1
|
Bills JD, Seifert AW, Morris AC. Retinal neuroanatomy of two emerging model organisms, the spiny mouse (Acomys dimidiatus) and the Mongolian gerbil (Meriones unguiculatus). Exp Eye Res 2024; 247:110055. [PMID: 39159803 DOI: 10.1016/j.exer.2024.110055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Current research using animal models to investigate retinal cell biology and model retinal degenerative diseases largely utilize small mammals that are nocturnal and lack the ability to restore lost vision. In contrast, the Mongolian gerbil (Meriones) is a diurnal rodent with good photopic vision, and the spiny mouse (Acomys) is a small desert-dwelling rodent with remarkable regenerative capabilities. The goal of this study was to identify antibodies that detect retinal cell classes in Meriones and Acomys, and to describe the retinal anatomy of these two species in comparison to outbred laboratory mice (Mus musculus). Immunohistochemistry was performed on retinal sections with antibodies for various retinal cell types. Sections were imaged by light, fluorescence, and confocal microscopy. Cell density, morphology, and placement were compared between species qualitatively and quantitatively. Our analyses revealed a classic assembly of retinal cells in Meriones and Acomys, with a few deviations compared to Mus. Meriones displayed the highest density of cones and Acomys the lowest. A higher density of bipolar cell bodies in the proximal portion of the inner nuclear layer was observed in both Acomys and Meriones compared to Mus, and both species exhibited an increase in amacrine cell density compared to Mus. Our results provide a foundation for future research into the visual system adaptations of these interesting species.
Collapse
Affiliation(s)
- Jessica D Bills
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA
| | - Ann C Morris
- Department of Biology, University of Kentucky, Lexington, KY 40506-0225, USA.
| |
Collapse
|
2
|
Aragona M, Briglia M, Porcino C, Mhalhel K, Cometa M, Germanà PG, Montalbano G, Levanti M, Laurà R, Abbate F, Germanà A, Guerrera MC. Localization of Calretinin, Parvalbumin, and S100 Protein in Nothobranchius guentheri Retina: A Suitable Model for the Retina Aging. Life (Basel) 2023; 13:2050. [PMID: 37895432 PMCID: PMC10608213 DOI: 10.3390/life13102050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/05/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Calcium-binding proteins (CaBPs) are members of a heterogeneous family of proteins able to buffer intracellular Ca2+ ion concentration. CaBPs are expressed in the central and peripheral nervous system, including a subpopulation of retinal neurons. Since neurons expressing different CaBPs show different susceptibility to degeneration, it could be hypothesized that they are not just markers of different neuronal subpopulations, but that they might be crucial in survival. CaBPs' ability to buffer Ca2+ cytoplasmatic concentration makes them able to defend against a toxic increase in intracellular calcium that can lead to neurodegenerative processes, including those related to aging. An emergent model for aging studies is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, show a retinal stratigraphy similar to that of other actinopterygian fishes and humans. However, according to our knowledge, CaBPs' occurrence and distribution in the retina of N. guentheri have never been investigated before. Therefore, the present study aimed to localize Calretinin N-18, Parvalbumin, and S100 protein (S100p) in the N. guentheri retina with immunohistochemistry methods. The results of the present investigation demonstrate for the first time the occurrence of Calretinin N-18, Parvalbumin, and S100p in N. guentheri retina and, consequently, the potential key role of these CaBPs in the biology of the retinal cells. Hence, the suitability of N. guentheri as a model to study the changes in CaBPs' expression patterns during neurodegenerative processes affecting the retina related both to disease and aging can be assumed.
