1
|
Puskar A, Saadah B, Rauf A, Kasperek SR, Umair M. A primer on contrast agents for magnetic resonance imaging of post‐procedural and follow‐up imaging of islet cell transplant. NANO SELECT 2023. [DOI: 10.1002/nano.202200147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Anessa Puskar
- Carle Illinois College of Medicine Urbana‐Champaign Urbana Illinois USA
| | - Bara Saadah
- Carle Illinois College of Medicine Urbana‐Champaign Urbana Illinois USA
| | - Asad Rauf
- Carle Illinois College of Medicine Urbana‐Champaign Urbana Illinois USA
| | | | - Muhammad Umair
- Department of Radiology Johns Hopkins Baltimore Maryland USA
- Department of Biomedical Engineering University of Illinois Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
2
|
Purich K, Cai H, Yang B, Xu Z, Tessier AG, Black A, Hung RW, Boivin E, Xu B, Wu P, Zhang B, Xin D, Fallone BG, Rajotte RV, Wu Y, Rayat GR. MRI monitoring of transplanted neonatal porcine islets labeled with polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles in a mouse model. Xenotransplantation 2021; 29:e12720. [PMID: 34850455 DOI: 10.1111/xen.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/25/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022]
Abstract
Islet transplantation is a potential treatment option for certain patients with type 1 diabetes; however, it still faces barriers to widespread use, including the lack of tools to monitor islet grafts post-transplantation. This study investigates whether labeling neonatal porcine islets (NPI) with polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles (PVP-SPIO) affects their function, and whether this nanoparticle can be utilized to monitor NPI xenografts with magnetic resonance imaging (MRI) in a mouse model. In vitro, PVP-SPIO-labeled NPI in an agarose gel was visualized clearly by MRI. PVP-SPIO-labeled islets were then transplanted under the kidney capsules of immunodeficient nondiabetic and diabetic mice. All diabetic mice that received transplantation of PVP-SPIO-labeled islets reached normoglycemia. Grafts appeared as hypo-intense areas on MRI and were distinguishable from the surrounding tissues. Following injection of spleen cells from immunocompetent mice, normoglycemic recipient mice became diabetic and islet grafts showed an increase in volume, accompanied by a mixed signal on MRI. Overall, this study demonstrates that PVP-SPIO did not affect the function of NPI that PVP-SPIO-labeled islets were easily seen on MRI, and changes in MRI signals following rejection suggest a potential use of PVP-SPIO-labeled islets to monitor graft viability.
Collapse
Affiliation(s)
- Kieran Purich
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Haolei Cai
- Department of Surgery, 2nd Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
| | - Bin Yang
- Department of Surgery, 2nd Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
| | - Zhihao Xu
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Anthony G Tessier
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Adnan Black
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ryan W Hung
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Eric Boivin
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Baoyou Xu
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ping Wu
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bo Zhang
- Department of Surgery, 2nd Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
| | - Dong Xin
- Department of Surgery, 2nd Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
| | - Biagio Gino Fallone
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Ray V Rajotte
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Yulian Wu
- Department of Surgery, 2nd Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
| | - Gina R Rayat
- Department of Surgery, Ray Rajotte Surgical-Medical Research Institute, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
González-Gómez MA, Belderbos S, Yañez-Vilar S, Piñeiro Y, Cleeren F, Bormans G, Deroose CM, Gsell W, Himmelreich U, Rivas J. Development of Superparamagnetic Nanoparticles Coated with Polyacrylic Acid and Aluminum Hydroxide as an Efficient Contrast Agent for Multimodal Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1626. [PMID: 31731823 PMCID: PMC6915788 DOI: 10.3390/nano9111626] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
Early diagnosis of disease and follow-up of therapy is of vital importance for appropriate patient management since it allows rapid treatment, thereby reducing mortality and improving health and quality of life with lower expenditure for health care systems. New approaches include nanomedicine-based diagnosis combined with therapy. Nanoparticles (NPs), as contrast agents for in vivo diagnosis, have the advantage of combining several imaging agents that are visible using different modalities, thereby achieving high spatial resolution, high sensitivity, high specificity, morphological, and functional information. In this work, we present the development of aluminum hydroxide nanostructures embedded with polyacrylic acid (PAA) coated iron oxide superparamagnetic nanoparticles, Fe3O4@Al(OH)3, synthesized by a two-step co-precipitation and forced hydrolysis method, their physicochemical characterization and first biomedical studies as dual magnetic resonance imaging (MRI)/positron emission tomography (PET) contrast agents for cell imaging. The so-prepared NPs are size-controlled, with diameters below 250 nm, completely and homogeneously coated with an Al(OH)3 phase over the magnetite cores, superparamagnetic with high saturation magnetization value (Ms = 63 emu/g-Fe3O4), and porous at the surface with a chemical affinity for fluoride ion adsorption. The suitability as MRI and PET contrast agents was tested showing high transversal relaxivity (r2) (83.6 mM-1 s-1) and rapid uptake of 18F-labeled fluoride ions as a PET tracer. The loading stability with 18F-fluoride was tested in longitudinal experiments using water, buffer, and cell culture media. Even though the stability of the 18F-label varied, it remained stable under all conditions. A first in vivo experiment indicates the suitability of Fe3O4@Al(OH)3 nanoparticles as a dual contrast agent for sensitive short-term (PET) and high-resolution long-term imaging (MRI).
