1
|
Chen L, Ghannoum O, Furbank RT. Sugar sensing in C4 source leaves: a gap that needs to be filled. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3818-3834. [PMID: 38642398 PMCID: PMC11233418 DOI: 10.1093/jxb/erae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Plant growth depends on sugar production and export by photosynthesizing source leaves and sugar allocation and import by sink tissues (grains, roots, stems, and young leaves). Photosynthesis and sink demand are tightly coordinated through metabolic (substrate, allosteric) feedback and signalling (sugar, hormones) mechanisms. Sugar signalling integrates sugar production with plant development and environmental cues. In C3 plants (e.g. wheat and rice), it is well documented that sugar accumulation in source leaves, due to source-sink imbalance, negatively feeds back on photosynthesis and plant productivity. However, we have a limited understanding about the molecular mechanisms underlying those feedback regulations, especially in C4 plants (e.g. maize, sorghum, and sugarcane). Recent work with the C4 model plant Setaria viridis suggested that C4 leaves have different sugar sensing thresholds and behaviours relative to C3 counterparts. Addressing this research priority is critical because improving crop yield requires a better understanding of how plants coordinate source activity with sink demand. Here we review the literature, present a model of action for sugar sensing in C4 source leaves, and suggest ways forward.
Collapse
Affiliation(s)
- Lily Chen
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, NSW, 2753, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, NSW, 2753, Australia
| | - Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
2
|
Yu YZ, Liu HT, Yang F, Li L, Schäufele R, Tcherkez G, Schnyder H, Gong XY. δ13C of bulk organic matter and cellulose reveal post-photosynthetic fractionation during ontogeny in C4 grass leaves. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1451-1464. [PMID: 37943576 DOI: 10.1093/jxb/erad445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
The 13C isotope composition (δ13C) of leaf dry matter is a useful tool for physiological and ecological studies. However, how post-photosynthetic fractionation associated with respiration and carbon export influences δ13C remains uncertain. We investigated the effects of post-photosynthetic fractionation on δ13C of mature leaves of Cleistogenes squarrosa, a perennial C4 grass, in controlled experiments with different levels of vapour pressure deficit and nitrogen supply. With increasing leaf age class, the 12C/13C fractionation of leaf organic matter relative to the δ13C of atmosphere CO2 (ΔDM) increased while that of cellulose (Δcel) was almost constant. The divergence between ΔDM and Δcel increased with leaf age class, with a maximum value of 1.6‰, indicating the accumulation of post-photosynthetic fractionation. Applying a new mass balance model that accounts for respiration and export of photosynthates, we found an apparent 12C/13C fractionation associated with carbon export of -0.5‰ to -1.0‰. Different ΔDM among leaves, pseudostems, daughter tillers, and roots indicate that post-photosynthetic fractionation happens at the whole-plant level. Compared with ΔDM of old leaves, ΔDM of young leaves and Δcel are more reliable proxies for predicting physiological parameters due to the lower sensitivity to post-photosynthetic fractionation and the similar sensitivity in responses to environmental changes.
Collapse
Affiliation(s)
- Yong Zhi Yu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Hai Tao Liu
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, D-85354 Freising, Germany
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, China
| | - Fang Yang
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, D-85354 Freising, Germany
- College of Resources and Environment, Jilin Agricultural University, Changchun 130117, China
| | - Lei Li
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Rudi Schäufele
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, D-85354 Freising, Germany
| | - Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Science, Australian National University, Canberra ACT 0200, Australia
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, 42 rue Georges Morel, 49070 Beaucouzé, France
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, D-85354 Freising, Germany
| | - Xiao Ying Gong
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, D-85354 Freising, Germany
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, China
| |
Collapse
|
3
|
Wu Y, Hou J, Yu F, Nguyen STT, McCurdy DW. Transcript Profiling Identifies NAC-Domain Genes Involved in Regulating Wall Ingrowth Deposition in Phloem Parenchyma Transfer Cells of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:341. [PMID: 29599795 PMCID: PMC5862824 DOI: 10.3389/fpls.2018.00341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/28/2018] [Indexed: 05/29/2023]
Abstract
Transfer cells (TCs) play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP) cells of Arabidopsis leaf veins trans-differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC) complex. We are using PP TCs in Arabidopsis as a genetic model to identify transcription factors involved in coordinating deposition of the wall ingrowth network. Confocal imaging of pseudo-Schiff propidium iodide-stained tissue revealed different profiles of temporal development of wall ingrowth deposition across maturing cotyledons and juvenile leaves, and a basipetal gradient of deposition across mature adult leaves. RNA-Seq analysis was undertaken to identify differentially expressed genes common to these three different profiles of wall ingrowth deposition. This analysis identified 68 transcription factors up-regulated two-fold or more in at least two of the three experimental comparisons, with six of these transcription factors belonging to Clade III of the NAC-domain family. Phenotypic analysis of these NAC genes using insertional mutants revealed significant reductions in levels of wall ingrowth deposition, particularly in a double mutant of NAC056 and NAC018, as well as compromised sucrose-dependent root growth, indicating impaired capacity for phloem loading. Collectively, these results support the proposition that Clade III members of the NAC-domain family in Arabidopsis play important roles in regulating wall ingrowth deposition in PP TCs.