Collapse
Affiliation(s)
| | | | - Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (M.B.); (K.M.); (M.C.); (P.G.G.); (G.M.); (M.L.); (R.L.); (F.A.); (A.G.); (M.C.G.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Potential Neuroprotective Role of Calretinin-N18 and Calbindin-D28k in the Retina of Adult Zebrafish Exposed to Different Wavelength Lights. Int J Mol Sci 2023; 24:ijms24021087. [PMID: 36674603 PMCID: PMC9862630 DOI: 10.3390/ijms24021087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/26/2022] [Accepted: 12/15/2022] [Indexed: 01/08/2023] Open
Abstract
The incidence rates of light-induced retinopathies have increased significantly in the last decades because of continuous exposure to light from different electronic devices. Recent studies showed that exposure to blue light had been related to the pathogenesis of light-induced retinopathies. However, the pathophysiological mechanisms underlying changes induced by light exposure are not fully known yet. In the present study, the effects of exposure to light at different wavelengths with emission peaks in the blue light range (400-500 nm) on the localization of Calretinin-N18 (CaR-N18) and Calbindin-D28K (CaB-D28K) in adult zebrafish retina are studied using double immunofluorescence with confocal laser microscopy. CaB-D28K and CaR-N18 are two homologous cytosolic calcium-binding proteins (CaBPs) implicated in essential process regulation in central and peripheral nervous systems. CaB-D28K and CaR-N18 distributions are investigated to elucidate their potential role in maintaining retinal homeostasis under distinct light conditions and darkness. The results showed that light influences CaB-D28K and CaR-N18 distribution in the retina of adult zebrafish, suggesting that these CaBPs could be involved in the pathophysiology of retinal damage induced by the short-wavelength visible light spectrum.
Collapse
|
4
|
Fusz K, Kovács-Öller T, Kóbor P, Szabó-Meleg E, Völgyi B, Buzás P, Telkes I. Regional Variation of Gap Junctional Connections in the Mammalian Inner Retina. Cells 2021; 10:2396. [PMID: 34572046 PMCID: PMC8466939 DOI: 10.3390/cells10092396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/24/2022] Open
Abstract
The retinas of many species show regional specialisations that are evident in the differences in the processing of visual input from different parts of the visual field. Regional specialisation is thought to reflect an adaptation to the natural visual environment, optical constraints, and lifestyle of the species. Yet, little is known about regional differences in synaptic circuitry. Here, we were interested in the topographical distribution of connexin-36 (Cx36), the major constituent of electrical synapses in the retina. We compared the retinas of mice, rats, and cats to include species with different patterns of regional specialisations in the analysis. First, we used the density of Prox1-immunoreactive amacrine cells as a marker of any regional specialisation, with higher cell density signifying more central regions. Double-labelling experiments showed that Prox1 is expressed in AII amacrine cells in all three species. Interestingly, large Cx36 plaques were attached to about 8-10% of Prox1-positive amacrine cell somata, suggesting the strong electrical coupling of pairs or small clusters of cell bodies. When analysing the regional changes in the volumetric density of Cx36-immunoreactive plaques, we found a tight correlation with the density of Prox1-expressing amacrine cells in the ON, but not in the OFF sublamina in all three species. The results suggest that the relative contribution of electrical synapses to the ON- and OFF-pathways of the retina changes with retinal location, which may contribute to functional ON/OFF asymmetries across the visual field.
Collapse
Affiliation(s)
- Katalin Fusz
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.F.); (P.K.); (I.T.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Kovács-Öller
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, 7624 Pécs, Hungary
| | - Péter Kóbor
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.F.); (P.K.); (I.T.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Edina Szabó-Meleg
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Institute of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Béla Völgyi
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE NAP-2 Retinal Electrical Synapses Research Group, 7624 Pécs, Hungary
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary
| | - Péter Buzás
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.F.); (P.K.); (I.T.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| | - Ildikó Telkes
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (K.F.); (P.K.); (I.T.)
- Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (T.K.-Ö.); (E.S.-M.); (B.V.)
- Centre for Neuroscience, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
5
|
Hajdú RI, Laurik LK, Szabó K, Dékány B, Almási Z, Énzsöly A, Szabó A, Radovits T, Mátyás C, Oláh A, Szél Á, Somfai GM, Dávid C, Lukáts Á. Detailed Evaluation of Possible Ganglion Cell Loss in the Retina of Zucker Diabetic Fatty (ZDF) Rats. Sci Rep 2019; 9:10463. [PMID: 31320684 PMCID: PMC6639371 DOI: 10.1038/s41598-019-46879-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/21/2019] [Indexed: 01/06/2023] Open
Abstract
A thinning of the inner retina is one of the earliest potential markers of neuroretinal damage in diabetic subjects. The histological background is uncertain; retinal ganglion cell (RGC) loss and changes in the structure or thickness of the inner plexiform layer (IPL) have been suspected. Studies conducted on animal models on RGC pathology gave contradictory results. Hereby we present RGC numbers, distribution patterns and IPL thickness from Zucker Diabetic Fatty (ZDF) rats. After labelling RGCs on retinal whole mounts, isodensity maps were constructed, RGC numbers and distribution patterns analysed using a custom-built algorithm, enabling point-by-point comparison. There was no change in staining characteristics of the antibodies and no significant difference in average RGC densities was found compared to controls. The distribution patterns were also comparable and no significant difference was found in IPL thickness and stratification or in the number of apoptotic cells in the ganglion cell layer (GCL). Our results provide a detailed evaluation of the inner retina and exclude major RGC loss in ZDF rats and suggest that other factors could serve as a potential explanation for inner retinal thinning in clinical studies. Our custom-built method could be adopted for the assessment of other animal or human retinas.