Collapse
Affiliation(s)
- Manuel Antonio González-Gómez
- Applied Physics Department, NANOMAG Laboratory, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.Y.-V.); (Y.P.); (J.R.)
| | - Sarah Belderbos
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium; (W.G.); (U.H.)
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium
| | - Susana Yañez-Vilar
- Applied Physics Department, NANOMAG Laboratory, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.Y.-V.); (Y.P.); (J.R.)
| | - Yolanda Piñeiro
- Applied Physics Department, NANOMAG Laboratory, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.Y.-V.); (Y.P.); (J.R.)
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&NII Herestraat 49—Box 821, 3000 Leuven, Belgium; (F.C.); (G.B.)
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&NII Herestraat 49—Box 821, 3000 Leuven, Belgium; (F.C.); (G.B.)
| | - Christophe M. Deroose
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven/UZ Leuven, Herestraat 49—Box 7003 59, 3000 Leuven, Belgium;
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium; (W.G.); (U.H.)
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium; (W.G.); (U.H.)
- Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, O&N I, Herestraat 49—Box 505, 3000 Leuven, Belgium
| | - José Rivas
- Applied Physics Department, NANOMAG Laboratory, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.Y.-V.); (Y.P.); (J.R.)
| |
Collapse
|
4
|
Catanzaro V, Digilio G, Capuana F, Padovan S, Cutrin JC, Carniato F, Porta S, Grange C, Filipović N, Stevanović M. Gadolinium-Labelled Cell Scaffolds to Follow-up Cell Transplantation by Magnetic Resonance Imaging. J Funct Biomater 2019; 10:E28. [PMID: 31269673 PMCID: PMC6787680 DOI: 10.3390/jfb10030028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
Cell scaffolds are often used in cell transplantation as they provide a solid structural support to implanted cells and can be bioengineered to mimic the native extracellular matrix. Gadolinium fluoride nanoparticles (Gd-NPs) as a contrast agent for Magnetic Resonance Imaging (MRI) were incorporated into poly(lactide-co-glycolide)/chitosan scaffolds to obtain Imaging Labelled Cell Scaffolds (ILCSs), having the shape of hollow spherical/ellipsoidal particles (200-600 μm diameter and 50-80 μm shell thickness). While Gd-NPs incorporated into microparticles do not provide any contrast enhancement in T1-weighted (T1w) MR images, ILCSs can release Gd-NPs in a controlled manner, thus activating MRI contrast. ILCSs seeded with human mesenchymal stromal cells (hMSCs) were xenografted subcutaneously into either immunocompromised and immunocompetent mice without any immunosuppressant treatments, and the transplants were followed-up in vivo by MRI for 18 days. Immunocompromised mice showed a progressive activation of MRI contrast within the implants due to the release of Gd-NPs in the extracellular matrix. Instead, immunocompetent mice showed poor activation of MRI contrast due to the encapsulation of ILCSs within fibrotic capsules and to the scavenging of released Gd-NPs by phagocytic cells. In conclusion, the MRI follow-up of cell xenografts can report the host cell response to the xenograft. However, it does not strictly report on the viability of transplanted hMSCs.
