1
|
Lee KW, Park SSW, Kim DS, Choi K, Shim J, Kim J, Kim SJ, Park JB. Auxiliary liver xenotransplantation technique in a transgenic pig-to-non-human primate model: A surgical approach to prolong survival. Xenotransplantation 2023; 30:e12814. [PMID: 37493436 DOI: 10.1111/xen.12814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Xenotransplantation using pigs' liver offers a potentially alternative method to overcome worldwide donor shortage, or more importantly as a bridge to allotransplantation. However, it has been challenged by profound thrombocytopenia and fatal coagulopathy in non-human primate models. Here we suggest that a left auxiliary technique can be a useful method to achieve extended survival of the xenograft. Fifteen consecutive liver xenotransplants were carried out in a pig-to-cynomolgus model. Right auxiliary technique was implemented in two cases, orthotopic in eight cases, and left auxiliary in five cases. None of the right auxiliary recipients survived after surgery due to hemorrhage during complex dissection between the primate's right lobe and inferior vena cava. Orthotopic recipients survived less than 7 days secondary to profound thrombocytopenia and coagulopathy. Two out of five left auxiliary xenotransplants survived more than 3 weeks without uncontrolled thrombocytopenia or anemia, with one of them surviving 34 days, the longest graft survival reported to date. Left auxiliary xenotransplant is a feasible approach in non-human primate experiments, and the feared risk of thrombocytopenia and coagulopathy can be minimized. This may allow for longer evaluation of the xenograft and help better understand histopathological and immunological changes that occur following liver xenotransplantation.
Collapse
Affiliation(s)
- Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sean S W Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Suk Kim
- GenNBio, Pyeongtaek-Si, Gyeonggi-Do, Republic of Korea
| | - Kimyung Choi
- Optipharm Inc., Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Joohyun Shim
- Optipharm Inc., Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jihun Kim
- Department of Pathology, Asan Medical Center, Ulsan University Medical School, Seoul, Republic of Korea
| | - Sung Joo Kim
- GenNBio, Pyeongtaek-Si, Gyeonggi-Do, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Chornenkyy Y, Yamamoto T, Hara H, Stowell SR, Ghiran I, Robson SC, Cooper DKC. Future prospects for the clinical transfusion of pig red blood cells. Blood Rev 2023; 61:101113. [PMID: 37474379 PMCID: PMC10968389 DOI: 10.1016/j.blre.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Transfusion of allogeneic human red blood cell (hRBCs) is limited by supply and compatibility between individual donors and recipients. In situations where the blood supply is constrained or when no compatible RBCs are available, patients suffer. As a result, alternatives to hRBCs that complement existing RBC transfusion strategies are needed. Pig RBCs (pRBCs) could provide an alternative because of their abundant supply, and functional similarities to hRBCs. The ability to genetically modify pigs to limit pRBC immunogenicity and augment expression of human 'protective' proteins has provided major boosts to this research and opens up new therapeutic avenues. Although deletion of expression of xenoantigens has been achieved in genetically-engineered pigs, novel genetic methods are needed to introduce human 'protective' transgenes into pRBCs at the high levels required to prevent hemolysis and extend RBC survival in vivo. This review addresses recent progress and examines future prospects for clinical xenogeneic pRBC transfusion.
