1
|
Frungieri MB, Calandra RS, Matzkin ME, Rossi SP. Melatonin as a natural anti-inflammatory and anti-oxidant therapy in the testis: a focus on infertility and aging†. Biol Reprod 2024; 111:543-556. [PMID: 38869910 DOI: 10.1093/biolre/ioae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Melatonin is a pineal hormone that regulates testicular activity (i.e., steroidogenesis and spermatogenesis) through two complementary mechanisms, indirect effects exerted via the hypothalamic-adenohypophyseal axis and direct actions that take place on the different cell populations of the male gonad. The effects of increased age on the testis and the general mechanisms involved in testicular pathology leading to infertility are still only poorly understood. However, there is growing evidence that link testicular aging and idiopathic male infertility to local inflammatory and oxidative stress events. Because literature data strongly indicate that melatonin exhibits anti-inflammatory and anti-oxidant properties, this review focuses on the potential benefits exerted by this indoleamine at testicular level in male reproductive fertility and aging. Taking into account that the effects of melatonin supplementation on testicular function are currently being investigated, the overview covers not only promising prospects but also many questions concerning the future therapeutic value of this indoleamine as an anti-aging drug as well as in the management of cases of male infertility for which there are no medical treatments currently available.
Collapse
Affiliation(s)
- Mónica Beatriz Frungieri
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - Ricardo Saúl Calandra
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
| | - María Eugenia Matzkin
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Cátedra 1, Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Soledad Paola Rossi
- Laboratorio de Neuro-Inmuno-Endocrinología Testicular, Instituto de Biología y Medicina Experimental, Fundación Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires, Argentina
- Cátedra 1, Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
2
|
Lee WY, Sim HW, Park HJ. Effects of melatonin on a d-galactose-induced male reproductive aging mouse model. Theriogenology 2023; 206:181-188. [PMID: 37224707 DOI: 10.1016/j.theriogenology.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023]
Abstract
Understanding the aging mechanism of the male reproductive system and developing anti-aging interventions are essential for preventing age-related male infertility. The pineal hormone melatonin has been effectively used as an antioxidant and anti-apoptotic molecule in various cells and tissues. However, the effects of melatonin on d-galactose (D-gal)-induced aging have not been studied with regards to testicular function. Thus, we investigated whether melatonin suppresses the dysfunction of male reproductive function induced by D-gal treatment. The mice were divided into the following four groups receiving treatments for six weeks: phosphate-buffered saline (PBS) group, d-galactose (200 mg/kg) group, melatonin (20 mg/kg) group, and d-galactose (200 mg/kg)+ melatonin (20 mg/kg) group. At six weeks of treatments, sperm parameters, body and testes weight, gene and protein expression of germ cell and spermatozoa marker were analyzed. Our results showed that melatonin suppressed the decrease in body weight, sperm vitality, motility, and gene expression levels of spermatozoa markers such as Protamine 1, PGK2, Camk4, TP1, and Crem in the testis of D-gal-induced aging models. However, the gene expression levels of the pre-meiotic and meiotic markers in the testes did not change in the D-gal-injected model. The injection of D-gal impaired the decreased expression of steroidogenic enzyme genes, such as HSD3b1, Cyp17a1, and Cyp11a1, but melatonin inhibited the decrease in the expression of these genes. In addition, protein levels of spermatozoa and germ cell markers were evaluated by immunostaining and immunoblotting. Consistent with the qPCR results, PGK2 protein levels were decreased by d-galactose treatment. A decrease in PGK2 protein levels by D-gal was inhibited by melatonin treatment. In conclusion, melatonin administration improves testicular function with age.
Collapse
Affiliation(s)
- Won-Young Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju-si, 54874, Republic of Korea
| | - Heyon Woo Sim
- Department of Animal Biotechnology, Sangji University, Wonju-Si, 26339, Republic of Korea
| | - Hyun Jung Park
- Department of Animal Biotechnology, Sangji University, Wonju-Si, 26339, Republic of Korea.
| |
Collapse
|
3
|
Dehdari Ebrahimi N, Sadeghi A, Ala M, Ebrahimi F, Pakbaz S, Azarpira N. Protective effects of melatonin against oxidative stress induced by metabolic disorders in the male reproductive system: a systematic review and meta-analysis of rodent models. Front Endocrinol (Lausanne) 2023; 14:1202560. [PMID: 37476491 PMCID: PMC10354453 DOI: 10.3389/fendo.2023.1202560] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Background Male infertility is a multifaceted issue that has gained scientific interest due to its increasing rate. Studies have demonstrated that oxidative stress is involved in male infertility development. Furthermore, metabolic disorders, including obesity, diabetes, hypo- and hyperthyroidism, are risk factors for male infertility, and oxidative stress is believed to contribute to this association. Melatonin, functioning as an oxidative scavenger, may represent a promising therapeutic approach for the prevention and treatment of metabolic disorder-associated male infertility. Material and methods We systematically searched three online databases (PubMed, Scopus, and Web of Science) for studies that evaluated the effects of melatonin therapy on metabolic disorders-induce infertility in male rodents. The favorable outcomes were histopathological parameters of testicular tissue, reproductive hormones, and markers of oxidative stress. Then, meta-analyses were done for each outcome. The results are reported as standardized mean difference (Cohen's d) and 95% confidence interval. Results 24 studies with 31 outcomes were included. Rats and mice were the subjects. Studies have employed obesity, diabetes, hypothyroidism, hyperthyroidism, hyperlipidemia, and food deprivation as metabolic disorders. To induce these disorders, a high-fat diet, high-fructose diet, leptin, streptozotocin, alloxan, carbimazole, and levothyroxine were used. The outcomes included histopathologic characteristics (abnormal sperm morphology, apoptotic cells, apoptotic index, Johnsen's testicular biopsy score, seminiferous epithelial height, tubular basement membrane thickness, tubular diameter, sperm count, and motility), weight-related measurements (absolute epididymis, testis, and body weight, body weight gain, epididymal adipose tissue weight, and relative testis to body weight), hormonal characteristics (androgen receptor expression, serum FSH, LH, and testosterone level), markers of oxidative stress (tissue and serum GPx and MDA activity, tissue CAT, GSH, and SOD activity), and exploratory outcomes (serum HDL, LDL, total cholesterol, triglyceride, and blood glucose level). The overall pooled effect sizes were statistically significant for all histopathological characteristics and some markers of oxidative stress. Conclusions Melatonin can reduce damage to male rodents' gonadal tissue and improve sperm count, motility, and morphology in metabolic diseases. Future clinical studies and randomized controlled trials are needed to evaluate the safety and effectiveness of melatonin for male infertility in patients with metabolic diseases.
