surgery Related, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
10
|
Kamińska D, Kościelska-Kasprzak K, Chudoba P, Hałoń A, Mazanowska O, Gomółkiewicz A, Dzięgiel P, Drulis-Fajdasz D, Myszka M, Lepiesza A, Polak W, Boratyńska M, Klinger M. The influence of warm ischemia elimination on kidney injury during transplantation - clinical and molecular study. Sci Rep 2016; 6:36118. [PMID: 27808277 PMCID: PMC5093711 DOI: 10.1038/srep36118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/11/2016] [Indexed: 11/21/2022] Open
Abstract
Kidney surface cooling was used during implantation to assess the effect of warm ischemia elimination on allograft function, histological changes and immune-related gene expression. 23 recipients were randomly assigned to a group operated on with kidney surface cooling during implantation (ice bag technique, IBT group), and the other 23 recipients receiving the contralateral kidney from the same donor were operated on with a standard technique. Three consecutive kidney core biopsies were obtained during the transplantation procedure: after organ recovery, after cold ischemia and after reperfusion. Gene expression levels were determined using low-density arrays (Format 32, TaqMan). The IBT group showed a significantly lower rate of detrimental events (delayed graft function and/or acute rejection, p = 0.015) as well as higher glomerular filtration rate on day 14 (p = 0.026). A greater decrease of MMP9 and LCN2 gene expression was seen in the IBT group during total ischemia (p = 0.003 and p = 0.018). Elimination of second warm ischemia reduced the number of detrimental events after kidney transplantation, and thus had influence on the short-term but not long-term allograft function. Surface cooling of the kidney during vascular anastomosis may reduce some detrimental effects of immune activation resulting from both brain death and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Dorota Kamińska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wrocław 50-556, Poland
| | | | - Paweł Chudoba
- Department of General, Vascular and Transplant Surgery, Wroclaw Medical University, Wrocław 50-556, Poland
| | - Agnieszka Hałoń
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wrocław 50-556, Poland
| | - Oktawia Mazanowska
- Faculty of Medicine and Dentistry, Wroclaw Medical University, Wrocław 50-556, Poland
| | - Agnieszka Gomółkiewicz
- Department of Histology and Embryology, Wroclaw Medical University, 50-368, Wrocław, Poland
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, 50-368, Wrocław, Poland
| | - Dominika Drulis-Fajdasz
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wrocław 50-556, Poland
| | - Marta Myszka
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wrocław 50-556, Poland
| | - Agnieszka Lepiesza
- Department of General, Vascular and Transplant Surgery, Wroclaw Medical University, Wrocław 50-556, Poland
| | - Wojciech Polak
- Department of Surgery, Division of HPB and Transplantation Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maria Boratyńska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wrocław 50-556, Poland
| | - Marian Klinger
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wrocław 50-556, Poland
| |
Collapse
|
11
|
Mourão TB, Mine KL, Campos EF, Medina-Pestana JO, Tedesco-Silva H, Gerbase-DeLima M. Predicting delayed kidney graft function with gene expression in preimplantation biopsies and first-day posttransplant blood. Hum Immunol 2016; 77:353-7. [PMID: 26851369 DOI: 10.1016/j.humimm.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 11/25/2015] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to investigate possible markers for predicting delayed graft function (DGF). To this end we analyzed, in pre-implantation biopsies (PIB) and in first-day post-Tx peripheral blood mononuclear cells (PBMC), the expression of five genes (ACSL4, CUBN, DEFB1, FABP3, GK) through real-time TaqMan PCR assays. These genes were selected from a large scale gene expression study in PIB. DEFB1, FABP3 and GK expression levels in PIB were lower in cases with DGF and, in a multivariate analysis which included these genes and clinical variables, only FABP3 expression remained independently associated with DGF. FABP3 expression lower than -1.32 units of relative expression conferred an odds ratio for DGF of 41.1. Compared to the PBMC of recipients without DGF, recipients with prolonged DGF (pDGF) had lower ACSL4 and higher DEFB1 expression levels. In a multivariate analysis, including PBMC gene expression levels of ACSL4, DEFB1 and TLR4 (data from a previous study with the same patients) and clinical variables, only TLR4 remained independently associated with pDGF. In summary, this study revealed FABP3 expression in PIB as a marker for DGF and disclosed new genes possibly involved in the pathogenesis of DGF.