Collapse
Affiliation(s)
- Yevgen Chornenkyy
- Department of Pathology, McGaw Medical Center of Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Takayuki Yamamoto
- Center for Transplantation Science, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA; Division of Transplantation, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ionita Ghiran
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - David K C Cooper
- Center for Transplantation Science, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Cross-Najafi AA, Lopez K, Isidan A, Park Y, Zhang W, Li P, Yilmaz S, Akbulut S, Ekser B. Current Barriers to Clinical Liver Xenotransplantation. Front Immunol 2022; 13:827535. [PMID: 35281047 PMCID: PMC8904558 DOI: 10.3389/fimmu.2022.827535] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
Preclinical trials of pig-to-nonhuman primate liver xenotransplantation have recently achieved longer survival times. However, life-threatening thrombocytopenia and coagulation dysregulation continue to limit preclinical liver xenograft survival times to less than one month despite various genetic modifications in pigs and intensive pharmacological support. Transfusion of human coagulation factors and complex immunosuppressive regimens have resulted in substantial improvements in recipient survival. The fundamental biological mechanisms of thrombocytopenia and coagulation dysregulation remain incompletely understood. Current studies demonstrate that porcine von Willebrand Factor binds more tightly to human platelet GPIb receptors due to increased O-linked glycosylation, resulting in increased human platelet activation. Porcine liver sinusoidal endothelial cells and Kupffer cells phagocytose human platelets in an asialoglycoprotein receptor 1-dependent and CD40/CD154-dependent manner, respectively. Porcine Kupffer cells phagocytose human platelets via a species-incompatible SIRPα/CD47 axis. Key drivers of coagulation dysregulation include constitutive activation of the extrinsic clotting cascade due to failure of porcine tissue factor pathway inhibitor to repress recipient tissue factor. Additionally, porcine thrombomodulin fails to activate human protein C when bound by human thrombin, leading to a hypercoagulable state. Combined genetic modification of these key genes may mitigate liver xenotransplantation-induced thrombocytopenia and coagulation dysregulation, leading to greater recipient survival in pig-to-nonhuman primate liver xenotransplantation and, potentially, the first pig-to-human clinical trial.
Collapse
Affiliation(s)
- Arthur A. Cross-Najafi
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kevin Lopez
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Abdulkadir Isidan
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yujin Park
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wenjun Zhang
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ping Li
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sezai Yilmaz
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Sami Akbulut
- Department of Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Burcin Ekser,
| |
Collapse
|
4
|
Lamm V, Ekser B, Vagefi PA, Cooper DK. Bridging to Allotransplantation-Is Pig Liver Xenotransplantation the Best Option? Transplantation 2022; 106:26-36. [PMID: 33653996 PMCID: PMC10124768 DOI: 10.1097/tp.0000000000003722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the past 20 y, the number of patients in the United States who died while waiting for a human donor liver totaled >52 000. The median national wait time for patients with acute liver failure and the most urgent liver transplant listing was 7 d in 2018. The need for a clinical "bridge" to allotransplantation is clear. Current options for supporting patients with acute liver failure include artificial liver support devices, extracorporeal liver perfusion, and hepatocyte transplantation, all of which have shown mixed results with regard to survival benefit and are largely experimental. Progress in the transplantation of genetically engineered pig liver grafts in nonhuman primates has grown steadily, with survival of the pig graft extended to almost 1 mo in 2017. Further advances may justify consideration of a pig liver transplant as a clinical bridge to allotransplantation. We provide a brief history of pig liver xenotransplantation, summarize the most recent progress in pig-to-nonhuman primate liver transplantation models, and suggest criteria that may be considered for patient selection for a clinical trial of bridging by genetically engineered pig liver xenotransplantation to liver allotransplantation.
Collapse
Affiliation(s)
- Vladimir Lamm
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Parsia A. Vagefi
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
5
|
Interleukin-27 in liver xenotransplantation: A rational target to mitigate ischemia reperfusion injury and increase xenograft survival. Transplant Rev (Orlando) 2021; 36:100674. [PMID: 34861509 PMCID: PMC10072133 DOI: 10.1016/j.trre.2021.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/14/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022]
Abstract
Transplantation of xenogeneic organs is an attractive solution to the existing organ shortage dilemma, thus, securing a clinically acceptable prolongation of xenograft survival is an important goal. In preclinical transplantation models, recipients of liver, kidney, heart, or lung xenotransplants demonstrate significant graft damages through the release of pro-inflammatory molecules, including the C-reactive protein, cytokines, and histone-DNA complexes that all foster graft rejection. Recent studies have demonstrated that mitigation of ischemia reperfusion injury (IRI) greatly improves xenograft survival. Organ IRI develops primarily on a complex network of cytokines and chemokines responding to molecular cues from the graft milieu. Among these, interleukin 27 (IL-27) plays an immunomodulatory role in IRI onset due to graft environment-dependent pro- and anti- inflammatory activities. This review focuses on the impact of IL-27 on IRI of liver xenotransplants and provides insights on the function of IL-27 that could potentially guide genetic engineering strategies of donor pigs and/or conditioning of organs prior to transplantation.