Collapse
Affiliation(s)
- Rozina I Hajdú
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Lenke K Laurik
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Klaudia Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bulcsú Dékány
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Almási
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Anna Énzsöly
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Arnold Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Ágoston Szél
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gábor M Somfai
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Retinology Unit, Pallas Kliniken, Olten, Switzerland
| | - Csaba Dávid
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Szabó K, Énzsöly A, Dékány B, Szabó A, Hajdú RI, Radovits T, Mátyás C, Oláh A, Laurik LK, Somfai GM, Merkely B, Szél Á, Lukáts Á. Histological Evaluation of Diabetic Neurodegeneration in the Retina of Zucker Diabetic Fatty (ZDF) Rats. Sci Rep 2017; 7:8891. [PMID: 28827737 PMCID: PMC5566374 DOI: 10.1038/s41598-017-09068-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/21/2017] [Indexed: 01/24/2023] Open
Abstract
In diabetes, retinal dysfunctions exist prior to clinically detectable vasculopathy, however the pathology behind these functional deficits is still not fully established. Previously, our group published a detailed study on the retinal histopathology of type 1 diabetic (T1D) rat model, where specific alterations were detected. Although the majority of human diabetic patients have type 2 diabetes (T2D), similar studies on T2D models are practically absent. To fill this gap, we examined Zucker Diabetic Fatty (ZDF) rats - a model for T2D - by immunohistochemistry at the age of 32 weeks. Glial reactivity was observed in all diabetic specimens, accompanied by an increase in the number of microglia cells. Prominent outer segment degeneration was detectable with changes in cone opsin expression pattern, without a decrease in the number of labelled elements. The immunoreactivity of AII amacrine cells was markedly decreased and changes were detectable in the number and staining of some other amacrine cell subtypes, while most other cells examined did not show any major alterations. Overall, the retinal histology of ZDF rats shows a surprising similarity to T1D rats indicating that despite the different evolution of the disease, the neuroretinal cells affected are the same in both subtypes of diabetes.
Collapse
Affiliation(s)
- Klaudia Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, H-1085, Hungary
| | - Anna Énzsöly
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, H-1085, Hungary
- Department of Ophthalmology, Semmelweis University, Budapest, H-1085, Hungary
| | - Bulcsú Dékány
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, H-1085, Hungary
| | - Arnold Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, H-1085, Hungary
| | - Rozina I Hajdú
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, H-1085, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, H-1085, Hungary
| | - Csaba Mátyás
- Heart and Vascular Center, Semmelweis University, Budapest, H-1085, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, H-1085, Hungary
| | - Lenke K Laurik
- Department of Ophthalmology, Semmelweis University, Budapest, H-1085, Hungary
| | - Gábor M Somfai
- Department of Ophthalmology, Semmelweis University, Budapest, H-1085, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, H-1085, Hungary
| | - Ágoston Szél
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, H-1085, Hungary
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, H-1085, Hungary.
