1
|
Docampo R. Advances in the cellular biology, biochemistry, and molecular biology of acidocalcisomes. Microbiol Mol Biol Rev 2024; 88:e0004223. [PMID: 38099688 PMCID: PMC10966946 DOI: 10.1128/mmbr.00042-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
Abstract
SUMMARYAcidocalcisomes are organelles conserved during evolution and closely related to the so-called volutin granules of bacteria and archaea, to the acidocalcisome-like vacuoles of yeasts, and to the lysosome-related organelles of animal species. All these organelles have in common their acidity and high content of polyphosphate and calcium. They are characterized by a variety of functions from storage of phosphorus and calcium to roles in Ca2+ signaling, osmoregulation, blood coagulation, and inflammation. They interact with other organelles through membrane contact sites or by fusion, and have several enzymes, pumps, transporters, and channels.
Collapse
Affiliation(s)
- Roberto Docampo
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Johansson NG, Dreano L, Vidilaseris K, Khattab A, Liu J, Lasbleiz A, Ribeiro O, Kiriazis A, Boije af Gennäs G, Meri S, Goldman A, Yli‐Kauhaluoma J, Xhaard H. Exploration of Pyrazolo[1,5-a]pyrimidines as Membrane-Bound Pyrophosphatase Inhibitors. ChemMedChem 2021; 16:3360-3367. [PMID: 34459148 PMCID: PMC8597055 DOI: 10.1002/cmdc.202100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/03/2021] [Indexed: 11/08/2022]
Abstract
Inhibition of membrane-bound pyrophosphatase (mPPase) with small molecules offer a new approach in the fight against pathogenic protozoan parasites. mPPases are absent in humans, but essential for many protists as they couple pyrophosphate hydrolysis to the active transport of protons or sodium ions across acidocalcisomal membranes. So far, only few nonphosphorus inhibitors have been reported. Here, we explore the chemical space around previous hits using a combination of screening and synthetic medicinal chemistry, identifying compounds with low micromolar inhibitory activities in the Thermotoga maritima mPPase test system. We furthermore provide early structure-activity relationships around a new scaffold having a pyrazolo[1,5-a]pyrimidine core. The most promising pyrazolo[1,5-a]pyrimidine congener was further investigated and found to inhibit Plasmodium falciparum mPPase in membranes as well as the growth of P. falciparum in an ex vivo survival assay.
Collapse
Affiliation(s)
- Niklas G. Johansson
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiP.O. Box 56 (Viikinkaari 5 E)00014HelsinkiFinland
| | - Loïc Dreano
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiP.O. Box 56 (Viikinkaari 5 E)00014HelsinkiFinland
| | - Keni Vidilaseris
- Department of Biosciences, Division of BiochemistryUniversity of HelsinkiP.O. Box 56 (Viikinkaari 9)00014HelsinkiFinland
| | - Ayman Khattab
- Malaria Research Laboratory, Translational Immunology Research Program, Department of Bacteriology and Immunology, Haartman InstituteUniversity of HelsinkiP.O. Box 21 (Haartmaninkatu 3)00014HelsinkiFinland
| | - Jianing Liu
- Department of Biosciences, Division of BiochemistryUniversity of HelsinkiP.O. Box 56 (Viikinkaari 9)00014HelsinkiFinland
| | - Arthur Lasbleiz
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiP.O. Box 56 (Viikinkaari 5 E)00014HelsinkiFinland
| | - Orquidea Ribeiro
- Department of Biosciences, Division of BiochemistryUniversity of HelsinkiP.O. Box 56 (Viikinkaari 9)00014HelsinkiFinland
| | - Alexandros Kiriazis
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiP.O. Box 56 (Viikinkaari 5 E)00014HelsinkiFinland
| | - Gustav Boije af Gennäs
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiP.O. Box 56 (Viikinkaari 5 E)00014HelsinkiFinland
| | - Seppo Meri
- Malaria Research Laboratory, Translational Immunology Research Program, Department of Bacteriology and Immunology, Haartman InstituteUniversity of HelsinkiP.O. Box 21 (Haartmaninkatu 3)00014HelsinkiFinland
| | - Adrian Goldman
- Department of Biosciences, Division of BiochemistryUniversity of HelsinkiP.O. Box 56 (Viikinkaari 9)00014HelsinkiFinland
- School of Biomedical Sciences and Astbury Centre for Structural Molecular BiologyUniversity of Leeds, Clarendon WayLeeds LS2 9JTUK
| | - Jari Yli‐Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiP.O. Box 56 (Viikinkaari 5 E)00014HelsinkiFinland