Collapse
|
6
|
Li T, Lv Y, Sun R, Yang YG, Hu Z, Lv G. Incompatibility between recipient CD47 and donor SIRPα is not a key risk factor for thrombocytopenia or anemia following rat liver xenotransplantation in mice. Xenotransplantation 2020; 28:e12657. [PMID: 33111471 DOI: 10.1111/xen.12657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/10/2020] [Accepted: 10/13/2020] [Indexed: 12/31/2022]
Abstract
Liver xenotransplantation (LXT) is greatly impeded by severe thrombocytopenia, anemia, and coagulopathy. Hepatic phagocytic cells are thought to play an important role in LXT-induced thrombocytopenia and anemia. In this study, we investigated whether the lack of recipient CD47-donor SIRPα interaction, which is known to induce xenograft rejection by macrophages, exacerbates platelet and RBC depletion following LXT. We first addressed this question in the absence of anti-donor immune responses using a syngeneic mouse liver transplantation (LT) model. Neither wild-type (WT) nor CD47KO B6 mice developed thrombocytopenia following LT from WT B6 donors. Although a moderate decline in RBCs was detected following LT, there was no significant difference in RBC counts between WT and CD47KO recipients. Because mouse CD47 is cross-reactive with rat SIRPα, we then compared thrombocytopenia and anemia between WT and CD47KO mice following rat LXT. Unlike syngeneic mouse LT, significant thrombocytopenia and anemia were detected following rat LXT. However, the severities of both platelet and RBC depletions were comparable between WT and CD47KO recipients. Furthermore, WT and CD47KO recipients showed a similar extent of early platelet activation. Our results indicate that CD47-SIRPα signaling does not significantly affect the loss of platelets or RBCs following LXT, suggesting that the limited cross-reactivity between recipient CD47 and donor SIRPα is not a significant risk factor for LXT-induced thrombocytopenia and anemia.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yanan Lv
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Renren Sun
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Guoyue Lv
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| |
Collapse
|
7
|
The resurgent landscape of xenotransplantation of pig organs in nonhuman primates. SCIENCE CHINA-LIFE SCIENCES 2020; 64:697-708. [PMID: 32975720 DOI: 10.1007/s11427-019-1806-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Organ shortage is a major bottleneck in allotransplantation and causes many wait-listed patients to die or become too sick for transplantation. Genetically engineered pigs have been discussed as a potential alternative to allogeneic donor organs. Although xenotransplantation of pig-derived organs in nonhuman primates (NHPs) has shown sequential advances in recent years, there are still underlying problems that need to be completely addressed before clinical applications, including (i) acute humoral xenograft rejection; (ii) acute cellular rejection; (iii) dysregulation of coagulation and inflammation; (iv) physiological incompatibility; and (v) cross-species infection. Moreover, various genetic modifications to the pig donor need to be fully characterized, with the aim of identifying the ideal transgene combination for upcoming clinical trials. In addition, suitable pretransplant screening methods need to be confirmed for optimal donor-recipient matching, ensuring a good outcome from xenotransplantation. Herein, we summarize the understanding of organ xenotransplantation in pigs-to-NHPs and highlight the current status and recent progress in extending the survival time of pig xenografts and recipients. We also discuss practical strategies for overcoming the obstacles to xenotransplantation mentioned above to further advance transplantation of pig organs in the clinic.
Collapse
|
8
|
Furuta T, Furuya K, Zheng YW, Oda T. Novel alternative transplantation therapy for orthotopic liver transplantation in liver failure: A systematic review. World J Transplant 2020; 10:64-78. [PMID: 32257850 PMCID: PMC7109592 DOI: 10.5500/wjt.v10.i3.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the only treatment for end-stage liver failure; however, graft shortage impedes its applicability. Therefore, studies investigating alternative therapies are plenty. Nevertheless, no study has comprehensively analyzed these therapies from different perspectives.
AIM To summarize the current status of alternative transplantation therapies for OLT and to support future research.