Collapse
Affiliation(s)
| | - Alireza Sadeghi
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Pathology, University of Toronto, Toronto, ON, Canada
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Lucignani G, Jannello LMI, Fulgheri I, Silvani C, Turetti M, Gadda F, Viganò P, Somigliana E, Montanari E, Boeri L. Coenzyme Q10 and Melatonin for the Treatment of Male Infertility: A Narrative Review. Nutrients 2022; 14:4585. [PMID: 36364847 PMCID: PMC9658523 DOI: 10.3390/nu14214585] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Lifestyle and environmental factors can negatively impact fertility by means of oxidative stress. In this context, antioxidant supplementation therapy has gained much interest in recent years, and different molecules, alone or in combination, have been studied. OBJECTIVE The purpose of the present review is to investigate the evidence regarding the efficacy of coenzyme Q10 (CoQ10) and melatonin on male infertility. METHODS A literature search using PUBMED database from 2000 to October 2022 was performed to explore the role of CoQ10 and melatonin on male reproductive function. CONCLUSIONS The analysis involved a narrative synthesis. CoQ10, alone or in combination, appears to reduce testicular oxidative stress and sperm DNA fragmentation and to improve sperm parameters; particularly sperm motility. Moreover, CoQ10 treatment is associated with higher pregnancy rates, both naturally and through assisted reproductive technology (ART). Larger studies are needed to precisely determine its clinical efficacy. Melatonin is a known antioxidant and preclinical studies have shown its ability to modulate reproductive function through hormonal and immune system regulation and sperm cell proliferation. Regardless, clinical studies are necessary to assess its potential in male infertility.
Collapse
Affiliation(s)
- Gianpaolo Lucignani
- Department of Urology, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | | | - Irene Fulgheri
- Department of Vascular Surgery, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Carlo Silvani
- Department of Urology, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Matteo Turetti
- Department of Urology, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Franco Gadda
- Department of Urology, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Paola Viganò
- Department of Gynecology and Obstetrics, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Edgardo Somigliana
- Department of Gynecology and Obstetrics, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Emanuele Montanari
- Department of Urology, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Luca Boeri
- Department of Urology, Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| |
Collapse
|
5
|
Heidarizadi S, Rashidi Z, Jalili C, Gholami M. Overview of biological effects of melatonin on testis: A review. Andrologia 2022; 54:e14597. [PMID: 36168927 DOI: 10.1111/and.14597] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Infertility is a major global health issue and male factors account for half of all infertility cases. One of the causes of male infertility is the loss of spermatogonial stem cells, which may occur because of chemotherapy, radiotherapy or genetic defects. In numerous animal species, the evidence suggests the pineal gland and melatonin secretion in their reproductive activities are involved. Recently, considerable attention has pointed to the usage of melatonin in the treatment of diseases. Melatonin is associated with the regulation of circadian and seasonal rhythmic functions, immune system functions, retinal physiology, spermatogenesis and inhibition of tumour growth in different species. Several studies demonstrated that melatonin acts as an anti-apoptotic, anti-inflammatory, anticancer and antioxidant agent. Melatonin can also protect testicles and spermatogonia against oxidative damage, chemotherapy drugs, environmental radiation, toxic substances, hyperthermia, ischemia/reperfusion, diabetes-induced testicular damage, metal-induced testicular toxicity, improve sperm quality and it affects the testosterone secretion pathway by affecting Leydig cells. Therefore, the objective of this study is to investigate the biological effects of melatonin as a natural antioxidant on testicles and their disorders.
