1
|
Zhang J, Ma J, Li Y, An Y, Du W, Yang Q, Huang M, Cai X. Overexpression of Aurora Kinase B Is Correlated with Diagnosis and Poor Prognosis in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:2199. [PMID: 38396874 PMCID: PMC10889672 DOI: 10.3390/ijms25042199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Aurora kinase B (AURKB) overexpression promotes tumor initiation and development by participating in the cell cycle. In this study, we focused on the mechanism of AURKB in hepatocellular carcinoma (HCC) progression and on AURKB's value as a diagnostic and prognostic biomarker in HCC. We used data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) to analyze AURKB expression in HCC. We found that the expression levels of AURKB in HCC samples were higher than those in the corresponding control group. R packages were used to analyze RNA sequencing data to identify AURKB-related differentially expressed genes (DEGs), and these genes were found to be significantly enriched during the cell cycle. The biological function of AURKB was verified, and the results showed that cell proliferation was slowed down and cells were arrested in the G2/M phase when AURKB was knocked down. AURKB overexpression resulted in significant differences in clinical symptoms, such as the clinical T stage and pathological stage. Kaplan-Meier survival analysis, Cox regression analysis, and Receiver Operating Characteristic (ROC) curve analysis suggested that AURKB overexpression has good diagnostic and prognostic potential in HCC. Therefore, AURKB may be used as a potential target for the diagnosis and cure of HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xuefei Cai
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, 1 Yixue Yuan Road, Chongqing 400016, China; (J.Z.); (J.M.); (Y.L.); (Y.A.); (W.D.); (Q.Y.); (M.H.)
| |
Collapse
|
2
|
von Eyben FE, Kristiansen K, Kapp DS, Hu R, Preda O, Nogales FF. Epigenetic Regulation of Driver Genes in Testicular Tumorigenesis. Int J Mol Sci 2023; 24:ijms24044148. [PMID: 36835562 PMCID: PMC9966837 DOI: 10.3390/ijms24044148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
In testicular germ cell tumor type II (TGCT), a seminoma subtype expresses an induced pluripotent stem cell (iPSC) panel with four upregulated genes, OCT4/POU5F1, SOX17, KLF4, and MYC, and embryonal carcinoma (EC) has four upregulated genes, OCT4/POU5F1, SOX2, LIN28, and NANOG. The EC panel can reprogram cells into iPSC, and both iPSC and EC can differentiate into teratoma. This review summarizes the literature on epigenetic regulation of the genes. Epigenetic mechanisms, such as methylations of cytosines on the DNA string and methylations and acetylations of histone 3 lysines, regulate expression of these driver genes between the TGCT subtypes. In TGCT, the driver genes contribute to well-known clinical characteristics and the driver genes are also important for aggressive subtypes of many other malignancies. In conclusion, epigenetic regulation of the driver genes are important for TGCT and for oncology in general.
Collapse
Affiliation(s)
- Finn E. von Eyben
- Center for Tobacco Control Research, Birkevej 17, 5230 Odense, Denmark
- Correspondence: ; Tel.: +45-66145862
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, August Krogh Building Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
- BGI-Research, BGI-Shenzhen, Shenzhen 518120, China
- Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao 166555, China
| | - Daniel S. Kapp
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Rong Hu
- Department of Pathology, Laboratory Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, USA
| | - Ovidiu Preda
- Department of Pathology, San Cecilio University Hospital, 18071 Granada, CP, Spain
| | - Francisco F. Nogales
- Department of Pathology, School of Medicine, University Granada, 18071 Granada, CP, Spain
| |
Collapse
|
3
|
Gupta D, Kumar M, Singh M, Salman M, Das U, Kaur P. Identification of polypharmacological anticancerous molecules against Aurora kinase family of proteins. J Cell Biochem 2022; 123:719-735. [PMID: 35040172 DOI: 10.1002/jcb.30214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/28/2022]
Abstract
The Human Aurora Kinase (AURK) protein family is the key player of cell cycle events including spindle assembly, kinetochore formation, chromosomal segregation, centrosome separation, microtubule dynamics, and cytokinesis. Their aberrant expression has been extensively linked with chromosomal instability in addition to derangement of multiple tumor suppressors and oncoprotein regulated pathways. Therefore, the AURK family of kinases is a promising target for the treatment of various types of cancer. Over the past few decades, several potential inhibitors of AURK proteins have been identified and have reached various phases of clinical trials. But very few molecules have currently crossed the safety criteria due to their various toxic side effects. In the present study, we have adopted a computational polypharmacological strategy and identified four novel molecules that can target all three AURKs. These molecules were further investigated for their binding stabilities at the ATP binding pocket using molecular dynamics based simulation studies. The molecules selected adopting a multipronged computational approach can be considered as potential AURKs inhibitors for cancer therapeutics.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Mohd Salman