| | - Henri Xhaard
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of PharmacyUniversity of HelsinkiP.O. Box 56 (Viikinkaari 5 E)00014HelsinkiFinland
| |
Collapse
|
3
|
Choi HI, Hwang SW, Kim J, Park B, Jin E, Choi IG, Sim SJ. Augmented CO 2 tolerance by expressing a single H +-pump enables microalgal valorization of industrial flue gas. Nat Commun 2021; 12:6049. [PMID: 34663809 PMCID: PMC8523702 DOI: 10.1038/s41467-021-26325-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/01/2021] [Indexed: 12/02/2022] Open
Abstract
Microalgae can accumulate various carbon-neutral products, but their real-world applications are hindered by their CO2 susceptibility. Herein, the transcriptomic changes in a model microalga, Chlamydomonas reinhardtii, in a high-CO2 milieu (20%) are evaluated. The primary toxicity mechanism consists of aberrantly low expression of plasma membrane H+-ATPases (PMAs) accompanied by intracellular acidification. Our results demonstrate that the expression of a universally expressible PMA in wild-type strains makes them capable of not only thriving in acidity levels that they usually cannot survive but also exhibiting 3.2-fold increased photoautotrophic production against high CO2 via maintenance of a higher cytoplasmic pH. A proof-of-concept experiment involving cultivation with toxic flue gas (13 vol% CO2, 20 ppm NOX, and 32 ppm SOX) shows that the production of CO2-based bioproducts by the strain is doubled compared with that by the wild-type, implying that this strategy potentially enables the microalgal valorization of CO2 in industrial exhaust.
Collapse
Affiliation(s)
- Hong Il Choi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sung-Won Hwang
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jongrae Kim
- Department of Life Science, Hanyang University, 206, Wangsimni-ro, Seongbuk-gu, Seoul, 04763, Republic of Korea
| | - Byeonghyeok Park
- Department of Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Hanyang University, 206, Wangsimni-ro, Seongbuk-gu, Seoul, 04763, Republic of Korea
| | - In-Geol Choi
- Department of Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Goodenough U, Heiss AA, Roth R, Rusch J, Lee JH. Acidocalcisomes: Ultrastructure, Biogenesis, and Distribution in Microbial Eukaryotes. Protist 2019; 170:287-313. [DOI: 10.1016/j.protis.2019.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 12/19/2022]
|
5
|
Deng J, Lo YH, Gallagher-Jones M, Chen S, Pryor A, Jin Q, Hong YP, Nashed YSG, Vogt S, Miao J, Jacobsen C. Correlative 3D x-ray fluorescence and ptychographic tomography of frozen-hydrated green algae. SCIENCE ADVANCES 2018; 4:eaau4548. [PMID: 30406204 PMCID: PMC6214637 DOI: 10.1126/sciadv.aau4548] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/24/2018] [Indexed: 05/20/2023]
Abstract
Accurate knowledge of elemental distributions within biological organisms is critical for understanding their cellular roles. The ability to couple this knowledge with overall cellular architecture in three dimensions (3D) deepens our understanding of cellular chemistry. Using a whole, frozen-hydrated Chlamydomonas reinhardtii cell as an example, we report the development of 3D correlative microscopy through a combination of simultaneous cryogenic x-ray ptychography and x-ray fluorescence microscopy. By taking advantage of a recently developed tomographic reconstruction algorithm, termed GENeralized Fourier Iterative REconstruction (GENFIRE), we produce high-quality 3D maps of the unlabeled alga's cellular ultrastructure and elemental distributions within the cell. We demonstrate GENFIRE's ability to outperform conventional tomography algorithms and to further improve the reconstruction quality by refining the experimentally intended tomographic angles. As this method continues to advance with brighter coherent light sources and more efficient data handling, we expect correlative 3D x-ray fluorescence and ptychographic tomography to be a powerful tool for probing a wide range of frozen-hydrated biological specimens, ranging from small prokaryotes such as bacteria, algae, and parasites to large eukaryotes such as mammalian cells, with applications that include understanding cellular responses to environmental stimuli and cell-to-cell interactions.