Collapse
Affiliation(s)
- Somayeh Heidarizadi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Rashidi
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Gholami
- Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Saidi AO, Akintayo CO, Atuma CL, Mahmud H, Sabinari IW, Oniyide AA, Aturamu A, Agunbiade TB, Olaniyi KS. Melatonin supplementation preserves testicular function by attenuating lactate production and oxidative stress in high fat diet-induced obese rat model. Theriogenology 2022; 187:19-26. [PMID: 35500423 DOI: 10.1016/j.theriogenology.2022.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022]
Abstract
Metabolic syndrome, including obesity has been documented as a critical factor in male reproductive dysfunction with subsequent reduction in male fertility. The therapeutic potential of melatonin has been demonstrated against oxidative stress-induced pathologies. Therefore, the present study investigated the effects of melatonin on testicular dysfunction associated with high fat diet (FD)-induced obese rat model, and the possible involvement of peroxisome proliferator-activated receptor-γ (PPAR-γ). Adult male Wistar rats (n = 6/group) were used: control group received vehicle (normal saline), obese group received 40% FD, melatonin-treated group received melatonin (4 mg/kg), and obese plus melatonin group received melatonin and 40% FD and the treatment lasted for 12 weeks. High fat diet caused increased body weight and testicular triglyceride, total cholesterol, malondialdehyde, γ-glutamyl transferase, lactate production and lactate/pyruvate ratio as well as decreased glutathione/glutathione peroxidase, nitric oxide and PPAR-γ and circulating testosterone. Nevertheless, all these alterations were attenuated when supplemented with melatonin. Taken together, these results demonstrates that FD-induced obesity causes testicular dysfunction. In addition, the results suggest that melatonin supplementation protects against obesity-associated testicular dysfunction and this effect is accompanied by upregulation of PPAR-γ.
Collapse
Affiliation(s)
- Azeezat O Saidi
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Christopher O Akintayo
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Chukwubueze L Atuma
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Hadiza Mahmud
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Isaiah W Sabinari
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B, 1515, Ilorin, Nigeria
| | - Adesola A Oniyide
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Ayodeji Aturamu
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Toluwani B Agunbiade
- Department of Medical Microbiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria
| | - Kehinde S Olaniyi
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria; HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B, 1515, Ilorin, Nigeria.
| |
Collapse
|
7
|
Karam KM, Alebady AS, Al-Nailey KGC, Al-Delemi DHJ. L-Carnitine effect on induced hyperlipidemia on premature rats: fertility profile. J Med Life 2022; 15:124-131. [PMID: 35186146 PMCID: PMC8852634 DOI: 10.25122/jml-2021-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
This study was designed to investigate the effect of hypercholesterolemia on the reproductive performance of premature male rats and to evaluate the influence of L-Carnitine (CAR) in maintaining their fertility. Sixty rats were divided randomly into three groups. Control group (CG n=20 rats), cholesterol feeding group 1 (CFG1 n=20 rats) fed 1.5% cholesterol with diet for one month, and cholesterol feeding group 2 (CFG2 n=20 rats) fed 1.5% cholesterol with diet + CAR 150 mg/kg body weight (B.W.) given by water for one month. Results showed a significant increase in body weight of CFG1 compared with CG and CFG2. The lipid profile of CFG1 after one month of feeding cholesterol showed a significant increase in serum cholesterol and triglyceride compared with CG and with the group that watered by CAR and CFG2. Results of sperms parameters in CGF2 showed a significant increase in sperms count with sperms live percentage and a significant decrease in sperms abnormalities percentage compared with CGF1 and CG. The hormonal profile showed a significant decrease in serum testosterone levels in rats from CFG1 compared with CFG2 and CG. In conclusion, CAR is a powerful antioxidant that can maintain the parameters of sperms of hypercholesterolemic premature rats, which may enhance the fertilizing ability of subfertile rats that may occur due to hyperlipidemia.
Collapse
Affiliation(s)
- Khalid Mohammed Karam
- College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq,* Corresponding Author: Khalid Mohammed Karam, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq. E-mail:
| | - Ahmed Saed Alebady
- College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | | | | |
Collapse
|
8
|
Çiftci G, Tuna E. Effects of cholesterol and Lactobacillus acidophilus on testicular function. Clin Exp Reprod Med 2021; 48:229-235. [PMID: 34488287 PMCID: PMC8421657 DOI: 10.5653/cerm.2020.04322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
Objective In this study, the effects of Lactobacillus acidophilus on testosterone (TES), follicle-stimulating hormone (FSH), luteinizing hormone (LH), androgen-binding protein (ABP), factor-associated apoptosis (FAS), and total cholesterol (TC), as well as histopathological changes, were investigated in male rats fed a high-cholesterol diet. Methods The study included three groups. The control (C) group was fed standard-diet for 8 weeks. The hypercholesterolemia (HC) group was fed a 2% cholesterol-diet for 8 weeks. The therapeutic group (HCL) was fed a 2% cholesterol-diet for 8 weeks and administered L. acidophilus for the last 4 weeks. FSH, TES, and FAS levels in testicular tissue were determined using an enzyme-linked immunosorbent assay (ELISA), while another sample was examined histopathologically. LH and ABP levels were determined using ELISA, and serum TC levels were assessed via an autoanalyzer. Results In the HC group, the TC levels were significantly higher and the LH levels were lower (p<0.05) than in the C group. The ABP levels were lower (p>0.05). In the HCL group, the LH and ABP levels were higher (p>0.05) and the TC level significantly lower (p<0.05) than in the HC group. The TES and FSH levels were lower, and the FAS levels were higher, in the HC than in the C group (p<0.05). In the HCL group, levels of all three resembled control levels. Histologically, in the testicular tissue of the HC group, the cells in the tubular wall exhibited atrophy, vacuolization, and reduced wall structure integrity. However, in the HCL group, these deteriorations were largely reversed. Conclusion Supplementary dietary administration of an L. acidophilus to hypercholesterolemic male rats positively impacted testicular tissue and male fertility hormone levels.