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Bejar JF, DiSanza Z, Quartuccio SM. The oncogenic role of meiosis-specific Aurora kinase C in mitotic cells. Exp Cell Res 2021; 407:112803. [PMID: 34461108 DOI: 10.1016/j.yexcr.2021.112803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Aberrant expression of meiosis-specific genes in cancer has recently emerged as a driver of some cancer formation. Aurora kinase C (AURKC) is a member of the Aurora kinase family of proteins known to regulate chromosome segregation during cell divisions. AURKC is normally expressed in meiotic cells; however, elevated levels of AURKC mRNA and protein are frequently measured in cancer cells. To understand the function of AURKC in cancer cells, expression was induced in noncancerous, human retina pigmented epithelial cells. While AURKC expression did not alter cell proliferation over 72 h, it did increase cell migration and anchorage independent growth in soft agar suggesting an oncogenic role in mitotically dividing cells. To evaluate AURKC as a potential therapeutic target, a frameshift mutation in the gene was introduced in U2OS osteosarcoma cells using CRISPR-Cas9 technology resulting in a premature stop codon. Cancer cells lacking AURKC displayed no change in cell proliferation over 72 h but did migrate less and formed fewer colonies in soft agar. Whole transcriptome sequencing analysis uncovered over 400 differentially expressed genes in U2OS cells with and without AURKC. GO analysis revealed alterations in proteinaceous extracellular matrix genes including COL1A1. These data indicate that therapeutics targeting AURKC could decrease cancer cell metastasis and disease progression. Because AURKC is transcriptionally silenced in normal mitotic cells, its disruption could specifically target cancer cells limiting the toxic side effects associated with current therapeutics.
Collapse
Affiliation(s)
- Justin F Bejar
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Zachary DiSanza
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Suzanne M Quartuccio
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| |
Collapse
|
5
|
Quimbaya M, Raspé E, Denecker G, De Craene B, Roelandt R, Declercq W, Sagaert X, De Veylder L, Berx G. Deregulation of the replisome factor MCMBP prompts oncogenesis in colorectal carcinomas through chromosomal instability. Neoplasia 2015; 16:694-709. [PMID: 25246271 PMCID: PMC4235010 DOI: 10.1016/j.neo.2014.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 11/16/2022] Open
Abstract
Genetic instability has emerged as an important hallmark of human neoplasia. Although most types of cancers exhibit genetic instability to some extent, in colorectal cancers genetic instability is a distinctive characteristic. Recent studies have shown that deregulation of genes involved in sister chromatid cohesion can result in chromosomal instability in colorectal cancers. Here, we show that the replisome factor minichromosome maintenance complex–binding protein (MCMBP), which is directly involved in the dynamics of the minichromosome maintenance complex and contributes to maintaining sister chromatid cohesion, is transcriptionally misregulated in different types of carcinomas. Cellular studies revealed that both MCMBP knockdown and overexpression in different breast and colorectal cell lines is associated with the emergence of a subpopulation of cells with abnormal nuclear morphology that likely arise as a consequence of aberrant cohesion events. Association analysis integrating gene expression data with clinical information revealed that enhanced MCMBP transcript levels correlate with an increased probability of relapse risk in colorectal cancers and different types of carcinomas. Moreover, a detailed study of a cohort of colorectal tumors showed that the MCMBP protein accumulates to high levels in cancer cells, whereas in normal proliferating tissue its abundance is low, indicating that MCMBP could be exploited as a novel diagnostic marker for this type of carcinoma.
Collapse
Affiliation(s)
- Mauricio Quimbaya
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; Pontificia Universidad Javeriana Cali, Department of Natural Sciences and Mathematics, Cali, Colombia
| | - Eric Raspé
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Geertrui Denecker
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Bram De Craene
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Ria Roelandt
- Unit of Molecular Signaling and Cell Death, Department for Molecular Biomedical Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Wim Declercq
- Unit of Molecular Signaling and Cell Death, Department for Molecular Biomedical Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Xavier Sagaert
- Imaging and Pathology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Geert Berx
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
6
|
Boublikova L, Buchler T, Stary J, Abrahamova J, Trka J. Molecular biology of testicular germ cell tumors: Unique features awaiting clinical application. Crit Rev Oncol Hematol 2014; 89:366-85. [DOI: 10.1016/j.critrevonc.2013.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/30/2013] [Accepted: 10/01/2013] [Indexed: 01/29/2023] Open
|
7
|
Baldini E, D'Armiento M, Ulisse S. A new aurora in anaplastic thyroid cancer therapy. Int J Endocrinol 2014; 2014:816430. [PMID: 25097550 PMCID: PMC4106108 DOI: 10.1155/2014/816430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/11/2014] [Indexed: 01/08/2023] Open
Abstract
Anaplastic thyroid cancers (ATC) are among the most aggressive human neoplasms with a dire prognosis and a median survival time of few months from the diagnosis. The complete absence of effective therapies for ATC renders the identification of novel therapeutic approaches sorely needed. Chromosomal instability, a feature of all human cancers, is thought to represent a major driving force in thyroid cancer progression and a number of mitotic kinases showing a deregulated expression in malignant thyroid tissues are now held responsible for thyroid tumor aneuploidy. These include the three members of the Aurora family (Aurora-A, Aurora-B, and Aurora-C), serine/threonine kinases that regulate multiple aspects of chromosome segregation and cytokinesis. Over the last few years, several small molecule inhibitors targeting Aurora kinases were developed, which showed promising antitumor effects against a variety of human cancers, including ATC, in preclinical studies. Several of these molecules are now being evaluated in phase I/II clinical trials against advanced solid and hematological malignancies. In the present review we will describe the structure, expression, and mitotic functions of the Aurora kinases, their implications in human cancer progression, with particular regard to ATC, and the effects of their functional inhibition on malignant cell proliferation.