| |
Collapse
|
7
|
Hammoum I, Benlarbi M, Dellaa A, Szabó K, Dékány B, Csaba D, Almási Z, Hajdú RI, Azaiz R, Charfeddine R, Lukáts Á, Ben Chaouacha-Chekir R. Study of retinal neurodegeneration and maculopathy in diabetic Meriones shawi: A particular animal model with human-like macula. J Comp Neurol 2017; 525:2890-2914. [PMID: 28542922 DOI: 10.1002/cne.24245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022]
Abstract
The purpose of this work was to evaluate a potentially useful animal model, Meriones shawi (M.sh)-developing metabolic X syndrome, diabetes and possessing a visual streak similar to human macula-in the study of diabetic retinopathy and diabetic macular edema (DME). Type 2 diabetes (T2D) was induced by high fat diet administration in M.sh. Body weights, blood glucose levels were monitored throughout the study. Diabetic retinal histopathology was evaluated 3 and 7 months after diabetes induction. Retinal thickness was measured, retinal cell types were labeled by immunohistochemistry and the number of stained elements were quantified. Apoptosis was determined with TUNEL assay. T2D induced progressive changes in retinal histology. A significant decrease of retinal thickness and glial reactivity was observed without an increase in apoptosis rate. Photoreceptor outer segment degeneration was evident, with a significant decrease in the number of all cones and M-cone subtype, but-surprisingly-an increase in S-cones. Damage of the pigment epithelium was also confirmed. A decrease in the number and labeling intensity of parvalbumin- and calretinin-positive amacrine cells and a loss of ganglion cells was detected. Other cell types showed no evident alterations. No DME-like condition was noticed even after 7 months. M.sh could be a useful model to study the evolution of diabetic retinal pathology and to identify the role of hypertension and dyslipidemia in the development of the reported alterations. Longer follow up would be needed to evaluate the potential use of the visual streak in modeling human macular diseases.
Collapse
Affiliation(s)
- Imane Hammoum
- Laboratory of Physiopathology, Food and Biomolecules (PAB), department of Biotechnology, High Institute of Biotechnology of Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia.,Faculty of Sciences of Tunis, El Manar University (UTM), Tunis, Tunisia
| | - Maha Benlarbi
- Laboratory of Physiopathology, Food and Biomolecules (PAB), department of Biotechnology, High Institute of Biotechnology of Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia
| | - Ahmed Dellaa
- Laboratory of Physiopathology, Food and Biomolecules (PAB), department of Biotechnology, High Institute of Biotechnology of Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia
| | - Klaudia Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Bulcsú Dékány
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Dávid Csaba
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Almási
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rozina I Hajdú
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rached Azaiz
- UNIMED Pharmaceutical Industry, Industrial area Kalaa Kebira, Sousse, Tunisia
| | - Ridha Charfeddine
- UNIMED Pharmaceutical Industry, Industrial area Kalaa Kebira, Sousse, Tunisia
| | - Ákos Lukáts
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rafika Ben Chaouacha-Chekir
- Laboratory of Physiopathology, Food and Biomolecules (PAB), department of Biotechnology, High Institute of Biotechnology of Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia
| |
Collapse
|
8
|
Study of retinal alterations in a high fat diet-induced type ii diabetes rodent: Meriones shawi. Acta Histochem 2017; 119:1-9. [PMID: 27265809 DOI: 10.1016/j.acthis.2016.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/18/2022]
Abstract
Diabetic retinopathy is a common complication of type 2 diabetes and the leading cause of blindness in adults of working age. The aim of this work was to study the repercussions of high fat diet (HFD) induced diabetes on the retina of Meriones shawi (M.sh). Two groups of six M.sh each was studied. Group I was a normal control, fed with standard laboratory granules. In Group II, rodents received a HFD of enriched laboratory granules, for a period of 3 months. Body weight and plasma glucose were determined in the two groups. Retinal sections of the two groups were stained with the Hematoxylin-Eosin. Photoreceptors were identified by immunolabeling for rhodopsin (rods) and PNA (cones). Gliosis and microglial activation were identified by immunolabeling for GFAP and Iba-1. Labeling of calretinin and parvalbumin were also carried out to study the AII amacrine cells. Retinal layers thicknesses, gliosis, and specific neural cell populations were quantified by microscopy. The body weight (+77%) and plasma glucose (+108%) were significantly greater in the HFD rodents. Three months of HFD induced a significant loss of 38.77% of cone photoreceptors, as well as gliosis and an increase of 70.67% of microglial cells. Calcium homeostatic enzymes were depleted. This work shows that HFD in Meriones shawi induces a type II diabetes-like condition that causes loss of retinal neurons and photoreceptors, as well as gliosis. Meriones shawi could be a useful experimental animal model for this physiopathology particularly in the study of retinal neuro-glial alterations in Type II diabetes.