Collapse
Affiliation(s)
- Valeria Catanzaro
- Department of Science and Technologic Innovation, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, I-15121 Alessandria, Italy
| | - Giuseppe Digilio
- Department of Science and Technologic Innovation, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, I-15121 Alessandria, Italy.
| | - Federico Capuana
- Department of Molecular Biotechnology and Health Science & Center for Molecular Imaging, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Sergio Padovan
- Institute for Biostructures and Bioimages (CNR) c/o Molecular Biotechnology Center Via Nizza 52, 10126 Torino, Italy
| | - Juan C Cutrin
- Department of Molecular Biotechnology and Health Science & Center for Molecular Imaging, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Fabio Carniato
- Department of Science and Technologic Innovation, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, I-15121 Alessandria, Italy
| | - Stefano Porta
- Department of Molecular Biotechnology and Health Science & Center for Molecular Imaging, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Cristina Grange
- Department of Medical Sciences, University of Turin, Via Nizza 52, 10126 Torino, Italy
| | - Nenad Filipović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11000 Belgrade, Serbia
| | - Magdalena Stevanović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Saini S, Korf H, Liang S, Verbeke R, Manshian B, Raemdonck K, Lentacker I, Gysemans C, De Smedt SC, Himmelreich U. Challenges for labeling and longitudinal tracking of adoptively transferred autoreactive T lymphocytes in an experimental type-1 diabetes model. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 32:295-305. [PMID: 30648196 DOI: 10.1007/s10334-018-0720-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Tracking the autoreactive T-cell migration in the pancreatic region after labeling with fluorinated nanoparticles (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio)propionate]-perfluoro-15-crown-5-ether nanoparticles, PDP-PFCE NPs) in a diabetic murine model using 19F MRI. MATERIALS AND METHODS Synthesis of novel PDP-PFCE fluorine tracer was performed for in vitro labeling of T cells. Labeling conditions were optimized using different PDP-PFCE NPs concentrations. For in vivo 19F MRI, mice were longitudinally followed after adoptive transfer of activated, autoreactive, labeled T cells in NOD.SCID mice. RESULTS Established MR protocols were used for challenging T cell labeling to track inflammation in a model of diabetes after successful labeling of CD4+ and CD8+ T cells with PDP-PFCE NPs. However, T cells were difficult to be detected in vivo after their engraftment in animals. DISCUSSION We showed successful in vitro labeling of T cells using novel fluorinated liposomal nanoparticles. However, insufficient and slow accumulation of labeled T cells and subsequent T cell proliferation in the pancreatic region remains as limitations of in vivo cell imaging by 19F MRI.
Collapse
Affiliation(s)
- Shweta Saini
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, Leuven, Belgium
| | | | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
| | - Bella Manshian
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | - Uwe Himmelreich
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Kosinova L, Patikova A, Jirak D, Galisova A, Vojtiskova A, Saudek F, Kriz J. A novel model for in vivo quantification of immediate liver perfusion impairment after pancreatic islet transplantation. Islets 2019; 11:129-140. [PMID: 31498024 PMCID: PMC6930024 DOI: 10.1080/19382014.2019.1651164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Instant Blood-Mediated Inflammatory Reaction (IBMIR) is a major cause of graft loss during pancreatic islet transplantation, leading to a low efficiency of this treatment method and significantly limiting its broader clinical use. Within the procedure, transplanted islets obstruct intrahepatic portal vein branches and consequently restrict blood supply of downstream lying liver tissue, resulting typically in ischemic necrosis. The extent of ischemic lesions is influenced by mechanical obstruction and inflammation, as well as subsequent recanalization and regeneration capacity of recipient liver tissue. Monitoring of immediate liver perfusion impairment, which is directly related to the intensity of post-transplant inflammation and thrombosis (IBMIR), is essential for improving therapeutic and preventive strategies to improve overall islet graft survival. In this study, we present a new experimental model enabling direct quantification of liver perfusion impairment after pancreatic islet transplantation using ligation of hepatic arteries followed by contrast-enhanced magnetic resonance imaging (MRI). The ligation of hepatic arteries prevents the contrast agent from circumventing the portal vein obstruction and enables to discriminate between well-perfused and non-perfused liver tissue. Here we demonstrate that the extent of liver ischemia reliably reflects the number of transplanted islets. This model represents a useful tool for in vivo monitoring of biological effect of IBMIR-alleviating interventions as well as other experiments related to liver ischemia. This technical paper introduces a novel technique and its first application in experimental animals.