Collapse
Affiliation(s)
- Tuíla B Mourão
- Instituto de Immunogenética - AFIP, São Paulo, SP, Brazil; Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Karina L Mine
- Instituto de Immunogenética - AFIP, São Paulo, SP, Brazil
| | - Erika F Campos
- Instituto de Immunogenética - AFIP, São Paulo, SP, Brazil; Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Jose O Medina-Pestana
- Universidade Federal de São Paulo, São Paulo, SP, Brazil; Hospital do Rim e Hipertensão, São Paulo, SP, Brazil
| | | | - Maria Gerbase-DeLima
- Instituto de Immunogenética - AFIP, São Paulo, SP, Brazil; Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Lohkamp LN, Öllinger R, Chatzigeorgiou A, Illigens BMW, Siepmann T. Intraoperative biomarkers in renal transplantation. Nephrology (Carlton) 2016; 21:188-99. [DOI: 10.1111/nep.12556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Laura-Nanna Lohkamp
- Department of Neurosurgery with Pediatric Neurosurgery; Charité-University Medicine, Campus Virchow; Berlin Germany
- Center for Clinical Research and Management Education; Division of Health Care Sciences; Dresden International University; Dresden Germany
| | - Robert Öllinger
- Department for General, Visceral and Transplantation Surgery; Charité-University Medicine, Campus Virchow; Berlin Germany
| | - Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry; Medical Faculty Carl Gustav Carus Technische Universität Dresden; Dresden Germany
- Paul-Langerhans Institute Dresden; German Center for Diabetes Research; Dresden Germany
| | - Ben Min-Woo Illigens
- Center for Clinical Research and Management Education; Division of Health Care Sciences; Dresden International University; Dresden Germany
- Department of Neurology; University Hospital Carl Gustav Carus Technische Universität Dresden; Dresden Germany
| | - Timo Siepmann
- Center for Clinical Research and Management Education; Division of Health Care Sciences; Dresden International University; Dresden Germany
- Department of Neurology; Beth Israel Deaconess Medical Center; Harvard Medical School; Boston Massachusetts USA
| |
Collapse
|
13
|
Abstract
Despite its long-standing status as the diagnostic "gold standard", the renal transplant biopsy is limited by a fundamental dependence on descriptive, empirically-derived consensus classification. The recent shift towards personalized medicine has resulted in an increased demand for precise, mechanism-based diagnoses, which is not fully met by the contemporary transplantation pathology standard of care. The expectation is that molecular techniques will provide novel pathogenetic insights that will allow for the identification of more accurate diagnostic, prognostic, and therapeutic targets. Here we review the current state of molecular renal transplantation pathology. Despite significant research activity and progress within the field, routine adoption of clinical molecular testing has not yet been achieved. The recent development of novel molecular platforms suitable for use with formalin-fixed paraffin-embedded tissue will offer potential solution for the major barriers to implementation. The recent incorporation of molecular diagnostic criteria into the 2013 Banff classification is a reflection of progress made and future directions in the area of molecular transplantation pathology. Transcripts related to endothelial injury and NK cell activation have consistently been shown to be associated with antibody-mediated rejection. Prospective multicenter validation and implementation of molecular diagnostics for major entities remains an unmet clinical need in transplantation. It is expected that an integrated system of transplantation pathology diagnosis comprising molecular, morphological, serological, and clinical variables will ultimately provide the greatest diagnostic precision.
Collapse
|
14
|
Adam B, Mengel M. Molecular nephropathology: ready for prime time? Am J Physiol Renal Physiol 2015; 309:F185-8. [PMID: 26017976 DOI: 10.1152/ajprenal.00153.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/20/2015] [Indexed: 11/22/2022] Open
Abstract
In the current era of precision medicine, the existing nephropathology paradigm of light microscopy, immunofluorescence, and electron microscopy will become increasingly insufficient. There will be an expectation to supplement these traditional diagnostic tools with patient-specific information related to a growing understanding of molecular pathophysiology. Next generation sequencing technologies are expected to play a key role in the future of nephropathology, but transcriptomics is poised to represent the first major foray into routine molecular testing. The introduction of molecular techniques into clinical nephropathology has been hindered in part by the reliance of existing platforms on fresh tissue samples. The NanoString gene expression system works with formalin-fixed paraffin-embedded tissue and thus represents a promising solution to this technical barrier that may finally allow for the translation of recent transcriptomics discoveries into the enhancement of patient care. Widespread adoption of this new diagnostic dimension will require ongoing multidisciplinary cooperation between pathologists and clinicians, including molecular testing consensus generation and rigorous multicenter validation.