Collapse
Affiliation(s)
- Gülay Çiftci
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
| | - Elif Tuna
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
| |
Collapse
|
9
|
Sênos Demarco R, Jones DL. Redox signaling as a modulator of germline stem cell behavior: Implications for regenerative medicine. Free Radic Biol Med 2021; 166:67-72. [PMID: 33592309 PMCID: PMC8021480 DOI: 10.1016/j.freeradbiomed.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Germline stem cells (GSCs) are crucial for the generation of gametes and propagation of the species. Both intrinsic signaling pathways and environmental cues are employed in order to tightly control GSC behavior, including mitotic divisions, the choice between self-renewal or onset of differentiation, and survival. Recently, oxidation-reduction (redox) signaling has emerged as an important regulator of GSC and gamete behavior across species. In this review, we will highlight the primary mechanisms through which redox signaling acts to influence GSC behavior in different model organisms (Caenorhabditis elegans, Drosophila melanogaster and Mus musculus). In addition, we will summarize the latest research on the use of antioxidants to support mammalian spermatogenesis and discuss potential strategies for regenerative medicine in humans to enhance reproductive fitness.
Collapse
Affiliation(s)
- Rafael Sênos Demarco
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - D Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Cinnamomum zeylanicum alleviate testicular damage induced by high fat diet in albino rats; histological and ultrastructural studies. Heliyon 2020; 6:e05584. [PMID: 33294709 PMCID: PMC7695915 DOI: 10.1016/j.heliyon.2020.e05584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/06/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Hyperlipidemia has been related to sever health outcome include cardiovascular complication, metabolic disorders and infertility. Moreover, obesity has also been linked to dangerous effects on testicular morphology, spermatogenesis and sperm malformation. Many studies using different herbal medicines exert protective and therapeutic effect on the testes, spermatogenesis and fertility in animals fed high fat diet. Objective: this study aimed to find out the protective effect of cinnamon on testes of albino rat fed high fat diet (HFD). Forty adult male albino rats were selected and equally divided into 4 groups. Group 1: animals of this group were fed standard diet. Group 2: rats were fed standard diet and cinnamon "15% weight by weight, w/w" for 8 weeks. Group 3: animals in this group were fed HFD (2% cholesterol, 15 % sucrose, 15% corn, 15% cocoa butter, starch and 4.7% cellulose) for 8 weeks. Group 4: animals in this group were fed HFD and cinnamon. At the end of 4 weeks half animals were sacrificed and the rest of animals were sacrificed at the end of 8 weeks and blood samples were collected to assay the testosterone level. As well as testes were taken and prepared for both histological and ultrastructure studies. Histological examination of testicular tissue of HFD-fed animals revealed many pathological changes include degenerated seminiferous tubules, distorted germinal layers and interstitial tissue appeared degenerated with intertubular hemorrhage. Ultrastructural observations showed severe degenerated features including both different types of spermatogonia and interstitial tissue. On the other hand, both histological and ultrastructural alterations were substantially but not completely protect in obese animals fed HFD and cinnamon for 4 weeks while advanced degree of improvement tissue appeared after 8 weeks of the same treatment. As well as, significantly increase in the level of testosterone was recorded when compared with HFD-fed animals. The present work concluded that cinnamon dietary uptake may improve testicular damage induced by HFD as it has anti-inflammatory, anti-obesity and antioxidant activities.
Collapse
|
11
|
Dong Y, Zhao J, Zhu Q, Liu H, Wang J, Lu W. Melatonin inhibits the apoptosis of rooster Leydig cells by suppressing oxidative stress via AKT-Nrf2 pathway activation. Free Radic Biol Med 2020; 160:1-12. [PMID: 32758663 DOI: 10.1016/j.freeradbiomed.2020.06.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
Abstract
Oxidative stress has been described as a key driver of Leydig cell apoptosis. Melatonin has antioxidative and antiapoptotic effects, but the potential effects and mechanism of melatonin on oxidative stress and apoptosis in rooster Leydig cells remain unclear. Our results showed that melatonin biosynthetic enzymes and melatonin receptors were expressed in rooster Leydig cells and their expression were locally inhibited as rooster sexual maturation. We found that melatonin inhibited H2O2-induced apoptosis of rooster Leydig cell by activating the melatonin receptors Mel-1a and Mel-1b. Additionally, melatonin protects mitochondria from damage by reducing the level of oxidative stress in Leydig cells. Melatonin relieved H2O2-induced oxidative stress by significantly reducing intracellular ROS, MDA and 8-OHdG levels and increasing SOD and GSH-Px activities. Simultaneously, melatonin significantly reduced H2O2-induced depolarization of ΔΨm and decreased the release of Cytochrome C and Ca2+. We also observed that melatonin activated the Nrf2 pathway, while Nrf2 silencing abrogated the anti-oxidative and anti-apoptotic effects of melatonin in rooster Leydig cells. Furthermore, melatonin promoted the phosphorylation of AKT, while AKT inhibitor suppressed the Nrf2 pathway activated by melatonin and alleviated the inhibitory effects of melatonin on apoptosis and oxidative stress. In conclusion, melatonin could inhibit apoptosis in rooster Leydig cells by suppressing oxidative stress via activation of the AKT-Nrf2 pathway.