METHODS A systematic literature search was performed using PubMed, Cochrane Library and EMBASE for articles published between January 2010 and 2018, using the following MeSH terms: [(liver transplantation) AND cell] OR [(liver transplantation) AND differentiation] OR [(liver transplantation) AND organoid] OR [(liver transplantation) AND xenotransplantation]. Various types of studies describing therapies to replace OLT were retrieved for full-text evaluation. Among them, we selected articles including in vivo transplantation.
RESULTS A total of 89 studies were selected. There are three principle forms of treatment for liver failure: Xeno-organ transplantation, scaffold-based transplantation, and cell transplantation. Xeno-organ transplantation was covered in 14 articles, scaffold-based transplantation was discussed in 22 articles, and cell transplantation was discussed in 53 articles. Various types of alternative therapies were discussed: Organ liver, 25 articles; adult hepatocytes, 31 articles; fetal hepatocytes, three articles; mesenchymal stem cells (MSCs), 25 articles; embryonic stem cells, one article; and induced pluripotent stem cells, three articles and other sources. Clinical applications were discussed in 12 studies: Cell transplantation using hepatocytes in four studies, five studies using umbilical cord-derived MSCs, three studies using bone marrow-derived MSCs, and two studies using hematopoietic stem cells.
CONCLUSION The clinical applications are present only for cell transplantation. Scaffold-based transplantation is a comprehensive treatment combining organ and cell transplantations, which warrants future research to find relevant clinical applications.
Collapse
Affiliation(s)
- Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| |
Collapse
|
9
|
Lu T, Yang B, Wang R, Qin C. Xenotransplantation: Current Status in Preclinical Research. Front Immunol 2020; 10:3060. [PMID: 32038617 PMCID: PMC6989439 DOI: 10.3389/fimmu.2019.03060] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
The increasing life expectancy of humans has led to a growing numbers of patients with chronic diseases and end-stage organ failure. Transplantation is an effective approach for the treatment of end-stage organ failure; however, the imbalance between organ supply and the demand for human organs is a bottleneck for clinical transplantation. Therefore, xenotransplantation might be a promising alternative approach to bridge the gap between the supply and demand of organs, tissues, and cells; however, immunological barriers are limiting factors in clinical xenotransplantation. Thanks to advances in gene-editing tools and immunosuppressive therapy as well as the prolonged xenograft survival time in pig-to-non-human primate models, clinical xenotransplantation has become more viable. In this review, we focus on the evolution and current status of xenotransplantation research, including our current understanding of the immunological mechanisms involved in xenograft rejection, genetically modified pigs used for xenotransplantation, and progress that has been made in developing pig-to-pig-to-non-human primate models. Three main types of rejection can occur after xenotransplantation, which we discuss in detail: (1) hyperacute xenograft rejection, (2) acute humoral xenograft rejection, and (3) acute cellular rejection. Furthermore, in studies on immunological rejection, genetically modified pigs have been generated to bridge cross-species molecular incompatibilities; in the last decade, most advances made in the field of xenotransplantation have resulted from the production of genetically engineered pigs; accordingly, we summarize the genetically modified pigs that are currently available for xenotransplantation. Next, we summarize the longest survival time of solid organs in preclinical models in recent years, including heart, liver, kidney, and lung xenotransplantation. Overall, we conclude that recent achievements and the accumulation of experience in xenotransplantation mean that the first-in-human clinical trial could be possible in the near future. Furthermore, we hope that xenotransplantation and various approaches will be able to collectively solve the problem of human organ shortage.