Collapse
|
9
|
Jeong MJ, Jeon CJ. Localization of melanopsin-immunoreactive cells in the Mongolian gerbil retina. Neurosci Res 2015; 100:6-16. [PMID: 26083722 DOI: 10.1016/j.neures.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/19/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in circadian rhythm and pupil responses. The purpose of this study was to reveal the organization of melanopsin-immunoreactive (IR) neurons in the Mongolian gerbil retina using immunocytochemistry. Melanopsin-IR cells were primarily located in the ganglion cell layer (GCL; M1c; 75.15%). Many melanopsin-IR cells were also observed in the inner nuclear layer (INL; M1d; 22.28%). The M1c and M1d cell types extended their dendritic processes into the OFF sublayer of the inner plexiform layer (IPL). We rarely observed bistratified cells (M3; 2.56%) with dendrites in both the ON and OFF sublayers of the IPL. Surprisingly, we did not observe M2 cells which are well observed in other rodents. Melanopsin-IR cell somas were small to medium in size and had large dendritic fields. They had 2-5 primary dendrites that branched sparingly and had varicosities. Melanopsin-IR cell density was very low: they comprised 0.50% of the total ganglion cell population. Moreover, none of the melanopsin-IR cells expressed calbindin-D28K, calretinin, or parvalbumin. These results suggest that in the Mongolian gerbil, melanopsin-IR cells are expressed in a very small RGC subpopulation, and are independent of calcium-binding proteins-containing RGCs.
Collapse
Affiliation(s)
- Mi-Jin Jeong
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea.
| |
Collapse
|
10
|
Szabadfi K, Kiss P, Reglodi D, Fekete EM, Tamas A, Danyadi B, Atlasz T, Gabriel R. Urocortin 2 treatment is protective in excitotoxic retinal degeneration. ACTA ACUST UNITED AC 2014; 101:67-76. [PMID: 24311224 DOI: 10.1556/aphysiol.100.2013.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Urocortin 2 (Ucn 2) is a corticotrop releasing factor paralog peptide with many physiological functions and it has widespread distribution. There are some data on the cytoprotective effects of Ucn 2, but less is known about its neuro- and retinoprotective actions. We have previously shown that Ucn 2 is protective in ischemia-induced retinal degeneration. The aim of the present study was to examine the protective potential of Ucn 2 in monosodium-glutamate (MSG)-induced retinal degeneration by routine histology and to investigate cell-type specific effects by immunohistochemistry. Rat pups received MSG applied on postnatal days 1, 5 and 9 and Ucn 2 was injected intravitreally into one eye. Retinas were processed for histology and immunocytochemistry after 3 weeks. Immunolabeling was determined for glial fibrillary acidic protein, vesicular glutamate transporter 1, protein kinase Cα, calbindin, parvalbumin and calretinin. Retinal tissue from animals treated with MSG showed severe degeneration compared to normal retinas, but intravitreal Ucn 2 treatment resulted in a retained retinal structure both at histological and neurochemical levels: distinct inner retinal layers and rescued inner retinal cells (different types of amacrine and rod bipolar cells) could be observed. These findings support the neuroprotective function of Ucn 2 in MSG-induced retinal degeneration.