Collapse
Affiliation(s)
- Yuzhou Wu
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Jiexi Hou
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agricultural University, Nanchang, China
| | - Suong T. T. Nguyen
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
- Department of Biological Sciences, Faculty of Science, Nong Lam University, Ho Chi Minh City, Vietnam
| | - David W. McCurdy
- Centre for Plant Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
4
|
Rotsch D, Brossard T, Bihmidine S, Ying W, Gaddam V, Harmata M, Robertson JD, Swyers M, Jurisson SS, Braun DM. Radiosynthesis of 6'-Deoxy-6'[18F]Fluorosucrose via Automated Synthesis and Its Utility to Study In Vivo Sucrose Transport in Maize (Zea mays) Leaves. PLoS One 2015; 10:e0128989. [PMID: 26024520 PMCID: PMC4449027 DOI: 10.1371/journal.pone.0128989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 05/01/2015] [Indexed: 01/08/2023] Open
Abstract
Sugars produced from photosynthesis in leaves are transported through the phloem tissues within veins and delivered to non-photosynthetic organs, such as roots, stems, flowers, and seeds, to support their growth and/or storage of carbohydrates. However, because the phloem is located internally within the veins, it is difficult to access and to study the dynamics of sugar transport. Radioactive tracers have been extensively used to study vascular transport in plants and have provided great insights into transport dynamics. To better study sucrose partitioning in vivo, a novel radioactive analog of sucrose was synthesized through a completely chemical synthesis route by substituting fluorine-18 (half-life 110 min) at the 6' position to generate 6'-deoxy-6'[(18)F]fluorosucrose ((18)FS). This radiotracer was then used to compare sucrose transport between wild-type maize plants and mutant plants lacking the Sucrose transporter1 (Sut1) gene, which has been shown to function in sucrose phloem loading. Our results demonstrate that (18)FS is transported in vivo, with the wild-type plants showing a greater rate of transport down the leaf blade than the sut1 mutant plants. A similar transport pattern was also observed for universally labeled [U-(14)C]sucrose ([U-(14)C]suc). Our findings support the proposed sucrose phloem loading function of the Sut1 gene in maize, and additionally demonstrate that the (18)FS analog is a valuable, new tool that offers imaging advantages over [U-(14)C]suc for studying phloem transport in plants.
Collapse
Affiliation(s)
- David Rotsch
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Tom Brossard
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Saadia Bihmidine
- Division of Biological Sciences, Interdisciplinary Plant Group and the Missouri Maize Center, University of Missouri, Columbia, Missouri, United States of America
| | - Weijiang Ying
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Vikram Gaddam
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Michael Harmata
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - J. David Robertson
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
- University of Missouri Research Reactor, University of Missouri, Columbia, Missouri, United States of America
| | - Michael Swyers
- Division of Biological Sciences, Interdisciplinary Plant Group and the Missouri Maize Center, University of Missouri, Columbia, Missouri, United States of America
| | - Silvia S. Jurisson
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - David M. Braun
- Division of Biological Sciences, Interdisciplinary Plant Group and the Missouri Maize Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
5
|
|
6
|
Evert RF, Russin WA, Botha CEJ. Distribution and frequency of plasmodesmata in relation to photoassimilate pathways and phloem loading in the barley leaf. PLANTA 1996; 198:572-579. [PMID: 28321668 DOI: 10.1007/bf00262644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/1995] [Accepted: 07/12/1995] [Indexed: 05/06/2023]
Abstract
Large, intermediate, and small bundles and contiguous tissues of the leaf blade of Hordeum tvulgare L. 'Morex' were examined with the transmission electron microscope to determine their cellular composition and the distribution and frequency of the plasmodesmata between the various cell combinations. Plasmodesmata are abundant at the mesophyll/parenchymatous bundle sheath, parenchymatous bundle sheath/mestome sheath, and mestome sheath/vascular parenchyma cell interfaces. Within the bundles, plasmodesmata are also abundant between vascular parenchyma cells, which occupy most of the interface between the sieve tube-companion cell complexes and the mestome sheath. Other vascular parenchyma cells commonly separate the thick-walled sieve tubes from the sieve tube-companion cell complexes. Plasmodesmatal frequencies between all remaining cell combinations of the vascular tissues are very low, even between the thin-walled sieve tubes and their associated companion cells. Both the sieve tube-companion cell complexes and the thick-walled sieve tubes, which lack companion cells, are virtually isolated symplastically from the rest of the leaf. Data on plamodesmatal frequency between protophloem sieve tubes and other cell types in intermediate and large bundles indicate that they (and their associated companion cells, when present) are also isolated symplastically from the rest of the leaf. Collectively, these data indicate that both phloem loading and unloading in the barley leaf involve apoplastic mechanisms.
Collapse
Affiliation(s)
- Ray F Evert
- Departments of Botany and Plant Pathology, University of Wisconsin, 430 Lincoln Drive, 53706-1381, Madison, WI, USA.
| | - William A Russin
- Department of Botany, University of Wisconsin, 430 Lincoln Drive, 53706-1381, Madison, WI, USA
| | - C E J Botha
- Department of Botany, University of Wisconsin, 430 Lincoln Drive, 53706-1381, Madison, WI, USA
| |
Collapse
|