Collapse
Affiliation(s)
- Yangyunyi Dong
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Zhao
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qingyu Zhu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyu Liu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jun Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Wenfa Lu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Jilin Changchun, 130118, China; Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
12
|
Sayed RKA, Mokhtar DM, Fernández-Ortiz M, Fernández-Martínez J, Aranda-Martínez P, Escames G, Acuña-Castroviejo D. Lack of retinoid acid receptor-related orphan receptor alpha accelerates and melatonin supplementation prevents testicular aging. Aging (Albany NY) 2020; 12:12648-12668. [PMID: 32644943 PMCID: PMC7377884 DOI: 10.18632/aging.103654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
The role of retinoid acid receptor-related orphan receptor alpha (RORα) on male reproductive functions during aging is unclear. Here, we analyze the morphological changes in the testis of both young and aged RORα-deficient mice, with and without melatonin supplementation. Young mutants showed vacuolation, degeneration and pyknosis of spermatogenic epithelium and Sertoli cells. Aged mutants showed atrophy of the seminiferous tubules and absence of mitotic spermatogenic cells. Absence of sperms in many tubules, loss of acrosomal cap, vacuolation and hypertrophy of Sertoli cells were detected in aged mice, with a significant reduction in the number of seminiferous tubules and a significant increase in the number of Leydig cells and telocytes. Repair in seminiferous tubules and interstitial tissues with enhancement of spermatogenesis was observed in melatonin-treated aged mice. Young mutants overexpressed VEGF that was weaker in aged animals and observed only in the spermatocytes, while melatonin increased VEGF expression in spermatocytes and spermatids. Caspase 3 increased in both young and aged mutant mice in all seminiferous tubules and interstitium; caspase 3 immunostaining in seminiferous tubules, however, showed a normal pattern of apoptosis with melatonin supplementation. The present study reports that age-dependent testicular changes in RORα mutant mice were recovered by melatonin treatment.
Collapse
Affiliation(s)
- Ramy K A Sayed
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Marisol Fernández-Ortiz
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - José Fernández-Martínez
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - Paula Aranda-Martínez
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain
| | - Germaine Escames
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain.,CIBER de Fragilidad y Envejecimiento, Ibs. Granada, Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital Universitario San Cecilio, Granada 18016, Spain
| | - Darío Acuña-Castroviejo
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada 18016, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada 18016, Spain.,CIBER de Fragilidad y Envejecimiento, Ibs. Granada, Unidad de Gestión Clínica de Laboratorios Clínicos, Hospital Universitario San Cecilio, Granada 18016, Spain
| |
Collapse
|
13
|
Chen C, Ling M, Lin F, Xu L, Lv ZM. Melatonin appears to protect against steroidogenic collapse in both mice fed with high‐fat diet and H
2
O
2
‐treated TM3 cells. Andrologia 2019; 51:e13323. [PMID: 31134680 DOI: 10.1111/and.13323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/06/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Chao Chen
- Department of Histology and Embryology Anhui Medical University Hefei China
- Department of Operating Room The First Affiliated Hospital of USTC (Anhui Provincial Hospital) Hefei China
| | - Meng‐yu Ling
- Department of Histology and Embryology Anhui Medical University Hefei China
| | - Fan‐hong Lin
- Department of Histology and Embryology Anhui Medical University Hefei China
| | - Ling Xu
- Department of Histology and Embryology Anhui Medical University Hefei China
| | - Zheng Mei Lv
- Department of Histology and Embryology Anhui Medical University Hefei China
| |
Collapse
|
14
|
McCarty KJ, Owen MPT, Hart CG, Thompson RC, Burnett DD, King EH, Hopper RM, Lemley CO. Effect of chronic melatonin supplementation during mid to late gestation on maternal uterine artery blood flow and subsequent development of male offspring in beef cattle. J Anim Sci 2018; 96:5100-5111. [PMID: 30203092 PMCID: PMC6276587 DOI: 10.1093/jas/sky363] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/05/2018] [Indexed: 12/23/2022] Open
Abstract
The objective of the current study was to examine the effects of supplemental melatonin implants on uterine artery blood flow from mid to late gestation in beef cattle and subsequent development of their male offspring. Commercial beef heifers (n = 32) and cows (n = 25) were bred via artificial insemination and assigned to 1 of 2 groups supplemented with melatonin implants (MEL) or without (CON) at day 180, 210, and 240 of gestation. Uterine artery blood flow was determined using color Doppler ultrasonography. A subset of 12 crossbred heifers (n = 6 MEL; n = 6 CON) underwent Cesarean sections on day 243 ± 2 of gestation to allow for placentome collection. Maternal and fetal serum were collected to analyze melatonin concentrations. The remaining cattle were allowed to calve and at weaning (195 ± 2 d of age), bull calves (n = 15) were castrated and testicular tissue harvested for seminiferous tubule analysis. Heifer uterine artery blood flow was increased (P = 0.009) at day 240 of gestation in MEL compared with CON heifers. Cow uterine artery blood flow was increased (P = 0.003) in MEL compared with CON cows irrespective of gestational day. Maternal and fetal concentrations of melatonin were increased (P < 0.05) in MEL compared with CON heifers. The percent of placentome capillary area per mm2 was decreased (P = 0.019) in MEL compared with CON heifers, while cotyledonary ANGPT1 mRNA tended to increase (P = 0.095) in MEL compared with CON heifers. At weaning, body weight of male offspring and their scrotal circumference were increased (P < 0.05) in calves born to MEL compared with CON dams, while seminiferous tubule diameter and area were not different (P > 0.40) between treatments. In summary, melatonin supplementation increased uterine artery blood flow in mid to late gestating cattle, but this was not accompanied by an increase in fetal weight. Alterations in postnatal development of bulls, including increased body weight and scrotal circumference, warrants future investigations related to attainment of puberty and subsequent fertility of offspring born to melatonin supplemented dams.