Collapse
Affiliation(s)
- Tianyu Lu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Bochao Yang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Ruolin Wang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| |
Collapse
|
10
|
Zhang X, Li X, Yang Z, Tao K, Wang Q, Dai B, Qu S, Peng W, Zhang H, Cooper DKC, Dou K. A review of pig liver xenotransplantation: Current problems and recent progress. Xenotransplantation 2019; 26:e12497. [PMID: 30767272 DOI: 10.1111/xen.12497] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 12/14/2022]
Abstract
Pig liver xenotransplantation appears to be more perplexing when compared to heart or kidney xenotransplantation, even though great progress has been achieved. The relevant molecular mechanisms involved in xenogeneic rejection, including coagulopathy, and particularly thrombocytopenia, are complex, and need to be systematically investigated. The deletion of expression of Gal antigens in the liver graft highlights the injurious impact of nonGal antigens, which continue to induce humoral rejection. Innate immunity, particularly mediated by macrophages and natural killer cells, interplays with inflammation and coagulation disorders. Kupffer cells and liver sinusoidal endothelial cells (LSECs) together mediate leukocyte, erythrocyte, and platelet sequestration and phagocytosis, which can be exacerbated by increased cytokine production, cell desialylation, and interspecies incompatibilities. The coagulation cascade is activated by release of tissue factor which can be dependent or independent of the xenoreactive immune response. Depletion of endothelial anticoagulants and anti-platelet capacity amplify coagulation activation, and interspecies incompatibilities of coagulation-regulatory proteins facilitate dysregulation. LSECs involved in platelet phagocytosis and transcytosis, coupled with hepatocyte-mediated degradation, are responsible for thrombocytopenia. Adaptive immunity could also be problematic in long-term liver graft survival. Currently, relevant evidence and study results of various genetic modifications to the pig donor need to be fully determined, with the aim of identifying the ideal transgene combination for pig liver xenotransplantation. We believe that clinical trials of pig liver xenotransplantation should initially be considered as a bridge to allotransplantation.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhaoxu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Quancheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bin Dai
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shibin Qu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wei Peng
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Manook M, Kwun J, Sacks S, Dorling A, Mamode N, Knechtle S. Innate networking: Thrombotic microangiopathy, the activation of coagulation and complement in the sensitized kidney transplant recipient. Transplant Rev (Orlando) 2018; 32:119-126. [PMID: 29935708 PMCID: PMC6497150 DOI: 10.1016/j.trre.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/28/2018] [Indexed: 12/11/2022]
Abstract
Thrombotic microangiopathy (TMA) is a histological feature of antibody-mediated rejection and has the potential to cause problematic graft dysfunction, particularly for highly sensitized cross-match positive kidney transplant recipients. Prompt recognition of pertinent histopathological and systemic features of TMA in kidney transplantation is necessary. Underlying mechanisms of this process involve the activation of both complement and coagulation systems as a response to HLA antibody. As serine proteases, coagulation and complement cascades exhibit similar characteristics with respect to homeostatic function. Increasing evidence now exists for the interaction between these innate defenses in both activation and regulation, lending scope for intervention. Understanding the complexities of these interactions remains a challenge. This review provides an overview of the current understanding, particularly with respect to the activation of coagulation and complement by HLA antibody in the setting of highly sensitized kidney transplantation.
Collapse
Affiliation(s)
- Miriam Manook
- Renal and Transplant Department, Guy's and St Thomas' NHS Foundation Trust, London, UK; Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Steven Sacks
- MRC Centre for Transplantation, King's College, London, UK
| | | | - Nizam Mamode
- Renal and Transplant Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Stuart Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Bahl N, Winarsih I, Tucker-Kellogg L, Ding JL. Extracellular haemoglobin upregulates and binds to tissue factor on macrophages: Implications for coagulation and oxidative stress. Thromb Haemost 2017; 111:67-78. [DOI: 10.1160/th13-03-0220] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 09/02/2013] [Indexed: 11/05/2022]
Abstract
SummaryThe mechanisms of crosstalk between haemolysis, coagulation and innate immunity are evolutionarily conserved from the invertebrate haemocyanin to the vertebrate haemoglobin (Hb). In vertebrates, extracellular Hb resulting from haemolytic infections binds bacterial lipopolysaccharide (LPS) to unleash the antimicrobial redox activity of Hb. Because bacterial invasion also upregulates tissue factor (TF), the vertebrate coagulation initiator, we asked whether there may be functional interplay between the redox activity of Hb and the procoagulant activity of TF. Using real-time PCR, TF-specific ELISA, flow cytometry and TF activity assay, we found that Hb upregulated the expression of functional TF in macrophages. ELISA, flow cytometry and immunofluorescence microscopy showed binding between Hb and TF, in isolation and in situ. Bioinformatic analysis of Hb and TF protein sequences showed co-evolution across species, suggesting that Hbβ binds TF. Empirically, TF suppressed the LPS-induced activation of Hb redox activity. Furthermore, Hb desensitised TF to the effects of antioxidants like glutathione or serum. This bi-directional regulation between Hb and TF constitutes a novel link between coagulation and innate immunity. In addition, induction of TF by Hb is a potentially central mechanism for haemolysis to trigger coagulation.