Collapse
Affiliation(s)
- Junjing Deng
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Yuan Hung Lo
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California Los Angeles, CA 90095, USA
| | - Marcus Gallagher-Jones
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
- Department of Chemistry & Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095-1570, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alan Pryor
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
| | - Qiaoling Jin
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Young Pyo Hong
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Youssef S. G. Nashed
- Mathematics and Computing Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Stefan Vogt
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Jianwei Miao
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, CA 90095, USA
- Corresponding author. (J.M.); (C.J.)
| | - Chris Jacobsen
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. (J.M.); (C.J.)
| |
Collapse
|
6
|
Shebanova A, Ismagulova T, Solovchenko A, Baulina O, Lobakova E, Ivanova A, Moiseenko A, Shaitan K, Polshakov V, Nedbal L, Gorelova O. Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. PROTOPLASMA 2017; 254:1323-1340. [PMID: 27677801 DOI: 10.1007/s00709-016-1024-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/08/2016] [Indexed: 05/22/2023]
Abstract
Vacuole is a multifunctional compartment central to a large number of functions (storage, catabolism, maintenance of the cell homeostasis) in oxygenic phototrophs including microalgae. Still, microalgal cell vacuole is much less studied than that of higher plants although knowledge of the vacuolar structure and function is essential for understanding physiology of nutrition and stress tolerance of microalgae. Here, we combined the advanced analytical and conventional transmission electron microscopy methods to obtain semi-quantitative, spatially resolved at the subcellular level information on elemental composition of the cell vacuoles in several free-living and symbiotic chlorophytes. We obtained a detailed record of the changes in cell and vacuolar ultrastructure in response to environmental stimuli under diverse conditions. We suggested that the vacuolar inclusions could be divided into responsible for storage of phosphorus (mainly in form of polyphosphate) and those accommodating non-protein nitrogen (presumably polyamine) reserves, respectively.The ultrastructural findings, together with the data on elemental composition of different cell compartments, allowed us to speculate on the role of the vacuolar membrane in the biosynthesis and sequestration of polyphosphate. We also describe the ultrastructural evidence of possible involvement of the tonoplast in the membrane lipid turnover and exchange of energy and metabolites between chloroplasts and mitochondria. These processes might play a significant role in acclimation in different stresses including nitrogen starvation and extremely high level of CO2 and might also be of importance for microalgal biotechnology. Advantages and limitations of application of analytical electron microscopy to biosamples such as microalgal cells are discussed.
Collapse
Affiliation(s)
| | | | - Alexei Solovchenko
- Lomonosov Moscow State University, Moscow, Russia.