Collapse
Affiliation(s)
- Keelee J McCarty
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - Megan P T Owen
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - Caitlin G Hart
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - Robyn C Thompson
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - Derris D Burnett
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| | - E Heath King
- Department of Pathobiology and Population Medicine, Mississippi State University College of Veterinary Medicine, Mississippi State, MS
| | - Richard M Hopper
- Department of Pathobiology and Population Medicine, Mississippi State University College of Veterinary Medicine, Mississippi State, MS
| | - Caleb O Lemley
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS
| |
Collapse
|
15
|
Steinfeld K, Beyer D, Mühlfeld C, Mietens A, Eichner G, Altinkilic B, Kampschulte M, Jiang Q, Krombach GA, Linn T, Weidner W, Middendorff R. Low testosterone in ApoE/LDL receptor double-knockout mice is associated with rarefied testicular capillaries together with fewer and smaller Leydig cells. Sci Rep 2018; 8:5424. [PMID: 29615651 PMCID: PMC5882941 DOI: 10.1038/s41598-018-23631-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/13/2018] [Indexed: 11/12/2022] Open
Abstract
The testis as a site for atherosclerotic changes has so far attracted little attention. We used the apolipoprotein E (ApoE)/low density lipoprotein (LDL) receptor deficient mouse model (KO) for atherosclerosis (20, 40, 60 and 87-week-old) to investigate whether Leydig cells or the capillary network are responsible for reduced serum testosterone levels previously observed in extreme ages of this model. In KO mice, overall testosterone levels were reduced whereas the adrenal gland-specific corticosterone was increased excluding a general defect of steroid hormone production. In addition to micro-CT investigations for bigger vessels, stereology revealed a reduction of capillary length, volume and surface area suggesting capillary rarefaction as a factor for diminished testosterone. Stereological analyses of interstitial cells demonstrated significantly reduced Leydig cell numbers and size. These structural changes in the testis occurred on an inflammatory background revealed by qPCR. Reduced litter size of the KO mice suggests hypo- or infertility as a consequence of the testicular defects. Our data suggest reduced testosterone levels in this atherosclerosis model might be explained by both, rarefication of the capillary network and reduced Leydig cell number and size. Thus, this study calls for specific treatment of male infertility induced by microvascular damage through hypercholesterolemia and atherosclerosis.
Collapse
Affiliation(s)
- Kai Steinfeld
- Department of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany.,Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Daniela Beyer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Andrea Mietens
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Gerrit Eichner
- Institute of Mathematics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Bora Altinkilic
- Department of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Marian Kampschulte
- Department of Radiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Qingkui Jiang
- Centre of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Thomas Linn
- Centre of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Wolfgang Weidner
- Department of Urology, Pediatric Urology and Andrology, Justus-Liebig-University Giessen, Giessen, Germany.
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
16
|
Navid S, Rastegar T, Baazm M, Alizadeh R, Talebi A, Gholami K, Khosravi-Farsani S, Koruji M, Abbasi M. In vitroeffects of melatonin on colonization of neonate mouse spermatogonial stem cells. Syst Biol Reprod Med 2017; 63:370-381. [DOI: 10.1080/19396368.2017.1358774] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shadan Navid
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Talebi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keykavos Gholami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Khosravi-Farsani
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Koruji
- Cellular and Molecular Research Center & Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Torabi F, Malekzadeh Shafaroudi M, Rezaei N. Combined protective effect of zinc oxide nanoparticles and melatonin on cyclophosphamide-induced toxicity in testicular histology and sperm parameters in adult Wistar rats. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.7.403] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
18
|
Local Actions of Melatonin in Somatic Cells of the Testis. Int J Mol Sci 2017; 18:ijms18061170. [PMID: 28561756 PMCID: PMC5485994 DOI: 10.3390/ijms18061170] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 01/08/2023] Open
Abstract
The pineal hormone melatonin regulates testicular function through the hypothalamic-adenohypophyseal axis. In addition, direct actions of melatonin in somatic cells of the testis have been described. Melatonin acts as a local modulator of the endocrine activity in Leydig cells. In Sertoli cells, melatonin influences cellular growth, proliferation, energy metabolism and the oxidation state, and consequently may regulate spermatogenesis. These data pinpoint melatonin as a key player in the regulation of testicular physiology (i.e., steroidogenesis, spermatogenesis) mostly in seasonal breeders. In patients with idiopathic infertility, melatonin exerts anti-proliferative and anti-inflammatory effects on testicular macrophages, and provides protective effects against oxidative stress in testicular mast cells. Consequently, melatonin is also involved in the modulation of inflammatory and oxidant/anti-oxidant states in testicular pathology. Overall, the literature data indicate that melatonin has important effects on testicular function and male reproduction.
Collapse
|
19
|
Kratz EM, Piwowar A, Zeman M, Stebelová K, Thalhammer T. Decreased melatonin levels and increased levels of advanced oxidation protein products in the seminal plasma are related to male infertility. Reprod Fertil Dev 2017; 28:507-15. [PMID: 25218686 DOI: 10.1071/rd14165] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/23/2014] [Indexed: 12/18/2022] Open
Abstract
Melatonin, an indolamine secreted by the pineal gland, is known as a powerful free-radical scavenger and wide-spectrum antioxidant. Therefore, the aim of this study was to correlate markers of oxidative protein damage (advanced oxidation protein products, AOPPs) and the total antioxidant capacity (TAC) with melatonin levels in the seminal plasma of men with azoospermia (n=37), theratozoospermia (n=29) and fertile controls (normozoospermia, n=37). Melatonin concentration was measured by radioimmunoassay. The levels of AOPP as well as TAC efficiency (determined by the ferric reducing antioxidant power, FRAP) were estimated by spectrophotometric methods. The concentration of melatonin and AOPP significantly differed in azoospermic (P<0.0001) and theratozoospermic (P<0.0001) patients versus fertile men, and correlated negatively (r=-0.33, P=0.0016). The TAC levels were significantly higher in azoospermia than in theratozoospermia (P=0.0022) and the control group (P=0.00016). In azoospermia, the AOPP concentration was also significantly higher than that observed in theratozoospermia (P=0.00029). Decreased levels of melatonin together with elevated AOPP altered the oxidative-antioxidative balance in the ejaculate, thereby reducing fertility. Therefore, melatonin and AOPP levels may serve as additional diagnostic markers of semen quality and male reproductive potential.