Collapse
Affiliation(s)
- Lucie Kosinova
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
- CONTACT Jan Kriz Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague, Czech Republic
| | - Alzbeta Patikova
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Daniel Jirak
- Magnetic Resonance Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Biophysics and Informatics, Charles University, Prague, Czech Republic
| | - Andrea Galisova
- Magnetic Resonance Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alzbeta Vojtiskova
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Frantisek Saudek
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Kriz
- Laboratory of Pancreatic Islets, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
7
|
Garcia Ribeiro RS, Gysemans C, da Cunha JPMCM, Manshian BB, Jirak D, Kriz J, Gallo J, Bañobre-López M, Struys T, De Cuyper M, Mathieu C, Soenen SJ, Gsell W, Himmelreich U. Magnetoliposomes as Contrast Agents for Longitudinal in vivo Assessment of Transplanted Pancreatic Islets in a Diabetic Rat Model. Sci Rep 2018; 8:11487. [PMID: 30065302 PMCID: PMC6068133 DOI: 10.1038/s41598-018-29136-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/12/2018] [Indexed: 01/07/2023] Open
Abstract
Magnetoliposomes (MLs) were synthesized and tested for longitudinal monitoring of transplanted pancreatic islets using magnetic resonance imaging (MRI) in rat models. The rat insulinoma cell line INS-1E and isolated pancreatic islets from outbred and inbred rats were used to optimize labeling conditions in vitro. Strong MRI contrast was generated by islets exposed to 50 µg Fe/ml for 24 hours without any increased cell death, loss of function or other signs of toxicity. In vivo experiments showed that pancreatic islets (50-1000 units) labeled with MLs were detectable for up to 6 weeks post-transplantation in the kidney subcapsular space. Islets were also monitored for two weeks following transplantation through the portal vein of the liver. Hereby, islets labeled with MLs and transplanted under the left kidney capsule were able to correct hyperglycemia and had stable MRI signals until nephrectomy. Interestingly, in vivo MRI of streptozotocin induced diabetic rats transplanted with allogeneic islets demonstrated loss of MRI contrast between 7-16 days, indicative of loss of islet structure. MLs used in this study were not only beneficial for monitoring the location of transplanted islets in vivo with high sensitivity but also reported on islet integrity and hereby indirectly on islet function and rejection.
Collapse
Affiliation(s)
- Rita Sofia Garcia Ribeiro
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | | | - Bella B Manshian
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | - Daniel Jirak
- MR Spectroscopy Unit, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21, Prague, Czech Republic
- Department of Biophysics, Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovska 1, 120 00, Prague 2, Czech Republic
| | - Jan Kriz
- Diabetes Center, Institute for Clinical and Experimental Medicine (IKEM), Videnska 1958/9, 140 21, Prague, Czech Republic
| | - Juan Gallo
- Diagnostic Tools & Methods/Advanced (magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Manuel Bañobre-López
- Diagnostic Tools & Methods/Advanced (magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Tom Struys
- Lab of Histology, Biomedical Research Institute, Hasselt University, Campus Diepenbeek, Agoralaan, B3590, Diepenbeek, Belgium
| | - Marcel De Cuyper
- Laboratory of BioNanoColloids, Interdisciplinary Research Centre, KULAK/KU LEUVEN, Etienne Sabbelaan 53, 8500, Kortrijk, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | - Stefaan J Soenen
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | - Willy Gsell
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU LEUVEN, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Gálisová A, Fábryová E, Jirák D, Sticová E, Lodererová A, Herynek V, Kříž J, Hájek M. Multimodal Imaging Reveals Improvement of Blood Supply to an Artificial Cell Transplant Site Induced by Bioluminescent Mesenchymal Stem Cells. Mol Imaging Biol 2017; 19:15-23. [PMID: 27464498 PMCID: PMC5209399 DOI: 10.1007/s11307-016-0986-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE An artificial site for cell or pancreatic islet transplantation can be created using a polymeric scaffold, even though it suffers subcutaneously from improper vascularisation. A sufficient blood supply is crucial for graft survival and function and can be enhanced by transplantation of mesenchymal stem cells (MSCs). The purpose of this study was to assess the effect of syngeneic MSCs on neoangiogenesis and cell engraftment in an artificial site by multimodal imaging. PROCEDURES MSCs expressing a gene for luciferase were injected into the artificial subcutaneous site 7 days after scaffold implantation. MRI experiments (anatomical and dynamic contrast-enhanced images) were performed on a 4.7-T scanner using gradient echo sequences. Bioluminescent images were acquired on an IVIS Lumina optical imager. Longitudinal examination was performed for 2 months, and one animal was monitored for 16 months. RESULTS We confirmed the long-term presence (lasting more than 16 months) of viable donor cells inside the scaffolds using bioluminescence imaging with an optical signal peak appearing on day 3 after MSC implantation. When compared to controls, the tissue perfusion and vessel permeability in the scaffolds were significantly improved at the site with MSCs with a maximal peak on day 9 after MSC transplantation. CONCLUSIONS Our data suggest that the maximal signal obtained by bioluminescence and magnetic resonance imaging from an artificially created site between 3 and 9 days after MSC transplantation can predict the optimal time range for subsequent cellular or tissue transplantation, including pancreatic islets.