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
- Faculty of Biology, Moscow State University, Leninskie Gori 1/12, 119234, GSP-1 Moscow, Russia.
| | - Olga Baulina
- Lomonosov Moscow State University, Moscow, Russia
| | | | - Alexandra Ivanova
- Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | | | | | - Vladimir Polshakov
- Faculty of fundamental medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences / Plant Sciences (IBG-2), Forschungszentrum Jülich, Jülich, Germany
| | | |
Collapse
|
7
|
Wang CS, Jiang QT, Ma J, Wang XY, Wang JR, Chen GY, Qi PF, Peng YY, Lan XJ, Zheng YL, Wei YM. Characterization and expression analyses of the H⁺-pyrophosphatase gene in rye. J Genet 2017; 95:565-72. [PMID: 27659326 DOI: 10.1007/s12041-016-0664-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The H⁺-pyrophosphatase (H⁺-PPase) gene plays an important role in maintaining intracellular proton gradients. Here, we characterized the full-length complementary DNA (cDNA) and DNA of the H⁺-PPase gene ScHP1 in rye (Secale cereale L. 'Qinling'). We determined the subcellular localization of this gene and predicted the corresponding protein structure. We analysed the evolutionary relationship between ScHP1 and H⁺-PPase genes in other species, and did real-time quantitative polymerase chain reaction to explore the expression patterns of ScHP1 in rye plants subjected to N, P and K deprivation and to cold, high-salt and drought stresses. ScHP1 cDNA included a 2289 bp open reading frame (ORF) encoding 762 amino acid residues with 14 transmembrane domains. The genomic ScHP1 DNA was 4354 bp and contained eight exons and seven introns. ScHP1 was highly homologous with other members of the H⁺-PPase gene family. When the full-length ORF was inserted into the expression vector pA7-YFP, the fluorescent microscopy revealed that ScHP1-YFP fusion protein was located in the plasma membrane. Rye plants that were subjected to N deprivation, cold and high-salt stresses, ScHP1 expression was higher in the leaves than roots. Conversely, plants subjected to P and K deprivation and drought stress, ScHP1 expression was higher in the roots than leaves. Under all the investigated stress conditions, expression of ScHP1 was lower in the stem than in the leaves and roots. Our results imply that ScHP1 functions under abiotic stress response.
Collapse
Affiliation(s)
- Chang-Shui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Raven JA, Doblin MA. Active water transport in unicellular algae: where, why, and how. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6279-6292. [PMID: 25205578 DOI: 10.1093/jxb/eru360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The occurrence of active water transport (net transport against a free energy gradient) in photosynthetic organisms has been debated for several decades. Here, active water transport is considered in terms of its roles, where it is found, and the mechanisms by which it could occur. First there is a brief consideration of the possibility of active water transport into plant xylem in the generation of root pressure and the refilling of embolized xylem elements, and from an unsaturated atmosphere into terrestrial organisms living in habitats with limited availability of liquid water. There is then a more detailed consideration of volume and osmotic regulation in wall-less freshwater unicells, and the possibility of generation of buoyancy in marine phytoplankton such as large-celled diatoms. Calculations show that active water transport is a plausible mechanism to assist cells in upwards vertical movements, requires less energy than synthesis of low-density organic solutes, and potentially on a par with excluding certain ions from the vacuole.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK School of Plant Biology, University of Western Australia, M048, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Martina A Doblin
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, NSW 2007, Australia
| |
Collapse
|
9
|
Komsic-Buchmann K, Wöstehoff L, Becker B. The contractile vacuole as a key regulator of cellular water flow in Chlamydomonas reinhardtii. EUKARYOTIC CELL 2014; 13:1421-30. [PMID: 25217463 PMCID: PMC4248701 DOI: 10.1128/ec.00163-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/08/2014] [Indexed: 01/29/2023]
Abstract
Most freshwater flagellates use contractile vacuoles (CVs) to expel excess water. We have used Chlamydomonas reinhardtii as a green model system to investigate CV function during adaptation to osmotic changes in culture medium. We show that the contractile vacuole in Chlamydomonas is regulated in two different ways. The size of the contractile vacuoles increases during cell growth, with the contraction interval strongly depending on the osmotic strength of the medium. In contrast, there are only small fluctuations in cytosolic osmolarity and plasma membrane permeability. Modeling of the CV membrane permeability indicates that only a small osmotic gradient is necessary for water flux into the CV, which most likely is facilitated by the aquaporin major intrinsic protein 1 (MIP1). We show that MIP1 is localized to the contractile vacuole, and that the expression rate and protein level of MIP1 exhibit only minor fluctuations under different osmotic conditions. In contrast, SEC6, a protein of the exocyst complex that is required for the water expulsion step, and a dynamin-like protein are upregulated under strong hypotonic conditions. The overexpression of a CreMIP1-GFP construct did not change the physiology of the CV. The functional implications of these results are discussed.