Collapse
|
13
|
Abstract
Experience with clinical liver xenotransplantation has largely involved the transplantation of livers from nonhuman primates. Experience with pig livers has been scarce. This brief review will be restricted to assessing the potential therapeutic impact of pig liver xenotransplantation in acute liver failure and the remaining barriers that currently do not justify clinical trials. A relatively new surgical technique of heterotopic pig liver xenotransplantation is described that might play a role in bridging a patient with acute liver failure until either the native liver recovers or a suitable liver allograft is obtained. Other topics discussed include the possible mechanisms for the development of the thrombocytopenis that rapidly occurs after pig liver xenotransplantation in a primate, the impact of pig complement on graft injury, the potential infectious risks, and potential physiologic incompatibilities between pig and human. There is cautious optimism that all of these problems can be overcome by judicious genetic manipulation of the pig. If liver graft survival could be achieved in the absence of thrombocytopenia or rejection for a period of even a few days, there may be a role for pig liver transplantation as a bridge to allotransplantation in carefully selected patients.
Collapse
|
14
|
Aristizabal AM, Caicedo LA, Martínez JM, Moreno M, J Echeverri G. Clinical xenotransplantation, a closer reality: Literature review. Cir Esp 2017; 95:62-72. [PMID: 28237390 DOI: 10.1016/j.ciresp.2016.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/29/2016] [Accepted: 12/15/2016] [Indexed: 01/22/2023]
Abstract
Xenotransplantation could provide an unlimited supply of organs and solve the current shortage of organs for transplantation. To become a reality in clinical practice, the immunological and physiological barriers and the risk of xenozoonosis that they possess should be resolved. From the immunological point of view, in the last 30 years a significant progress in the production of transgenic pigs has prevented the hyperacute rejection. About xenozoonosis, attention has been focused on the risk of transmission of porcine endogenous retroviruses; however, today, it is considered that the risk is very low and the inevitable transmission should not prevent the clinical xenotransplantation. Regarding the physiological barriers, encouraging results have been obtained and it's expected that the barriers that still need to be corrected can be solved in the future through genetic modifications.
Collapse
Affiliation(s)
- Ana María Aristizabal
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Centro para la Investigación en Cirugía Avanzada y Trasplantes (CICAT), Universidad Icesi, Cali, Colombia
| | - Luis Armando Caicedo
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Centro para la Investigación en Cirugía Avanzada y Trasplantes (CICAT), Universidad Icesi, Cali, Colombia
| | - Juan Manuel Martínez
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Centro para la Investigación en Cirugía Avanzada y Trasplantes (CICAT), Universidad Icesi, Cali, Colombia
| | - Manuel Moreno
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Centro para la Investigación en Cirugía Avanzada y Trasplantes (CICAT), Universidad Icesi, Cali, Colombia
| | - Gabriel J Echeverri
- Centro de Investigaciones Clínicas, Fundación Valle del Lili, Cali, Colombia; Centro para la Investigación en Cirugía Avanzada y Trasplantes (CICAT), Universidad Icesi, Cali, Colombia.
| |
Collapse
|
15
|
|
16
|
Ekser B, Markmann JF, Tector AJ. Current status of pig liver xenotransplantation. Int J Surg 2015; 23:240-246. [PMID: 26190837 DOI: 10.1016/j.ijsu.2015.06.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/28/2015] [Indexed: 12/26/2022]
Abstract
The shortage of organs from deceased human donors is a major problem limiting the number of organs transplanted each year and results in the death of thousands of patients on the waiting list. Pigs are currently the preferred species for clinical organ xenotransplantation. Progress in genetically-engineered (GE) pig liver xenotransplantation increased graft and recipient survival from hours with unmodified pig livers to up to 9 days with normal to near-normal liver function. Deletion of genes such as GGTA1 (Gal-knockout pigs) or adding genes such as human complement regulatory proteins (hCD55, hCD46 expressing pigs) enabled hyperacute rejection to be overcome. Although survival up to 9 days was recorded, extended pig graft survival was not achieved due to lethal thrombocytopenia. The current status of GE pig liver xenotransplantation with world experience, potential factors causing thrombocytopenia, new targets on pig endothelial cells, and novel GE pigs with more genes deletion to avoid remaining antibody response, such as beta1,4-N-acetyl galactosaminyl transferase 2 (β4GalNT2), are discussed.