Collapse
Affiliation(s)
- Andrea Gálisová
- Department of RadioDiagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Eva Fábryová
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Daniel Jirák
- Department of RadioDiagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic. .,Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | - Eva Sticová
- Department of Clinical and Transplant Pathology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alena Lodererová
- Department of Clinical and Transplant Pathology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vít Herynek
- Department of RadioDiagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Kříž
- Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Milan Hájek
- Department of RadioDiagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
9
|
Jodal A, Schibli R, Béhé M. Targets and probes for non-invasive imaging of β-cells. Eur J Nucl Med Mol Imaging 2016; 44:712-727. [PMID: 28025655 PMCID: PMC5323463 DOI: 10.1007/s00259-016-3592-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/01/2016] [Indexed: 12/16/2022]
Abstract
β-cells, located in the islets of the pancreas, are responsible for production and secretion of insulin and play a crucial role in blood sugar regulation. Pathologic β-cells often cause serious medical conditions affecting blood glucose level, which severely impact life quality and are life-threatening if untreated. With 347 million patients, diabetes is one of the most prevalent diseases, and will continue to be one of the largest socioeconomic challenges in the future. The diagnosis still relies mainly on indirect methods like blood sugar measurements. A non-invasive diagnostic imaging modality would allow direct evaluation of β-cell mass and would be a huge step towards personalized medicine. Hyperinsulinism is another serious condition caused by β-cells that excessively secrete insulin, like for instance β-cell hyperplasia and insulinomas. Treatment options with drugs are normally not curative, whereas curative procedures usually consist of the resection of affected regions for which, however, an exact localization of the foci is necessary. In this review, we describe potential tracers under development for targeting β-cells with focus on radiotracers for PET and SPECT imaging, which allow the non-invasive visualization of β-cells. We discuss either the advantages or limitations for the various tracers and modalities. This article concludes with an outlook on future developments and discuss the potential of new imaging probes including dual probes that utilize functionalities for both a radioactive and optical moiety as well as for theranostic applications.
Collapse
Affiliation(s)
- Andreas Jodal
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232, Villigen, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institut, 5232, Villigen, Switzerland.
| |
Collapse
|
10
|
Schuetz C, Markmann JF. Islet cell transplant: Update on current clinical trials. CURRENT TRANSPLANTATION REPORTS 2016; 3:254-263. [PMID: 28451515 DOI: 10.1007/s40472-016-0103-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the last 15 years clinical islet transplantation has made the leap from experimental procedure to standard of care for a highly selective group of patients. Due to a risk-benefit calculation involving the required systemic immunosuppression the procedure is only considered in patients with type 1 diabetes, complicated by severe hypoglycemia or end stage renal disease. In this review we summarize current outcomes of the procedure and take a look at ongoing and future improvements and refinements of beta cell therapy.
Collapse
Affiliation(s)
- Christian Schuetz
- Islet transplantation laboratory, Division of Transplantation, Department of Surgery
| | - James F Markmann
- Islet transplantation laboratory, Division of Transplantation, Department of Surgery
| |
Collapse
|
11
|
Kriz J, Fabryova E, Sticova E, Papackova Z, Koblas T, Cahova M, Saudek F. Formation of Cholangiogenic Cysts Following Intrahepatic Islet Transplantation in Streptozotocin Diabetic Rats. Transplant Proc 2015; 47:2763-7. [PMID: 26680089 DOI: 10.1016/j.transproceed.2015.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 06/17/2015] [Accepted: 07/08/2015] [Indexed: 02/07/2023]
Abstract
Permanent hyperinsulinemia and the resulting overstimulation of the insulin receptor signaling pathway is suspected as a trigger of cancer genesis in the livers of type 2 diabetic patients. Liver tissue (LT) surrounding transplanted pancreatic islets (PI) can be permanently exposed to insulin in even higher concentrations than in type 2 diabetic patients. Therefore, this study examines the effect of PI transplantation (Tx) on LT in animals with streptozotocin (STZ)-induced diabetes mellitus. The suboptimal mass (400 or 1000) of isogeneic PI was transplanted into either the portal vein or under the kidney capsule of diabetic Brown Norway (BN) rats. Healthy BN rats treated with 400 isogeneic PI transplanted in the portal vein served as a control group. During the first 6 months after PI Tx, small and infrequent cystic lesions developed in animals with STZ diabetes, irrespective of the Tx site. In 10 months, frequent and complex cystic lesions appeared in these animals. In the control group, several small lesions were detected but not until 10 months after the PI Tx. In summary, STZ is the likely main inductor of hepatic cystic lesions, but the contribution of PI was not confirmed.