Collapse
|
10
|
Komsic-Buchmann K, Stephan LM, Becker B. The SEC6 protein is required for contractile vacuole function in Chlamydomonas reinhardtii. J Cell Sci 2012; 125:2885-95. [PMID: 22427688 DOI: 10.1242/jcs.099184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Contractile vacuoles (CVs) are essential for osmoregulation in many protists. To investigate the mechanism of CV function in Chlamydomonas, we isolated novel osmoregulatory mutants. Four of the isolated mutant cell lines carried the same 33,641 base deletion, rendering the cell lines unable to grow under strong hypotonic conditions. One mutant cell line (Osmo75) was analyzed in detail. The CV morphology was variable in mutant cells, and most cells had multiple small CVs. In addition, one or two enlarged CVs or no visible CVs at all, were observed by light microscopy. These findings suggest that the mutant is impaired in homotypic vacuolar and exocytotic membrane fusion. Furthermore the mutants had long flagella. One of the affected genes is the only SEC6 homologue in Chlamydomonas (CreSEC6). The SEC6 protein is a component of the exocyst complex that is required for efficient exocytosis. Transformation of the Osmo75 mutant with a CreSEC6-GFP construct rescued the mutant completely (osmoregulation and flagellar length). Rescued strains overexpressed CreSEC6 (as a GFP-tagged protein) and displayed a modified CV activity. CVs were larger, whereas the CV contraction interval remained unchanged, leading to increased water efflux rates. Electron microscopy analysis of Osmo75 cells showed that the mutant is able to form the close contact zones between the plasma membrane and the CV membrane observed during late diastole and systole. These results indicate that CreSEC6 is essential for CV function and required for homotypic vesicle fusion during diastole and water expulsion during systole. In addition, CreSEC6 is not only necessary for CV function, but possibly influences the CV cycle in an indirect manner and flagellar length in Chlamydomonas.
Collapse
|
11
|
Epimashko S, Fischer-Schliebs E, Christian AL, Thiel G, Lüttge U. Na+/H+-transporter, H+-pumps and an aquaporin in light and heavy tonoplast membranes from organic acid and NaCl accumulating vacuoles of the annual facultative CAM plant and halophyte Mesembryanthemum crystallinum L. PLANTA 2006; 224:944-51. [PMID: 16575596 DOI: 10.1007/s00425-006-0265-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 03/10/2006] [Indexed: 05/08/2023]
Abstract
Crassulacean acid metabolism (CAM) was induced in Mesembryanthemum crystallinum L. by either NaCl- or high light (HL)- stress. This generated in mesophyll cells predominantly of NaCl-stressed plants two different types of vacuoles: the generic acidic vacuoles for malic acid accumulation and additionally less acidic ("neutral") vacuoles for NaCl sequestration. To examine differences in the tonoplast properties of the two types of vacuoles, we separated microsomal membranes of HL- and NaCl-stressed M. crystallinum plants by centrifugation in sucrose density gradients. Positive immunoreactions of a set of antibodies directed against tonoplast specific proteins and tonoplast specific ATP- and PPi-hydrolytic activity were used as markers for vacuolar membranes. With these criteria tonoplast membranes were detected in both HL- and NaCl-stressed plants in association with the characteristic low sucrose density but also at an unusual high sucrose density. In HL-stressed plants most of the ATP- and PPi-hydrolytic activity and cross reactivity with antibodies including that directed against the Na+/H+-antiporter from Arabidopsis thaliana was detected with light sucrose density. This relationship was inverted in NaCl-stressed plants; they exhibited most pump activity and immunoreactivity in the heavy fraction. The relative abundance of the heavy membrane fraction reflects the relative occurrence of "neutral" vacuoles in either HL- or NaCl-stressed plants. This suggests that tonoplasts of the "neutral" vacuoles sediment at high sucrose densities. This is consistent with the view that this type of vacuoles serves for Na+ sequestration and is accordingly equipped with a high capacity of proton pumping and Na+ uptake via the Na+/H+-antiporter.