Collapse
Affiliation(s)
- Ewa Maria Kratz
- Department of Chemistry and Immunochemistry, Faculty of Medicine, Wroc?aw Medical University, O. Bujwida 44A, 50-345 Wroc?aw, Poland
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroc?aw Medical University, Borowska 211, 50-556 Wroc?aw, Poland
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Mlynska dolina B2, 84215 Bratislava, Slovak Republic
| | - Katarína Stebelová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Mlynska dolina B2, 84215 Bratislava, Slovak Republic
| | - Theresia Thalhammer
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20 Vienna, Austria
| |
Collapse
|
20
|
Chapin RE, Winton T, Nowland W, Danis N, Kumpf S, Johnson K, Coburn A, Stukenborg JB. Lost in translation: The search for an in vitro screen for spermatogenic toxicity. ACTA ACUST UNITED AC 2016; 107:225-242. [DOI: 10.1002/bdrb.21188] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Robert E. Chapin
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - Timothy Winton
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - William Nowland
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - Nichole Danis
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
- Histopathology Laboratory; WRD; Groton CT USA
| | - Steven Kumpf
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - Kjell Johnson
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
- Arbor Analytics; Ann Arbor MI USA
| | - Aleasha Coburn
- Developmental and Reproductive Toxicology Center of Expertise; Pfizer Worldwide R&D (WRD); Groton CT USA
| | - Jan-Bernd Stukenborg
- Department of Women's and Children's Health; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
21
|
Hu W, Ma Z, Di S, Jiang S, Li Y, Fan C, Yang Y, Wang D. Snapshot: implications for melatonin in endoplasmic reticulum homeostasis. Br J Pharmacol 2016; 173:3431-3442. [PMID: 27759160 PMCID: PMC5120159 DOI: 10.1111/bph.13651] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is an important intracellular membranous organelle. Previous studies have demonstrated that the ER is responsible for protein folding and trafficking, lipid synthesis and the maintenance of calcium homeostasis. Interestingly, the morphology and structure of the ER were recently found to be important. Melatonin is a hormone that anticipates the daily onset of darkness in mammals, and it is well known that melatonin acts as an antioxidant by scavenging free radicals and increasing the activity of antioxidant enzymes in the body. Notably, the existing evidence demonstrates that melatonin is involved in ER homeostasis, particularly in the morphology of the ER, indicating a potential protective role of melatonin. This review discusses the existing knowledge regarding the implications for the involvement of melatonin in ER homeostasis.
Collapse
Affiliation(s)
- Wei Hu
- Department of Thoracic and Cardiovascular SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Zhiqiang Ma
- Department of Thoracic SurgeryTangdu Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Shouyin Di
- Department of Thoracic SurgeryTangdu Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Shuai Jiang
- Department of Aerospace MedicineThe Fourth Military Medical UniversityXi'anChina
| | - Yue Li
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Chongxi Fan
- Department of Thoracic SurgeryTangdu Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Yang Yang
- Department of Thoracic and Cardiovascular SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
22
|
Deng SL, Chen SR, Wang ZP, Zhang Y, Tang JX, Li J, Wang XX, Cheng JM, Jin C, Li XY, Zhang BL, Yu K, Lian ZX, Liu GS, Liu YX. Melatonin promotes development of haploid germ cells from early developing spermatogenic cells of Suffolk sheep under in vitro condition. J Pineal Res 2016; 60:435-47. [PMID: 26993286 DOI: 10.1111/jpi.12327] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/15/2016] [Indexed: 01/03/2023]
Abstract
Promotion of spermatogonial stem cell (SSC) differentiation into functional sperms under in vitro conditions is a great challenge for reproductive physiologists. In this study, we observed that melatonin (10(-7) M) supplementation significantly enhanced the cultured SSCs differentiation into haploid germ cells. This was confirmed by the expression of sperm special protein, acrosin. The rate of SSCs differentiation into sperm with melatonin supplementation was 11.85 ± 0.93% which was twofold higher than that in the control. The level of testosterone, the transcriptions of luteinizing hormone receptor (LHR), and the steroidogenic acute regulatory protein (StAR) were upregulated with melatonin treatment. At the early stage of SSCs culture, melatonin suppressed the level of cAMP, while at the later stage, it promoted cAMP production. The similar pattern was observed in testosterone content. Expressions for marker genes of meiosis anaphase, Dnmt3a, and Bcl-2 were upregulated by melatonin. In contrast, Bax expression was downregulated. Importantly, the in vitro-generated sperms were functional and they were capable to fertilize oocytes. These fertilized oocytes have successfully developed to the blastula stage.