Collapse
Affiliation(s)
- J Kriz
- Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - E Fabryova
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - E Sticova
- Department of Clinical and Transplant Pathology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Z Papackova
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - T Koblas
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - M Cahova
- Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - F Saudek
- Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
12
|
Abstract
BACKGROUND Information regarding the longevity of transplanted pancreatic islet grafts could provide valuable information for treatment options. In our previous studies, we showed that isolated autologous pancreatic islets could be labeled with iron oxide nanoparticles and monitored after transplantation using MRI. Here, we report on in vivo monitoring of a secondary damage that occurs at the later stages because of allogeneic immune rejection. METHODS In the proof-of-principle studies, iron oxide-labeled autologous pancreatic islets were transplanted under the renal capsules of nonhuman primates. To demonstrate acute graft loss, the animals were injected with streptozotocin. Graft monitoring was performed by in vivo MRI. Next, iron oxide-labeled allogeneic islets were transplanted into the liver and monitored by MRI after withdrawal of immunosuppression. RESULTS In autologous model, we observed a pronounced drop in graft volume after streptozotocin challenge as assessed by MRI. In allogeneic model of islet transplantation, there was an initial islet loss after the procedure followed by relative stabilization of the graft volume. After immunosuppression was discontinued, there was a noticeable drop in graft volume that gradually continued during the course of the study. Importantly, the loss of graft volume observed on MR preceded the raise in blood glucose. CONCLUSIONS This study demonstrated that in vivo MRI was able to reveal graft volume loss before any changes in blood glucose that can be measured by standard methods. We believe that these results could provide means for clinicians to follow islet fate noninvasively and longitudinally using clinically relevant scanners.
Collapse
|
13
|
Burtea C, Laurent S, Crombez D, Delcambre S, Sermeus C, Millard I, Rorive S, Flamez D, Beckers MC, Salmon I, Vander Elst L, Eizirik DL, Muller RN. Development of a peptide-functionalized imaging nanoprobe for the targeting of (FXYD2)γa as a highly specific biomarker of pancreatic beta cells. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:398-412. [PMID: 25930968 DOI: 10.1002/cmmi.1641] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/06/2015] [Accepted: 02/17/2015] [Indexed: 01/15/2023]
Abstract
Diabetes is characterized by a progressive decline of the pancreatic beta cell mass (BCM), which is responsible for insufficient insulin secretion and hyperglycaemia. There are currently no reliable methods to measure non-invasively the BCM in diabetic patients. Our work describes a phage display-derived peptide (P88) that is highly specific to (FXYD2)γa expressed by human beta cells and is proposed as a molecular vector for the development of functionalized imaging probes. P88 does not bind to the exocrine pancreas and is able to detect down to ~156 human pancreatic islets/mm(3) in vitro after conjugation to ultra-small particles of iron oxide (USPIO), as proven by the R2 measured on MR images. For in vivo evaluation, MRI studies were carried out on nude mice bearing Capan-2 tumours that also express (FXYD2)γa. A strong negative contrast was obtained subsequent to the injection of USPIO-P88, but not in negative controls. On human histological sections, USPIO-P88 seems to be specific to pancreatic beta cells, but not to duodenum, stomach or kidney tissues. USPIO-P88 thus represents a novel and promising tool for monitoring pancreatic BCM in diabetic patients. The quantitative correlation between BCM and R2 remains to be demonstrated in vivo, but the T2 mapping and the black pixel estimation after USPIO-P88 injection could provide important information for the future pancreatic BCM evaluation by MRI.