Collapse
Affiliation(s)
- Benjamin Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Mengel M. Renalomics: Molecular Pathology in Kidney Biopsies. Surg Pathol Clin 2014; 7:443-55. [PMID: 26837449 DOI: 10.1016/j.path.2014.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this article, various omics technologies and their applications in renal pathology (native and transplant biopsies) are reviewed and discussed. Despite significant progress and novel insights derived from these applications, extensive adoption of molecular diagnostics in renal pathology has not been accomplished. Further validation of specific applications leading to increased diagnostic precision in a clinically relevant way is ongoing.
Collapse
Affiliation(s)
- Michael Mengel
- Department of Laboratory Medicine and Pathology, University of Alberta Hospital, 4B1.18 Walter Mackenzie Center, 8440-112 Street, Edmonton T6G2S2, Canada.
| |
Collapse
|
16
|
Investigation of apoptosis-related gene expression levels in preimplantation biopsies as predictors of delayed kidney graft function. Transplantation 2014; 97:1260-5. [PMID: 24503763 DOI: 10.1097/01.tp.0000442579.12285.e8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The purpose of this study was to investigate the expression of the gene coding for the antiapoptotic molecule Bcl-2, the proapoptotic molecule Bax, and the apoptosis executor enzyme caspase-3 in preimplantation renal biopsies (PIB) as markers for delayed graft function. METHODS In this prospective single-center study, gene expression levels were evaluated using real-time TaqMan polymerase chain reaction in PIB of kidneys from 72 deceased donors (DDs) and 18 living donors (LDs). RESULTS CASP3 and BAX expression levels were higher, whereas those of BCL2 were lower, in DD than in LD PIB. In biopsies from DD, BCL2 levels were lower in cases with DGF, whereas no differences were observed concerning CASP3 and BAX. The BAX/BCL2 gene expression ratio greater than 2.29 associated with DGF with an odds ratio of 2.00. A multiple regression analysis including data of TLR4 expression in the first day posttransplant PB from a previous study of our group conducted in the same patients revealed a very strong association of the combination of BAX/BCL2 greater than 2.3 in PIB and TLR4 of 0.95 uRE or lesser in PB with the occurrence of DGF, with OR of 120 and positive and negative predictive values of 91% and 92%, respectively. CONCLUSIONS The power to predict DGF of the combination of high BAX/BCL2 expression in PIB and low TLR4 expression in the first day posttransplant peripheral blood observed in the present study is extremely high, in comparison to any other marker or combinations of markers so far published in the literature.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW To provide an up-to-date overview about the assessment of donor biopsies and to discuss the current problems and chances of preimplantation biopsies for transplant allocation with a focus on the technical work up and the histological variables scored. RECENT FINDINGS Preimplantation biopsy results are the major reason for discarding procured extended donor criteria kidneys in the USA. There is neither a consensus on the work up, nor the reporting of preimplantation donor biopsies, nor the importance of the biopsy findings in the process of allocation. The best available data have been collected in the context of single vs. double kidney transplantation. A clinical risk factor score may help to define kidneys when a preimplantation biopsy is warranted. Punch biopsies using a skin punch device appear to be a reasonable alternative for surgeons fearing needle biopsies. SUMMARY Donor biopsies are very useful as zero-hour biopsies establishing baseline information for comparison with subsequent transplant biopsies. As none of the histological variables and scores provides perfect prediction, preimplantation biopsy results have to be interpreted in the context of all available donor and recipient information.