Collapse
Affiliation(s)
- K Szabadfi
- University of Pécs Department of Experimental Zoology and Neurobiology, Faculty of Sciences Ifjúság útja 6 H-7624 Pécs Hungary
| | - P Kiss
- PTE-MTA "Lendület" PACAP Research Team Department of Anatomy Pécs Hungary
| | - D Reglodi
- PTE-MTA "Lendület" PACAP Research Team Department of Anatomy Pécs Hungary
| | - E M Fekete
- The Scripps Research Institute La Jolla CA USA University of Wisconsin-Madison Department of Psychiatry Madison WI USA
| | - A Tamas
- PTE-MTA "Lendület" PACAP Research Team Department of Anatomy Pécs Hungary
| | - B Danyadi
- PTE-MTA "Lendület" PACAP Research Team Department of Anatomy Pécs Hungary
| | - T Atlasz
- University of Pécs Department of Sportbiology Pécs Hungary
| | - R Gabriel
- University of Pécs Department of Experimental Zoology and Neurobiology, Faculty of Sciences Ifjúság útja 6 H-7624 Pécs Hungary
| |
Collapse
|
11
|
Quin GJ, Lyons B, Len ACL, Madigan MC, Gillies MC. Proteome changes induced by laser in diabetic retinopathy. Clin Exp Ophthalmol 2014; 43:180-7. [DOI: 10.1111/ceo.12372] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/14/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Godfrey J Quin
- Save Sight Institute; Discipline of Clinical Ophthalmology; University of Sydney; Sydney New South Wales Australia
- Australian School of Advanced Medicine; Macquarie University; Sydney New South Wales Australia
| | - Brian Lyons
- Save Sight Institute; Discipline of Clinical Ophthalmology; University of Sydney; Sydney New South Wales Australia
| | - Alice CL Len
- Save Sight Institute; Discipline of Clinical Ophthalmology; University of Sydney; Sydney New South Wales Australia
| | - Michele C Madigan
- Save Sight Institute; Discipline of Clinical Ophthalmology; University of Sydney; Sydney New South Wales Australia
- School of Optometry and Vision Science; University of New South Wales; Sydney New South Wales Australia
| | - Mark C Gillies
- Save Sight Institute; Discipline of Clinical Ophthalmology; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
12
|
Immunocytochemical analysis of misplaced rhodopsin-positive cells in the developing rodent retina. Cell Tissue Res 2014; 356:49-63. [PMID: 24496510 DOI: 10.1007/s00441-013-1788-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
During the first postnatal weeks of the developing rodent retina, rhodopsin can be detected in a number of neuron-like cells in the inner retina. In the present study, we aim to characterize the morphology, number and staining characteristics of this peculiar population. Misplaced rhodopsin-positive cells (MRCs) were analyzed on retinas of four rodent species, labeled with various rhodopsin-specific antibodies. To investigate their possible relation with non-photoreceptor cells, sections were double-stained against distinct retinal cell types and proteins of the phototransduction cascade. The possibility of synapse formation and apoptosis were also investigated. In all species studied, misplaced cells comprised a few percent of all rhodopsin-positive elements. This ratio declined from the end of the second week and MRCs disappeared nearly completely from the retina by P24. MRCs resembled resident neurons of the inner retina, while outer segment-like processes were seen only rarely. MRCs expressed no other photopigment types and showed no colocalization with any of the bipolar, horizontal, amacrine and ganglion cell markers used. While all MRCs colabeled for arrestin and recoverin, other proteins of the phototransduction cascade were only detectable in a minority of the population. Only a few MRCs were shown to form synaptic-like endings. Our results showed that, during development, some rhodopsin-expressing cells are displaced to the inner retinal layers. Although most MRCs lack morphological features of photoreceptors, they contain some but not all, elements of the phototransduction cascade, indicating that they are most probably misplaced rods that failed to complete differentiation and integrate into the photoreceptor mosaic.
Collapse
|
13
|
Pang JJ, Paul DL, Wu SM. Survey on amacrine cells coupling to retrograde-identified ganglion cells in the mouse retina. Invest Ophthalmol Vis Sci 2013; 54:5151-62. [PMID: 23821205 DOI: 10.1167/iovs.13-11774] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Retinal amacrine cells (ACs) may make inhibitory chemical synapses and potentially excitatory gap junctions on ganglion cells (GCs). The total number and subtypes of ACs coupled to the entire GC population were investigated in wild-type and three lines of transgenic mice. METHODS GCs and GC-coupled ACs were identified by the previously established LY-NB (Lucifer yellow-Neurobiotin) retrograde double-labeling technique, in conjunction with specific antibodies and confocal microscopy. RESULTS GC-coupled ACs (NB-positive and LY-negative) comprised nearly 11% of