Collapse
Affiliation(s)
- Carmen Burtea
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, Mendeleev Building, B-7000, Mons, Belgium
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, Mendeleev Building, B-7000, Mons, Belgium
| | - Deborah Crombez
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, Mendeleev Building, B-7000, Mons, Belgium
| | - Sébastien Delcambre
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, Mendeleev Building, B-7000, Mons, Belgium
| | - Corine Sermeus
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, Mendeleev Building, B-7000, Mons, Belgium
| | - Isabelle Millard
- Center for Diabetes Research, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Sandrine Rorive
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.,DIAPath, Center for Microscopy and Molecular Imaging, 8 rue Adrienne Bolland, 6041, Gosselies, Belgium
| | - Daisy Flamez
- Center for Diabetes Research, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Marie-Claire Beckers
- Eurogentec S.A., Liège Science Park, Rue du Bois Saint-Jean 5, B-4102, Seraing, Belgium
| | - Isabelle Salmon
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.,DIAPath, Center for Microscopy and Molecular Imaging, 8 rue Adrienne Bolland, 6041, Gosselies, Belgium
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, Mendeleev Building, B-7000, Mons, Belgium
| | - Decio L Eizirik
- Center for Diabetes Research, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium
| | - Robert N Muller
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, Mendeleev Building, B-7000, Mons, Belgium.,Center for Microscopy and Molecular Imaging, 8 rue Adrienne Bolland, 6041, Gosselies, Belgium
| |
Collapse
|
14
|
Tang KX, Yan JH, Shen YF, Li BY, Chen YM, Liu DY, Ma DD, Li J, Liang H, Weng JP. Tracing type 1 diabetic Tibet miniature pig's bone marrow mesenchymal stem cells in vitro by magnetic resonance imaging (1). J Diabetes 2014; 6:123-31. [PMID: 23962175 DOI: 10.1111/1753-0407.12084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 08/11/2013] [Accepted: 08/19/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Traditional cell-tracking methods fail to meet the needs of preclinical or clinical research. Thus, the aim of the present study was to establish a new method of double labeling bone marrow mesenchymal stem cells (BMSCs) from type 1 diabetic (T1D) minipigs with super-paramagnetic iron oxide (SPIO) and enhanced green fluorescent protein (eGFP) and tracing them using MRI in vitro. METHODS Isolated BMSCs from T1D minipigs were labeled with eGFP and different concentrations of SPIO. The effects of lentivirus (LV)-eGFP transfection and SPIO on the viability and growth curves of BMSCs were determined by Trypan blue exclusion, the 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide assay and flow cytometry. Cellular ultrastructure was evaluated by transmission electron microscopy. Magnetic resonance imaging was used to evaluate BMSCs labeled with SPIO-eGFP complexes 6 weeks after labeling. RESULTS Expression of eGFP in BMSCs peaked 96 h after transfection with LV-eGFP. Prussian blue staining revealed scattered blue granules in the cytoplasm of SPIO-labeled cells. Transmission electron microscopy revealed that the dense granules aggregated mainly in secondary lysosomes. On MRI, T2* -weighted imaging was far more sensitive for SPIO-labeled BMSCs than other image sequences 3 and 6 weeks after the cells had been labeled with SPIO-eGFP. CONCLUSIONS We have developed a relatively simple and safe method for double labeling of BMSCs from T1D minipigs using SPIO and LV-eGFP and tracing them in vitro by MRI for 6 weeks.
Collapse
Affiliation(s)
- Kuan-Xiao Tang
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan; Department of Endocrinology, The 3rd Affiliated Hospital of Sun Yat-sen University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Quantification of Islet Loss and Graft Functionality During Immune Rejection by 3-Tesla MRI in a Rat Model. Transplantation 2013; 96:438-44. [DOI: 10.1097/tp.0b013e31829b080f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Sakata N, Yoshimatsu G, Tsuchiya H, Aoki T, Mizuma M, Motoi F, Katayose Y, Kodama T, Egawa S, Unno M. Imaging of transplanted islets by positron emission tomography, magnetic resonance imaging, and ultrasonography. Islets 2013; 5:179-87. [PMID: 24231367 PMCID: PMC4010569 DOI: 10.4161/isl.26980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
While islet transplantation is considered a useful therapeutic option for severe diabetes mellitus (DM), the outcome of this treatment remains unsatisfactory. This is largely due to the damage and loss of islets in the early transplant stage. Thus, it is important to monitor the condition of the transplanted islets, so that a treatment can be selected to rescue the islets from damage if needed. Recently, numerous trials have been performed to investigate the efficacy of different imaging modalities for visualizing transplanted islets. Positron emission tomography (PET) and magnetic resonance imaging (MRI) are the most commonly used imaging modalities for this purpose. Some groups, including ours, have also tried to visualize transplanted islets by ultrasonography (US). In this review article, we discuss the recent progress in islet imaging.