Collapse
Affiliation(s)
- Svetlana Epimashko
- Institute of Botany, Darmstadt University of Technology, Schnittspahnstrasse 3-5, 64287 Darmstadt, Germany
| | | | | | | | | |
Collapse
|
12
|
Abstract
Brefeldin A (BFA) causes a block in the secretory system of eukaryotic cells. In the scaly green flagellate Scherffelia dubia, BFA also interfered with the function of the contractile vacuoles (CVs). The CV is an osmoregulatory organelle which periodically expels fluid from the cell in many freshwater protists. Fusion of the CV membrane with the plasma membrane is apparently blocked by BFA in S. dubia. The two CVs of S. dubia swell and finally form large central vacuoles (LCVs). BFA-induced formation of LCVs depends on V-ATPase activity, and can be reversed by hypertonic media, suggesting that water accumulation in the LCVs is driven by osmosis. We suggest that the BFA-induced formation of LCVs represents a prolonged diastole phase. A normal diastole phase takes about 20 s and is difficult to investigate. Therefore, BFA-induced formation of LCVs in S. dubia represents a unique model system to investigate the diastole phase of the CV cycle.
Collapse
Affiliation(s)
- Burkhard Becker
- Botanisches Institut, Universität zu Köln, Gyrhofstr. 15, D-50931 Köln, Germany.
| | | |
Collapse
|
13
|
Seufferheld M, Lea CR, Vieira M, Oldfield E, Docampo R. The H+-pyrophosphatase of Rhodospirillum rubrum Is Predominantly Located in Polyphosphate-rich Acidocalcisomes. J Biol Chem 2004; 279:51193-202. [PMID: 15371423 DOI: 10.1074/jbc.m406099200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acidocalcisomes are acidic, calcium storage compartments with a H(+) pump located in their membrane that have been described in several unicellular eukaryotes, including trypanosomatid and apicomplexan parasites, algae, and slime molds, and have also been found in the bacterium Agrobacterium tumefaciens. In this work, we report that the H(+)-pyrophosphatase (H(+)-PPase) of Rhodospirillum rubrum, the first enzyme of this type that was identified and thought to be localized only to chromatophore membranes, is predominantly located in acidocalcisomes. The identification of the acidocalcisomes of R. rubrum was carried out by using transmission electron microscopy, x-ray microanalysis, and immunofluorescence microscopy. Purification of acidocalcisomes using iodixanol gradients indicated co-localization of the H(+)-PPase with pyrophosphate (PPi) and short and long chain polyphosphates (polyPs) but a lack of markers of the plasma membrane. polyP was also localized to the acidocalcisomes by using 4',6'-diamino-2-phenylindole staining and identified by using 31P NMR and biochemical methods. Calcium in the acidocalcisomes increased when the bacteria were incubated at high extracellular calcium concentrations. The number of acidocalcisomes and chromatophore membranes as well as the amounts of PPi and polyP increased when bacteria were grown in the light. Taken together, these results suggest that the H(+)-PPase of R. rubrum has two distinct roles depending on its location acting as an intracellular proton pump in acidocalcisomes but in PPi synthesis in the chromatophore membranes.