Collapse
Affiliation(s)
- Shou-Long Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Su-Ren Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Peng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ji-Xin Tang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Xia Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jin-Mei Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bao-Lu Zhang
- National key Lab of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Kun Yu
- National key Lab of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Zheng-Xing Lian
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Guo-Shi Liu
- Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, P.R. China
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Li C, Zhou X. Melatonin and male reproduction. Clin Chim Acta 2015; 446:175-80. [PMID: 25916694 DOI: 10.1016/j.cca.2015.04.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/14/2015] [Indexed: 01/25/2023]
Abstract
Melatonin is a neurohormone secreted by the pineal gland whose concentrations in the body are regulated by both the dark-light and seasonal cycles. The reproductive function of seasonal breeding animals is clearly influenced by the circadian variation in melatonin levels. Moreover, a growing body of evidence indicates that melatonin has important effects in the reproduction of some non-seasonal breeding animals. In males, melatonin affects reproductive regulation in three main ways. First, it regulates the secretion of two key neurohormones, GnRH and LH. Second, it regulates testosterone synthesis and testicular maturation. Third, as a potent free radical scavenger that is both lipophilic and hydrophilic, it prevents testicular damage caused by environmental toxins or inflammation. This review summarizes the existing data on the possible biological roles of melatonin in male reproduction. Overall, the literature data indicate that melatonin affects the secretion of both gonadotropins and testosterone while also improving sperm quality. This implies that it has important effects on the regulation of testicular development and male reproduction.
Collapse
Affiliation(s)
- Chunjin Li
- College of Animal Sciences, Jilin University, 5333 Xi'an Avenue, Changchun, Jilin Province 130062, PR China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, 5333 Xi'an Avenue, Changchun, Jilin Province 130062, PR China.
| |
Collapse
|
24
|
Bibak B, Khalili M, Rajaei Z, Soukhtanloo M, Hadjzadeh MAR, Hayatdavoudi P. Effects of melatonin on biochemical factors and food and water consumption in diabetic rats. Adv Biomed Res 2014; 3:173. [PMID: 25250287 PMCID: PMC4166052 DOI: 10.4103/2277-9175.139191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/18/2013] [Indexed: 11/20/2022] Open
Abstract
Background: Diabetic neuropathy is one of the serious problems due to microvessel vasculopathy in diabetes. It has been reported that hyperglycemia and hypertriglyceridemia are the underlying mechanisms in inducing and progression of diabetic neuropathy. The aim of the present study was to investigate the effects of melatonin on serum glucose and lipid levels, as well as food consumption and water intake in streptozotocin-induced diabetic rats. Materials and Methods: Eighty male Wistar rats were randomly assigned to six groups including; normal control group, diabetic control group and 4 diabetic experimental groups that received melatonin intraperitoneally at doses of 2.5, 5, 10, and 20 mg/kg at the end of sixth week after verification of neuropathy by means of evaluation of sciatic nerve conduction velocity (MNCV), for two weeks. Blood glucose and lipid levels, body weight, the amounts of food consumption, and water intake were determined in all groups at weeks 0 (before diabetes induction), 3, 6, and at the end of eighth week. Results: Treatment with melatonin reduced significantly the serum glucose (P < 0.001) and triglyceride (P < 0.05) levels, food consumption (P < 0.001), and water intake (P < 0.001) in diabetic rats at the end of eighth week. However, melatonin had no significant effect on body weight of diabetic animals. Conclusions: Treatment with melatonin could improve several signs of diabetes, including hyperglycemia, hypertriglyceridemia, polyphagia, and polydipsia. Therefore, melatonin may be used as an adjunct therapy in the treatment of diabetes.
Collapse
Affiliation(s)
- Bahram Bibak
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Monavareh Khalili
- Neurocognitive Research Center and Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ziba Rajaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mousa-Al-Reza Hadjzadeh
- Neurocognitive Research Center and Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parichehr Hayatdavoudi
- Neurocognitive Research Center and Department of Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Yang WC, Tang KQ, Fu CZ, Riaz H, Zhang Q, Zan LS. Melatonin regulates the development and function of bovine Sertoli cells via its receptors MT1 and MT2. Anim Reprod Sci 2014; 147:10-6. [DOI: 10.1016/j.anireprosci.2014.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022]
|
26
|
Wang HJ, Wang Q, Lv ZM, Wang CL, Li CP, Rong YL. Resveratrol appears to protect against oxidative stress and steroidogenesis collapse in mice fed high-calorie and high-cholesterol diet. Andrologia 2014; 47:59-65. [DOI: 10.1111/and.12231] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2013] [Indexed: 02/06/2023] Open
Affiliation(s)
- H.-J. Wang
- Department of Histology and Embryology; Anhui Medical University; Hefei China
| | - Q. Wang
- Department of Histology and Embryology; Anhui Medical University; Hefei China
| | - Z.-M. Lv
- Department of Histology and Embryology; Anhui Medical University; Hefei China
| | - C.-L. Wang
- Undergraduate Major in General Medical Practice; Anhui Medical University; Hefei China
| | - C.-P. Li
- Undergraduate Major in General Medical Practice; Anhui Medical University; Hefei China
| | - Y.-L. Rong
- Undergraduate Major in General Medical Practice; Anhui Medical University; Hefei China
| |
Collapse
|
27
|
The effect of stem cell therapy versus melatonin on the changes induced by busulfan in the testes of adult rat. ACTA ACUST UNITED AC 2013. [DOI: 10.1097/01.ehx.0000425579.77855.ea] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
|
29
|
Melatonin could offer protection against testicular damage caused by a high-fat diet. Nat Rev Urol 2012; 9:121. [DOI: 10.1038/nrurol.2012.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|