Collapse
Affiliation(s)
- Naoaki Sakata
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
- Correspondence to: Naoaki Sakata,
| | - Gumpei Yoshimatsu
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Haruyuki Tsuchiya
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Takeshi Aoki
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Masamichi Mizuma
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Fuyuhiko Motoi
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Yu Katayose
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
- Division of Integrated Surgery and Oncology; Tohoku University Graduate School of Medicine; Sendai, Japan
| | - Tetsuya Kodama
- Department of Biomedical Engineering; Graduate School of Biomedical Engineering; Tohoku University; Sendai, Japan
| | - Shinichi Egawa
- Division of International Cooperation for Disaster Medicine; International Research Institute of Disaster Science; Tohoku University; Sendai, Japan
| | - Michiaki Unno
- Division of Hepato-Biliary-Pancreatic Surgery; Department of Surgery; Tohoku University Graduate School of Medicine; Sendai, Japan
| |
Collapse
|
17
|
Zacharovová K, Berková Z, Jirák D, Herynek V, Vancová M, Dovolilová E, Saudek F. Processing of superparamagnetic iron contrast agent ferucarbotran in transplanted pancreatic islets. CONTRAST MEDIA & MOLECULAR IMAGING 2013; 7:485-93. [PMID: 22991314 DOI: 10.1002/cmmi.1477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Labeling of pancreatic islets with superparamagnetic iron oxide (SPIO) nanoparticles enables their post-transplant monitoring by magnetic resonance imaging (MRI). Although the nanoparticles are incorporated into islet cells in culture, little is known about their fate in vivo. We studied the morphology of labeled islets after transplantation, aiming to identify the MRI contrast particles and their relationship to transplantation outcomes. Rat islets labeled with the ferucarbotran were transplanted into the liver or under the kidney capsule of syngeneic and allogeneic rats. After in vivo MRI, morphology was studied by light, fluorescence and transmission electron microscopy. Morphology of syngeneic islets transplanted beneath the kidney capsule vs into the liver was similar. Iron particles were almost completely eliminated from the endocrine cells and remained located in host-derived macrophages surrounding the vital islets for the entire study period. In the allogeneic model, islets lost their function and were completely rejected within nine days following transplantation in both transplant models. However, intercellular transport of the SPIO particles and subsequent MRI findings was different in the liver and kidney. In the liver, the decreasing number of islet-related MRI spots corresponded with clearance of iron particles in rejected islets; in contrast, with renal transplants extensive iron deposits with a high effect on MRI signal persisted in phagocytic cells beneath the capsule. We conclude that MRI detection of the iron contrast agent correlates with islet survival and function in islet transplantation into the liver, while it does not correlate in the case of transplantation beneath the renal capsule.
Collapse
Affiliation(s)
- Klára Zacharovová
- Laboratory of Langerhans Islets, Centre of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
18
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Sakata N, Goto M, Gumpei Y, Mizuma M, Motoi F, Satomi S, Unno M. Intraoperative ultrasound examination is useful for monitoring transplanted islets: a case report. Islets 2012; 4:339-42. [PMID: 23108430 PMCID: PMC3524140 DOI: 10.4161/isl.22384] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A 39-y-old man, who had an episode of pancreatic bleeding due to chronic pancreatitis, received total pancreatectomy with islet autotransplantation (TP with IAT). Intraoperative ultrasound (US) examination was done to detect transplanted islets and evaluate the quality of US imaging. Islet isolation from the resected total pancreas was performed and approximately 230,000 islet equivalents (IEQ) (the tissue volume was 600 µL and the purity was 30%) were acquired. A double lumen catheter, used for transplantation and for monitoring the portal vein pressure, was inserted into the portal vein via the superior mesenteric vein, and the tip of the catheter was positioned at the bifurcation of the anterior and posterior branch of the portal vein to selectively infuse the islets into the right lobe of the liver in order to prevent total liver embolization. Intraoperative US examination (central frequency 7.5 MHz, Nemio™ XG, Toshiba Medical System Co.) was started at the same time as the transplantation. US examination revealed the transplanted islets as hyperechoic clusters that flowed from the tip of the catheter to the periphery of the portal vein. There were no findings of portal thrombosis or bleeding in the US image, and also no increase of the portal vein pressure during transplantation. In conclusion, we succeeded in visualizing human islets using US, which enabled us to perform islet transplantation safely. The hyperechoic images were considered to be viable islets. Intraoperative US examination can be useful for detecting islets at transplantation in a clinical setting.
Collapse
Affiliation(s)
- Naoaki Sakata
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | | | | | | | | | | | | |
Collapse
|