Collapse
Affiliation(s)
- Manfredo Seufferheld
- Laboratory of Molecular Parasitology, Department of Pathobiology and Center for Zoonoses Research, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | | | |
Collapse
|
14
|
Allen RD, Naitoh Y. Osmoregulation and contractile vacuoles of protozoa. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 215:351-94. [PMID: 11952235 DOI: 10.1016/s0074-7696(02)15015-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protozoa living in fresh water are subjected to a hypotonic environment. Water flows across their plasma membrane since their cytosol is always hypertonic to the environment. Many wall-less protozoa have an organelle, the contractile vacuole complex (CVC), that collects and expels excess water. Recent progress shows that most, if not all, CVCs are composed of a two-compartment system encircled by two differentiated membranes. One membrane, which is often divided into numerous vesicles and tubules, contains many proton-translocating V-ATPase enzymes that provide an electrochemical gradient of protons and which fuses only with the membrane of the second compartment. The membrane of the second compartment lacks V-ATPase holoenzymes, expands into a reservoir for fluid storage, and is capable of fusing with the plasma membrane. It is this second compartment that periodically undergoes rounding ("contraction"), setting the stage for fluid expulsion. Rounding is accompanied by increased membrane tension. We review the current state of knowledge on osmolarity, ion concentrations, membrane permeability, and electrophysiological parameters of cells and their contractile vacuoles, where these criteria are helpful to our understanding of the function of the CVC. Effects of environmental stresses on the CVC function are also summarized. Finally, other functions suggested for CVCs based on molecular and physiological studies are reviewed.
Collapse
Affiliation(s)
- Richard D Allen
- Department of Microbiology and Pacific Biomedical Research Center, University of Hawaii, Honolulu 96822, USA
| | | |
Collapse
|
15
|
Martinez R, Wang Y, Benaim G, Benchimol M, de Souza W, Scott DA, Docampo R. A proton pumping pyrophosphatase in the Golgi apparatus and plasma membrane vesicles of Trypanosoma cruzi. Mol Biochem Parasitol 2002; 120:205-13. [PMID: 11897126 DOI: 10.1016/s0166-6851(01)00456-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The proton pumping pyrophosphatase (H(+)-PPase) is an enzyme that has been identified in membranes of plant vacuoles, in the Golgi complex of plants and Chlamydomonas reinhardtii, and more recently in acidocalcisomes of different trypanosomatids and apicomplexan parasites. Immunofluorescence and immunoelectron microscopy studies using antibodies against the plant enzyme also suggested a plasma membrane localization in different stages of Trypanosoma cruzi. In this report we provide immunogold electron microscopy evidence of the presence of the H(+)-PPase in the Golgi complex and plasma membrane of epimastigotes of T. cruzi. Pyrophosphate promoted acidification of plasma membrane vesicles as determined using acridine orange. This activity was stimulated by K(+) ions, inhibited by the pyrophosphate analogs imidodiphosphate (IDP) and aminomethylenediphosphonate (AMDP) by KF, NaF and DCCD, and it had different responses to ions and inhibitors as compared with the activity present in acidocalcisomes. Surface localization of the H(+)-PPase was confirmed by experiments using biotinylation of cell surface proteins and immunoprecipitation with antibodies against H(+)-PPase. Taken together, these results are consistent with the presence of a functional H(+)-PPase in the plasma membrane of these parasites.