Collapse
|
18
|
Sickinger S, Maier H, König S, Vallant N, Kofler M, Schumpp P, Schwelberger H, Hermann M, Obrist P, Schneeberger S, Margreiter R, Troppmair J, Pratschke J, Aigner F. Lipocalin-2 as mediator of chemokine expression and granulocyte infiltration during ischemia and reperfusion. Transpl Int 2013; 26:761-9. [PMID: 23701109 DOI: 10.1111/tri.12116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/11/2013] [Accepted: 04/20/2013] [Indexed: 11/28/2022]
Abstract
Lipocalin-2 (Lcn2) expression contributes to ischemia and reperfusion injury (IRI) by enhancing pro-inflammatory responses. The aim of this work was to elucidate the regulation of Lcn2 during hypoxia and its effects on the expression of key chemokines and adhesion molecules. Lcn2 wt and Lcn2(-/-) mice were used in a heterotopic heart transplantation model. Quantitative RT-PCR was applied for chemokine gene expression analysis. Reporter gene studies were used to elucidate the regulation of the Lcn2 promoter by hypoxia. HIF-1β expression led to a 2.4-fold induction of the Lcn2 promoter. Apart from an earlier onset of granulocyte infiltration in the Lcn2 wt setting after 2 h of reperfusion compared with the Lcn2(-/-) setting (P < 0.013), exogenous application of recombinant Lcn2 revealed a trend toward increase of granulocyte infiltration. Analyzed chemokines were expressed significantly higher in the Lcn2 wt setting at 2 h of reperfusion (P ≤ 0.05). The number of apoptotic cells observed in Lcn2(-/-) grafts was significantly higher than in the Lcn2 wt setting. Our results indicate that Lcn2 affects granulocyte infiltration in the reperfused graft by modulating the expression of chemokines, their receptors and the apoptotic rate.
Collapse
Affiliation(s)
- Stephan Sickinger
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Klepacki J, Brunner N, Schmitz V, Klawitter J, Christians U, Klawitter J. Development and validation of an LC-MS/MS assay for the quantification of the trans-methylation pathway intermediates S-adenosylmethionine and S-adenosylhomocysteine in human plasma. Clin Chim Acta 2013; 421:91-7. [PMID: 23499573 DOI: 10.1016/j.cca.2013.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Although increased levels of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) have been implicated as markers for renal and vascular dysfunction, until now there have been no studies investigating their association with clinical post-transplant events such as organ rejection and immunosuppressant nephrotoxicity. METHODS A newly developed and validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the quantification of SAM and SAH in human EDTA plasma was used for a clinical proof-of-concept pilot study. Retrospective analysis was performed using samples from a longitudinal clinical study following de novo kidney transplant patients for the first year (n=16). RESULTS The ranges of reliable response were 8 to 1024 nmol/l for SAM and 16 to 1024 nmol/l for SAH. The inter-day accuracies were 96.7-103.9% and 97.9-99.3% for SAM and SAH, respectively. Inter-day imprecisions were 8.1-9.1% and 8.4-9.8%. The total assay run time was 5 min. SAM and SAH concentrations were significantly elevated in renal transplant patients preceding documented acute rejection and nephrotoxicity events when compared to healthy controls (n=8) as well as transplant patients void of allograft dysfunction (n=8). CONCLUSION The LC-MS/MS assay will provide the basis for further large-scale clinical studies to explore these thiol metabolites as molecular markers for the management of renal transplant patients.
Collapse
Affiliation(s)
- Jacek Klepacki
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045-7503, United States.
| | | | | | | | | | | |
Collapse
|
20
|
Kreepala C, Famulski KS, Chang J, Halloran PF. Comparing molecular assessment of implantation biopsies with histologic and demographic risk assessment. Am J Transplant 2013; 13:415-26. [PMID: 23282320 DOI: 10.1111/ajt.12043] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 01/25/2023]
Abstract
We hypothesized that measurement of previously defined acute kidney injury-induced transcripts at the time of implantation would add a new dimension to existing methods based on donor factors, histology and recipient factors. We analyzed microarray results from implantation biopsies taken after reperfusion from 70 kidneys from 53 deceased donors. We used two definitions of early dysfunction: serum creatinine > 265 umol/L at day 7 posttransplant; and dialysis in the first week. The strongest correlate with early dysfunction was the mean expression of 30 injury transcripts. Older donor and recipient age were associated with early dysfunction, but histologic lesions were not. Prediction was best when the injury transcript expression was combined with donor or recipient age, particularly in standard criteria donors. In contrast, although extended criteria donor kidneys had a high risk of early dysfunction, no variables tested, including injury transcripts, predicted risk significantly, probably because these kidneys were allocated preferentially to old, high risk recipients. The injury transcripts did not predict late function, which was mainly associated with donor age. Thus, measurement of injury-induced transcripts at the time of implantation improves the prediction of early kidney dysfunction, but risk prediction may fail when old kidneys are transplanted into old recipients.