Collapse
Affiliation(s)
- Enke Baldini
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Massimino D'Armiento
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Salvatore Ulisse
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- *Salvatore Ulisse:
| |
Collapse
|
8
|
Ledda M, Megiorni F, Pozzi D, Giuliani L, D’Emilia E, Piccirillo S, Mattei C, Grimaldi S, Lisi A. Non ionising radiation as a non chemical strategy in regenerative medicine: Ca(2+)-ICR "In Vitro" effect on neuronal differentiation and tumorigenicity modulation in NT2 cells. PLoS One 2013; 8:e61535. [PMID: 23585910 PMCID: PMC3621667 DOI: 10.1371/journal.pone.0061535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/11/2013] [Indexed: 11/18/2022] Open
Abstract
In regenerative medicine finding a new method for cell differentiation without pharmacological treatment or gene modification and minimal cell manipulation is a challenging goal. In this work we reported a neuronal induced differentiation and consequent reduction of tumorigenicity in NT2 human pluripotent embryonal carcinoma cells exposed to an extremely low frequency electromagnetic field (ELF-EMF), matching the cyclotron frequency corresponding to the charge/mass ratio of calcium ion (Ca(2+)-ICR). These cells, capable of differentiating into post-mitotic neurons following treatment with Retinoic Acid (RA), were placed in a solenoid and exposed for 5 weeks to Ca(2+)-ICR. The solenoid was installed in a μ-metal shielded room to avoid the effect of the geomagnetic field and obtained totally controlled and reproducible conditions. Contrast microscopy analysis reveled, in the NT2 exposed cells, an important change in shape and morphology with the outgrowth of neuritic-like structures together with a lower proliferation rate and metabolic activity alike those found in the RA treated cells. A significant up-regulation of early and late neuronal differentiation markers and a significant down-regulation of the transforming growth factor-α (TGF-α) and the fibroblast growth factor-4 (FGF-4) were also observed in the exposed cells. The decreased protein expression of the transforming gene Cripto-1 and the reduced capability of the exposed NT2 cells to form colonies in soft agar supported these last results. In conclusion, our findings demonstrate that the Ca(2+)-ICR frequency is able to induce differentiation and reduction of tumorigenicity in NT2 exposed cells suggesting a new potential therapeutic use in regenerative medicine.
Collapse
Affiliation(s)
- Mario Ledda
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Deleana Pozzi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Livio Giuliani
- Department of Productive Plants and Interaction with the Environment, National Institute for Occupational Safety and Prevention, Rome, Italy
| | - Enrico D’Emilia
- Department of Productive Plants and Interaction with the Environment, National Institute for Occupational Safety and Prevention, Rome, Italy
| | - Sara Piccirillo
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Cristiana Mattei
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Settimio Grimaldi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Antonella Lisi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- * E-mail:
| |
Collapse
|
9
|
Sun DAQ, Wang Y, Liu DG. Overexpression of hnRNPC2 induces multinucleation by repression of Aurora B in hepatocellular carcinoma cells. Oncol Lett 2013; 5:1243-1249. [PMID: 23599772 PMCID: PMC3629224 DOI: 10.3892/ol.2013.1167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/26/2012] [Indexed: 12/26/2022] Open
Abstract
Heterogeneous ribonuclear protein C2 (hnRNPC2), an RNA binding protein, is a component of hnRNPC which is upregulated in many tumors. Multinucleation exists in many tumors and is positively correlated with tumor grade. To uncover the correlation between hnRNPC2 and multi-nucleation in hepatocellular carcinoma SMMC-7721 cells, we constructed a pEGFP-hnRNPC2 vector and transfected it into cancer cells. Our results revealed that overexpression of hnRNPC2 induced multinucleation in SMMC-7721 cells. Tracking tests indicated that the induced multinucleated cells were unable to recover to mononuclear cells and finally died as a result of defects in cell division. Furthermore, Aurora B, which was localized at the midbody and plays a role in cytokinesis, was repressed in hnRNPC2-overexpressing cells, whose knockdown by RNA interference also induced multinucleation in SMMC-7721 cells. Quantitative polymerase chain reaction (qPCR) and mRNA-protein co-immunoprecipitation results revealed that Aurora B mRNA did not decrease in hnRNPC2-overexpressing cells, instead it bound more hnRNPC2 and less eIF4E, an mRNA cap binding protein and translational initiation factor. Moreover, hnRNPC2 bound more eIF4E in hnRNPC2-overexpressing cells. These results indicate that hnRNPC2 repressed Aurora B binding with eIF4F, which must bind with Aurora B mRNA in order to initiate its translation. This induced multinucleation in hepatocellular carcinoma cells. In addition, hnRNPC2 accelerated hepatocellular carcinoma cell proliferation. Collectively, these data suggest that hnRNPC2 may be a potential target for hepatocellular carcinoma cell diagnosis and treatment.