displaced ACs and 4% of conventional ACs in wild-type mice, and were 9% and 4% of displaced ACs in Cx45(-/-) and Cx36/45(-/-) mice, respectively. Their somas were small in Cx36/45(-/-) mice, but variable in other strains. They were mostly γ-aminobutyric acid (GABA)-immunoreactive (IR) and located in the GC layer. They comprised only a small portion in the AC subpopulations, including GABA-IR, glycine-IR, calretinin-IR, 5-HT-accumulating, and ON-type choline acetyltransferase (ChAT) ACs in wild-type and ChAT transgenic mice (ChAT- tdTomato). In the distal 80% of the inner plexiform layer (IPL), dense GC dendrites coexisted with rich glycine-IR and GABA-IR. In the inner 20% of the IPL, sparse GC dendrites presented with a major GABA band and sparse glycine-IR. CONCLUSIONS Various subtypes of ACs may couple to GCs. ACs of the same immunoreactivity may either couple or not couple to GCs. Cx36 and Cx45 dominate GC-AC coupling except for small ACs. The overall potency of GC-AC coupling is moderate, especially in the proximal 20% of the IPL, where inhibitory chemical signals are dominated by GABA ACs.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
14
|
Acosta ML, Shin YS, Ready S, Fletcher EL, Christie DL, Kalloniatis M. Retinal metabolic state of the proline-23-histidine rat model of retinitis pigmentosa. Am J Physiol Cell Physiol 2009; 298:C764-74. [PMID: 20032515 DOI: 10.1152/ajpcell.00253.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We determined the metabolic changes that precede cell death in the dystrophic proline-23-histidine (P23H) line 3 (P23H-3) rat retina compared with the normal Sprague-Dawley (SD) rat retina. Metabolite levels and metabolic enzymes were analyzed early in development and during the early stages of degeneration in the P23H-3 retina. Control and degenerating retinas showed an age-dependent change in metabolite levels and enzymatic activity, particularly around the time when phototransduction was activated. However, lactate dehydrogenase (LDH) activity was significantly higher in P23H-3 than SD retina before the onset of photoreceptor death. The creatine/phosphocreatine system did not contribute to the increase in ATP, because phosphocreatine levels, creatine kinase, and expression of the creatine transporter remained constant. However, Na(+)-K(+)-ATPase and Mg(2+)-Ca(2+)-ATPase activities were increased in the developing P23H-3 retina. Therefore, photoreceptor apoptosis in the P23H-3 retina occurs in an environment of increased LDH, ATPase activity, and higher-than-normal ATP levels. We tested the effect of metabolic challenge to the retina by inhibiting monocarboxylate transport with alpha-cyano-4-hydroxycinnamic acid or systemically administering the phosphodiesterase inhibitor sildenafil. Secondary to monocarboxylate transport inhibition, the P23H-3 retina did not demonstrate alterations in metabolic activity. However, administration of sildenafil significantly reduced LDH activity in the P23H-3 retina and increased the number of terminal deoxynucleotidyl transferase biotin-dUPT nick end-labeled photoreceptor cells. Photoreceptor cells with a rhodopsin mutation display an increase in apoptotic markers secondary to inhibition of a phototransduction enzyme (phosphodiesterase), suggesting increased susceptibility to altered cation entry.
Collapse
Affiliation(s)
- Monica L Acosta
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
15
|
Gaillard F, Bonfield S, Gilmour GS, Kuny S, Mema SC, Martin BT, Smale L, Crowder N, Stell WK, Sauvé Y. Retinal anatomy and visual performance in a diurnal cone-rich laboratory rodent, the Nile grass rat (Arvicanthis niloticus). J Comp Neurol 2008; 510:525-38. [PMID: 18680202 DOI: 10.1002/cne.21798] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unlike laboratory rats and mice, muridae of the Arvicanthis family (A. ansorgei and A. niloticus) are adapted to functioning best in daylight. To date, they have been used as experimental models mainly in studies of circadian rhythms. However, recent work aimed at optimizing photoreceptor-directed gene delivery vectors (Khani et al. [2007] Invest Ophthalmol Vis Sci 48:3954-3961) suggests their potential usefulness for studying retinal pathologies and therapies. In the present study we analyzed the retinal anatomy and visual performance of the Nile grass rat (A. niloticus) using immunohistofluorescence and the optokinetic response (OKR). We found that approximately 35-40% of photoreceptors are cones; that many neural features of the inner retina are similar to those in other diurnal mammals; and that spatial acuity, measured by the OKR, is more than two times that of the usual laboratory rodents. These observations are consistent with the known diurnal habits of this animal, and further support its pertinence as a complementary model for studies of structure, function, and pathology in cone-rich mammalian retinae.