Collapse
Affiliation(s)
- C Kreepala
- Alberta Transplant Applied Genomic Centre, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
21
|
Renders L, Heemann U. Chronic renal allograft damage after transplantation: what are the reasons, what can we do? Curr Opin Organ Transplant 2012; 17:634-9. [PMID: 23080067 DOI: 10.1097/mot.0b013e32835a4bfa] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Chronic renal allograft damage is one of the main problems after kidney transplantation. This review enumerates causes, describes available therapeutic options, and discusses options of the future. RECENT FINDINGS Alloantigen-dependent and alloantigen-independent factors are responsible for allograft damage. Prevention of renal allograft damage starts with interventions that occur surrounding the explantation in cadaveric organs. These include the use of dopamine or machine perfusion systems.Followed by the critical phase of ischemia/reperfusion injury, the LCN2/lipocalin-2, HAVCR1, and p38 MAPK pathway are new players involved in that process. Innate immunity plays a part, too. Cold ischemia time is associated with genes of apoptosis. Nondonor-specific antibodies like antihuman leukocyte antibodies-Ia or angiotensin type 1 receptor may also play a role. Recent research indicates that genetic polymorphism like the Ficolin-2 Ala258Ser polymorphism and the mannose-binding lectin-2 polymorphism are involved in that process. New therapeutic options are rare and in the future. However, there is some evidence that drugs interfering with metalloproteinases, sexual hormones like dihydroandrosterone, and mesenchymal stem cell therapy may be of importance. SUMMARY Taken together, although the understanding of chronic rejection has improved, the available therapeutic options remain scarce.
Collapse
Affiliation(s)
- Lutz Renders
- Department of Nephrology, Technical University of Munic, Munic, Germany.
| | | |
Collapse
|
22
|
Chakraborty S, Kaur S, Guha S, Batra SK. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1826:129-69. [PMID: 22513004 PMCID: PMC3362670 DOI: 10.1016/j.bbcan.2012.03.008] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/06/2012] [Accepted: 03/08/2012] [Indexed: 02/06/2023]
Abstract
Neutrophil gelatinase associated lipocalin (NGAL), also known as oncogene 24p3, uterocalin, siderocalin or lipocalin 2, is a 24kDa secreted glycoprotein originally purified from a culture of mouse kidney cells infected with simian virus 40 (SV-40). Subsequent investigations have revealed that it is a member of the lipocalin family of proteins that transport small, hydrophobic ligands. Since then, NGAL expression has been reported in several normal tissues where it serves to provide protection against bacterial infection and modulate oxidative stress. Its expression is also dysregulated in several benign and malignant diseases. Its small size, secreted nature and relative stability have led to it being investigated as a diagnostic and prognostic biomarker in numerous diseases including inflammation and cancer. Functional studies, conducted primarily on lipocalin 2 (Lcn2), the mouse homologue of human NGAL have revealed that Lcn2 has a strong affinity for iron complexed to both bacterial siderophores (iron-binding proteins) and certain human proteins like norepinephrine. By sequestering iron-laden siderophores, Lcn2 deprives bacteria of a vital nutrient and thus inhibits their growth (bacteriostatic effect). In malignant cells, its proposed functions range from inhibiting apoptosis (in thyroid cancer cells), invasion and angiogenesis (in pancreatic cancer) to increasing proliferation and metastasis (in breast and colon cancer). Ectopic expression of Lcn2 also promotes BCR-ABL induced chronic myelogenous leukemia in murine models. By transporting iron into and out of the cell, NGAL also regulates iron responsive genes. Further, it stabilizes the proteolytic enzyme matrix metalloprotease-9 (MMP-9) by forming a complex with it, and thereby prevents its autodegradation. The factors regulating NGAL expression are numerous and range from pro-inflammatory cytokines like interleukins, tumor necrosis factor-α and interferons to vitamins like retinoic acid. The purpose of this review article is to examine the expression, structure, regulation and biological role of NGAL and critically assess its potential as a novel diagnostic and prognostic marker in both benign and malignant human diseases.