Collapse
Affiliation(s)
- DA-Quan Sun
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | | | | |
Collapse
|
10
|
Hegyi K, Méhes G. Mitotic failures in cancer: Aurora B kinase and its potential role in the development of aneuploidy. Pathol Oncol Res 2012; 18:761-9. [PMID: 22843098 DOI: 10.1007/s12253-012-9534-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/08/2012] [Indexed: 12/19/2022]
Abstract
One of the basic requirements during the process of cell division is to maintain genetic integrity and ensure normal ploidy. The family of Aurora kinases, composed of Aurora A, B and C, takes a major role in the control of centrosome cycle, mitotic entry, chromosome condensation and coordination of chromosomal movements. Deregulation of kinase expression was described in a series of different malignancies which was also associated with aneuploidy. Recently, Aurora kinases gained significant interest as potential therapeutic targets in oncology. While there is increasing evidence about the activities of Aurora A kinase during cancer progression, data are controversial regarding the role of Aurora B. In this review the biology of Aurora kinases and its potential relation to cancer progression is discussed with special focus on functional changes and determination of Aurora B kinase.
Collapse
Affiliation(s)
- Katalin Hegyi
- Department of Pathology, University of Debrecen, Nagyerdei krt. 98., 4032, Debrecen, Hungary
| | | |
Collapse
|
11
|
Nilubol N, Sukchotrat C, Zhang L, He M, Kebebew E. Molecular pathways associated with mortality in papillary thyroid cancer. Surgery 2012; 150:1023-31. [PMID: 22136817 DOI: 10.1016/j.surg.2011.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 09/15/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND A better understanding of the molecular mechanisms involved in papillary thyroid cancer (PTC)-associated adverse outcome is needed to manage these patients effectively. Our objectives were to identify molecular pathways associated with unfavorable features and outcomes in patients with PTC. METHODS We performed genome-wide expression (GWE) analysis in 64 human tissue samples affected by PTC. Clinical, pathologic, and microarray data were analyzed to identify differentially expressed genes and pathways associated with unfavorable outcomes. Gene set enrichment analysis (GSEA) was used to determine which molecular pathways are associated with mortality. RESULTS GWE analysis identified 43, 115, and 40 genes that were significantly differentially expressed by gender, tumor differentiation status, and mortality, respectively, with a false-discovery rate of <5%. For mortality, GSEA revealed 7 enriched pathways, including transfer RNA synthesis, mitochondria and oxidative phosphorylation, porphyrin and chlorophyll metabolism, and fatty acid synthesis. Leading-edge analysis showed that 341 genes were significantly involved in the enriched pathways. Cluster analysis using 100 differentially expressed genes showed complete separation of patients by mortality. CONCLUSION To our knowledge, this is the first GWE analysis of PTC and adverse outcomes. We found 11 molecular pathways that were significantly associated with mortality resulting from PTC. A 100-gene signature completely separates patients with and without PTC-associated mortality.
Collapse
Affiliation(s)
- Naris Nilubol
- Endocrine Oncology Section, Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
12
|
Aurora-C interacts with and phosphorylates the transforming acidic coiled-coil 1 protein. Biochem Biophys Res Commun 2011; 408:647-53. [PMID: 21531210 DOI: 10.1016/j.bbrc.2011.04.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 04/16/2011] [Indexed: 11/22/2022]
|
13
|
Current World Literature. Curr Opin Oncol 2011; 23:303-10. [DOI: 10.1097/cco.0b013e328346cbfa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|