Collapse
Affiliation(s)
- Frédéric Gaillard
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, UMR 6187 CNRS, Poitiers, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
AbstractThe melanopsin positive, intrinsically photosensitive retinal ganglion cells (ipRGCs) of the inner retina have been shown to send wide-ranging projections throughout the brain. To investigate the response of this important cell type during retinal dystrophy, we use the Royal College of Surgeons (RCS) dystrophic rat, a major model of retinal degeneration. We find that ipRGCs exhibit a distinctive molecular profile that remains unaltered during early stages of outer retinal pathology (15 weeks of age). In particular, these cells express βIII tubulin, α-acetylated tubulin, and microtubule-associated proteins (MAPs), while remaining negative for other RGC markers such as neurofilaments, calretinin, and parvalbumin. By 14 months of age, melanopsin positive fibers invade ectopic locations in the dystrophic retina and ipRGC axons/dendrites become distorted (a process that may involve vascular remodeling). The morphological abnormalities in melanopsin processes are associated with elevated immunoreactivity for MAP1b and a reduction in α-acetylated tubulin. Quantification of ipRGCs in whole mounts reveals reduced melanopsin cell number with increasing age. Focusing on the retinal periphery, we find a significant decline in melanopsin cell density contrasted by a stability of melanopsin positive processes. In addition to these findings, we describe for the first time, a distinct plexus of melanopsin processes in the far peripheral retina, a structure that is coincident with a short wavelength opsin cone-enriched rim. We conclude that some ipRGCs are lost in RCS dystrophic rats as the disease progresses and that this loss may involve vascular remodeling. However, a significant number of melanopsin positive cells survive into advanced stages of retinal degeneration and show indications of remodeling in response to pathology. Our findings underline the importance of early intervention in human retinal disease in order to preserve integrity of the inner retinal photoreceptive network.
Collapse
|
17
|
Calbindin-D28k and calretinin as markers of retinal neurons in the anuran amphibian Rana perezi. Brain Res Bull 2008; 75:379-83. [DOI: 10.1016/j.brainresbull.2007.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 10/17/2007] [Indexed: 11/20/2022]
|
18
|
Comparative analysis of calbindin D-28K and calretinin in the retina of anuran and urodele amphibians: Colocalization with choline acetyltransferase and tyrosine hydroxylase. Brain Res 2007; 1182:34-49. [DOI: 10.1016/j.brainres.2007.07.102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/17/2007] [Accepted: 07/18/2007] [Indexed: 11/19/2022]
|
19
|
Villar-Cheda B, Abalo XM, Anadón R, Rodicio MC. Calbindin and calretinin immunoreactivity in the retina of adult and larval sea lamprey. Brain Res 2006; 1068:118-30. [PMID: 16368080 DOI: 10.1016/j.brainres.2005.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 11/04/2005] [Accepted: 11/06/2005] [Indexed: 10/25/2022]
Abstract
The presence of calretinin and calbindin immunoreactivity is studied in the retina of larval and adult lamprey and their respective distributions are compared. Calretinin distribution is also studied in the retina of transforming stages. Western blot analysis in brain extracts showed a 29-kDa band with both polyclonal anti-calbindin and anti-calretinin antibodies. Calbindin and calretinin immunoreactivity has shown a partially different distribution. In the adult retina large and small bipolar cells, with respectively stratified or diffuse axons, the inner row of horizontal cells and ganglion cells and/or some amacrine cells were labeled with anti-calretinin antibody. The anti-calbindin antibody labels the same cell types except most of ganglion cells, but the label was less conspicuous. Therefore, the possible existence of these two calcium-binding proteins in the central nervous system of the sea lamprey could be discussed. In the differentiated central retina of larval lampreys, numerous calretinin immunoreactive bipolar and ganglion cells were observed, while, in the lateral retina, only ganglion cells were labeled, accordingly with the lack of differentiation of other neural cell types. CR-ir bipolar cells appeared in the retina by the stage 5 of transformation, i.e. about the time when differentiation of photoreceptors occurs. The comparison of the distribution of calretinin and calbindin between adult and larval central retina of lampreys shows striking differences that could be related to the different functionality of eyes in these two stages of the life cycle of lampreys. In addition, this is the first report on the presence of calcium-binding proteins in the larval and transforming lamprey retina, on the presence of calretinin- and calbindin-immunoreactive horizontal cells in adult lamprey retinas and on the differential stratification of bipolar cell terminals.
Collapse
Affiliation(s)
- Begoña Villar-Cheda
- Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | | | | | | |
Collapse
|