Collapse
Affiliation(s)
- Rosa Martinez
- Laboratory of Molecular Parasitology, Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Ruiz FA, Marchesini N, Seufferheld M, Docampo R. The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J Biol Chem 2001; 276:46196-203. [PMID: 11579086 DOI: 10.1074/jbc.m105268200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acidocalcisomes are acidic calcium storage compartments described initially in trypanosomatid and apicomplexan parasites. In this work, we describe organelles with properties similar to acidocalcisomes in the green alga Chlamydomonas reinhardtii. Nigericin and NH(4)Cl released (45)Ca(2+) from preloaded permeabilized cells, suggesting the incorporation of a significant amount of this cation into an acidic compartment. X-ray microanalysis of the electron-dense vacuoles or polyphosphate bodies of C. reinhardtii showed large amounts of phosphorus, magnesium, calcium, and zinc. Immunofluorescence microscopy, using antisera raised against a peptide sequence of the vacuolar type proton pyrophosphatase (H(+)-PPase) of Arabidopsis thaliana which is conserved in the C. reinhardtii enzyme, indicated localization in the plasma membrane, in intracellular vacuoles, and the contractile vacuole where it colocalized with the vacuolar proton ATPase (V-H(+)-ATPase). Purification of the electron-dense vacuoles using iodixanol density gradients indicated a preferential localization of the H(+)-PPase and the V-H(+)-ATPase activities in addition to high concentrations of PP(i) and short and long chain polyphosphate, but lack of markers for mitochondria and chloroplasts. In isolated electron-dense vacuoles, PP(i)-driven proton translocation was stimulated by potassium ions and inhibited by the PP(i) analog aminomethylenediphosphonate. Potassium fluoride, imidodiphosphate, N,N'-dicyclohexylcarbodiimide, and N-ethylmaleimide also inhibited PP(i) hydrolysis in the isolated organelles in a dose-dependent manner. These results indicate that the electron-dense vacuoles of C. reinhardtii are very similar to acidocalcisomes with regard to their chemical composition and the presence of proton pumps. Polyphosphate was also localized to the contractile vacuole by 4',6-diamidino-2-phenylindole staining, suggesting, with the immunochemical data, a link between these organelles and the acidocalcisomes.
Collapse
Affiliation(s)
- F A Ruiz
- Laboratory of Molecular Parasitology, Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA
| | | | | | | |
Collapse
|
17
|
Ratajczak R. Structure, function and regulation of the plant vacuolar H(+)-translocating ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1465:17-36. [PMID: 10748245 DOI: 10.1016/s0005-2736(00)00129-2] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The plant V-ATPase is a primary-active proton pump present at various components of the endomembrane system. It is assembled by different protein subunits which are located in two major domains, the membrane-integral V(o)-domain and the membrane peripheral V(1)-domain. At the plant vacuole the V-ATPase is responsible for energization of transport of ions and metabolites, and thus the V-ATPase is important as a 'house-keeping' and as a stress response enzyme. It has been shown that transcript and protein amount of the V-ATPase are regulated depending on metabolic conditions indicating that the expression of V-ATPase subunit is highly regulated. Moreover, there is increasing evidence that modulation of the holoenzyme structure might influence V-ATPase activity.
Collapse
Affiliation(s)
- R Ratajczak
- Darmstadt University of Technology, Institute of Botany, Schnittspahnstrasse 3-5, D-64287, Darmstadt, Germany.
| |
Collapse
|
18
|
Abstract
The H(+)-translocating inorganic pyrophosphatase (H(+)-PPase) is a unique, electrogenic proton pump distributed among most land plants, but only some alga, protozoa, bacteria, and archaebacteria. This enzyme is a fine model for research on the coupling mechanism between the pyrophosphate hydrolysis and the active proton transport, since the enzyme consists of a single polypeptide with a calculated molecular mass of 71-80 kDa and its substrate is also simple. Cloning of the H(+)-PPase genes from several organisms has revealed the conserved regions that may be the catalytic site and/or participate in the enzymatic function. The primary sequences are reviewed with reference to biochemical properties of the enzyme, such as the requirement of Mg(2)(+) and K(+). In plant cells, H(+)-PPase coexists with H(+)-ATPase in a single vacuolar membrane. The physiological significance and the regulation of the gene expression of H(+)-PPase are also reviewed.
Collapse
Affiliation(s)
- M Maeshima
- Laboratory of Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| |
Collapse
|