Collapse
Affiliation(s)
- Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - James F Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - A Joseph Tector
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
17
|
Zhou H, Liu H, Ezzelarab M, Schmelzer E, Wang Y, Gerlach J, Gridelli B, Cooper DKC. Experimental hepatocyte xenotransplantation--a comprehensive review of the literature. Xenotransplantation 2015; 22:239-48. [PMID: 25950141 PMCID: PMC4519403 DOI: 10.1111/xen.12170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/18/2015] [Indexed: 12/11/2022]
Abstract
Hepatocyte transplantation (Tx) is a potential therapy for certain diseases of the liver, including hepatic failure. However, there is a limited supply of human livers as a source of cells and, after isolation, human hepatocytes can be difficult to expand in culture, limiting the number available for Tx. Hepatocytes from other species, for example, the pig, have therefore emerged as a potential alternative source. We searched the literature through the end of 2014 to assess the current status of experimental research into hepatocyte xenoTx. The literature search identified 51 reports of in vivo cross-species Tx of hepatocytes in a variety of experimental models. Most studies investigated the Tx of human (n = 23) or pig (n = 19) hepatocytes. No studies explored hepatocytes from genetically engineered pigs. The spleen was the most common site of Tx (n = 23), followed by the liver (through the portal vein [n = 6]) and peritoneal cavity (n = 19). In 47 studies (92%), there was evidence of hepatocyte engraftment and function across a species barrier. The data provided by this literature search strengthen the hypothesis that xenoTx of hepatocytes is feasible and potentially successful as a clinical therapy for certain liver diseases, including hepatic failure. By excluding vascular structures, hepatocytes isolated from genetically engineered pig livers may address some of the immunological problems of xenoTx.
Collapse
Affiliation(s)
- Huidong Zhou
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Heng(1)yang, Hunan, China
| | - Hong Liu
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of General Surgery, First Hospital of Shanxi Medical University, ShanXi, China
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eva Schmelzer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Wang
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Heng(1)yang, Hunan, China
| | - Jörg Gerlach
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruno Gridelli
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update, July-August 2012. Xenotransplantation 2012; 19:323-5. [DOI: 10.1111/xen.12003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Ekser B, Burlak C, Waldman JP, Lutz AJ, Paris LL, Veroux M, Robson SC, Rees MA, Ayares D, Gridelli B, Tector AJ, Cooper DKC. Immunobiology of liver xenotransplantation. Expert Rev Clin Immunol 2012; 8:621-34. [PMID: 23078060 PMCID: PMC3774271 DOI: 10.1586/eci.12.56] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pigs are currently the preferred species for future organ xenotransplantation. With advances in the development of genetically modified pigs, clinical xenotransplantation is becoming closer to reality. In preclinical studies (pig-to-nonhuman primate), the xenotransplantation of livers from pigs transgenic for human CD55 or from α1,3-galactosyltransferase gene-knockout pigs+/- transgenic for human CD46, is associated with survival of approximately 7-9 days. Although hepatic function, including coagulation, has proved to be satisfactory, the immediate development of thrombocytopenia is very limiting for pig liver xenotransplantation even as a 'bridge' to allotransplantation. Current studies are directed to understand the immunobiology of platelet activation, aggregation and phagocytosis, in particular the interaction between platelets and liver sinusoidal endothelial cells, hepatocytes and Kupffer cells, toward identifying interventions that may enable clinical application.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - Christopher Burlak
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - Joshua P Waldman
- Department of Urology, University of Toledo Health Sciences Campus, Toledo, OH, USA
| | - Andrew J Lutz
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - Leela L Paris
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - Massimiliano Veroux
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - Simon C Robson
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael A Rees
- Department of Urology, University of Toledo Health Sciences Campus, Toledo, OH, USA
| | | | - Bruno Gridelli
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - A Joseph Tector
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - David KC Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|