Collapse
Affiliation(s)
- Subhankar Chakraborty
- Department of Biochemistry and Molecular Biology, The UT MD Anderson Cancer Center, Houston, Texas
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, The UT MD Anderson Cancer Center, Houston, Texas
| | - Sushovan Guha
- Departments of Gastroenterology, Hepatology, and Nutrition, The UT MD Anderson Cancer Center, Houston, Texas
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, The UT MD Anderson Cancer Center, Houston, Texas
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
- Eppley Institute for Cancer Research, Department of Surgery, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
23
|
Reinhold SW, Straub RH, Krüger B, Kaess B, Bergler T, Weingart C, Banas MC, Krämer BK, Banas B. Elevated urinary sVCAM-1, IL6, sIL6R and TNFR1 concentrations indicate acute kidney transplant rejection in the first 2weeks after transplantation. Cytokine 2012; 57:379-88. [DOI: 10.1016/j.cyto.2011.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/21/2011] [Accepted: 12/09/2011] [Indexed: 01/07/2023]
|
24
|
Famulski KS, de Freitas DG, Kreepala C, Chang J, Sellares J, Sis B, Einecke G, Mengel M, Reeve J, Halloran PF. Molecular phenotypes of acute kidney injury in kidney transplants. J Am Soc Nephrol 2012; 23:948-58. [PMID: 22343120 DOI: 10.1681/asn.2011090887] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Little is known regarding the molecular phenotype of kidneys with AKI because biopsies are performed infrequently. However, all kidney transplants experience acute injury, making early kidney transplants an excellent model of acute injury, provided the absence of rejection, because donor kidneys should not have CKD, post-transplant biopsies occur relatively frequently, and follow-up is excellent typically. Here, we used histopathology and microarrays to compare indication biopsies from 26 transplants with acute injury with 11 pristine protocol biopsies of stable transplants. Kidneys with acute injury showed increased expression of 394 transcripts associated with the repair response to injury, including many epithelium-like injury molecules tissue, remodeling molecules, and inflammation molecules. Many other genes also predicted the phenotype, including the acute injury biomarkers HAVCR1 and IL18. Pathway analysis of the injury-repair transcripts revealed similarities to cancer, development, and cell movement. The injury-repair transcript score in kidneys with acute injury correlated with reduced graft function, future renal recovery, brain death, and need for dialysis, but not with future graft loss. In contrast, histologic features of acute tubular injury did not correlate with function or with the molecular changes. Thus, the transcripts associated with repair of injury suggest a massive coordinated response of the kidney parenchyma to acute injury, providing both an objective measure for assessing the severity of injury in kidney biopsies and validation for many biomarkers of AKI.
Collapse
Affiliation(s)
- Konrad S Famulski
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mas VR, Mueller TF, Archer KJ, Maluf DG. Identifying biomarkers as diagnostic tools in kidney transplantation. Expert Rev Mol Diagn 2011; 11:183-96. [PMID: 21405969 DOI: 10.1586/erm.10.119] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a critical need for biomarkers for early diagnosis, treatment response, and surrogate end point and outcome prediction in organ transplantation, leading to a tailored and individualized treatment. Genomic and proteomic platforms have provided multiple promising new biomarkers during the last few years. However, there is still no routine application of any of these markers in clinical transplantation. This article will discuss the existing gap between biomarker discovery and clinical application in the kidney transplant setting. Approaches to implementing biomarker monitoring into clinical practice will also be discussed.
Collapse
Affiliation(s)
- Valeria R Mas
- Molecular Transplant Research Laboratory, Transplant Division, Department of Surgery, Molecular Medicine Research Building, Virginia Commonwealth University, 1220 East Broad Street, Richmond, VA 23298, USA.
| | | | | | | |
Collapse
|