1
|
Peng T, Kennedy A, Wu Y, Foitzik S, Grüter C. Early life exposure to queen mandibular pheromone mediates persistent transcriptional changes in the brain of honey bee foragers. J Exp Biol 2024; 227:jeb247516. [PMID: 38725404 DOI: 10.1242/jeb.247516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/28/2024] [Indexed: 06/25/2024]
Abstract
Behavioural regulation in insect societies remains a fundamental question in sociobiology. In hymenopteran societies, the queen plays a crucial role in regulating group behaviour by affecting individual behaviour and physiology through modulation of worker gene expression. Honey bee (Apis mellifera) queens signal their presence via queen mandibular pheromone (QMP). While QMP has been shown to influence behaviour and gene expression of young workers, we know little about how these changes translate in older workers. The effects of the queen pheromone could have prolonged molecular impacts on workers that depend on an early sensitive period. We demonstrate that removal of QMP impacts long-term gene expression in the brain and antennae in foragers that were treated early in life (1 day post emergence), but not when treated later in life. Genes important for division of labour, learning, chemosensory perception and ageing were among those differentially expressed in the antennae and brain tissues, suggesting that QMP influences diverse physiological and behavioural processes in workers. Surprisingly, removal of QMP did not have an impact on foraging behaviour. Overall, our study suggests a sensitive period early in the life of workers, where the presence or absence of a queen has potentially life-long effects on transcriptional activity.
Collapse
Affiliation(s)
- Tianfei Peng
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University of Mainz, Biozentrum I, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Anissa Kennedy
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University of Mainz, Biozentrum I, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Yongqiang Wu
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University of Mainz, Biozentrum I, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Susanne Foitzik
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University of Mainz, Biozentrum I, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| | - Christoph Grüter
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University of Mainz, Biozentrum I, Hanns Dieter Hüsch Weg 15, 55128 Mainz, Germany
| |
Collapse
|
2
|
Duan X, Wang L, Wang R, Xiong M, Qin G, Huang S, Li J. Variation in the physiological response of adult worker bees of different ages (Apis mellifera L.) to pyraclostrobin stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115754. [PMID: 38043416 DOI: 10.1016/j.ecoenv.2023.115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The social division of labor within the honeybee colony is closely related to the age of the bees, and the age structure is essential to the development and survival of the colony. Differences in tolerance to pesticides and other external stresses among worker bees of different ages may be related to their social division of labor and corresponding physiological states. Pyraclostrobin was widely used to control the fungal diseases of nectar and pollen plants, though it was not friend to honey bees and other pollinators. This work aimed to determine the effects of field recommended concentrations of pyraclostrobin on the activities of protective and detoxifying enzymes, on the expression of genes involved in nutrient metabolism, and immune response in worker bees of different ages determined to investigate the physiological and biochemical differences in sensitivity to pyraclostrobin among different age of worker bees. The result demonstrates that the tolerance of adult worker bees to pyraclostrobin was negatively correlated with their age, and the significantly reduced survival rate of forager bees (21 day-old) with continued fungicide exposure. The activities of protective enzymes (CAT and SOD) and detoxifying enzymes (CarE, GSTs and CYP450) in different ages of adult worker bees were significantly altered, indicating the physiological response and the regulatory capacity of worker bees of different ages to fungicide stress was variation. Compared with 1 and 8 day-old worker bees, the expression of nutrient-related genes (ilp1 and ilp2) and immunity-related genes (apidaecin and defensin1) in forager bees (21 day-old) was gradually downregulated with increasing pyraclostrobin concentrations. Moreover, the expression of vitellogenin and hymenoptaecin in forager bees (21 day-old) was also decreased in high concentration treatment groups (250 and 313 mg/L). The present study confirmed the findings of the chronic toxicity of pyraclostrobin on the physiology and biochemistry of worker bees of different ages, especially to forager bees (21 day-old). These results would provide important physiological and biochemical insight for better understanding the potential risks of pyraclostrobin on honeybees and other non-target pollinators.
Collapse
Affiliation(s)
- Xinle Duan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China.
| | - Lizhu Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruyi Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Manqiong Xiong
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gan Qin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaokang Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Jianghong Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| |
Collapse
|
3
|
Menail HA, Cormier SB, Léger A, Robichaud S, Hebert-Chatelain E, Lamarre SG, Pichaud N. Age-related flexibility of energetic metabolism in the honey bee Apis mellifera. FASEB J 2023; 37:e23222. [PMID: 37781970 DOI: 10.1096/fj.202300654r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
The mechanisms that underpin aging are still elusive. In this study, we suggest that the ability of mitochondria to oxidize different substrates, which is known as metabolic flexibility, is involved in this process. To verify our hypothesis, we used honey bees (Apis mellifera carnica) at different ages, to assess mitochondrial oxygen consumption and enzymatic activities of key enzymes of the energetic metabolism as well as ATP5A1 content (subunit of ATP synthase) and adenylic energy charge (AEC). We also measured mRNA abundance of genes involved in mitochondrial functions and the antioxidant system. Our results demonstrated that mitochondrial respiration increased with age and favored respiration through complexes I and II of the electron transport system (ETS) while glycerol-3-phosphate (G3P) oxidation was relatively decreased. In addition, glycolytic, tricarboxylic acid cycle and ETS enzymatic activities increased, which was associated with higher ATP5A1 content and AEC. Furthermore, we detected an early decrease in the mRNA abundance of subunits of NADH ubiquinone oxidoreductase subunit B2 (NDUFB2, complex I), mitochondrial cytochrome b (CYTB, complex III) of the ETS as well as superoxide dismutase 1 and a later decrease for vitellogenin, catalase and mitochondrial cytochrome c oxidase subunit 1 (COX1, complex IV). Thus, our study suggests that the energetic metabolism is optimized with aging in honey bees, mainly through quantitative and qualitative mitochondrial changes, rather than showing signs of senescence. Moreover, aging modulated metabolic flexibility, which might reflect an underpinning mechanism that explains lifespan disparities between the different castes of worker bees.
Collapse
Affiliation(s)
- Hichem A Menail
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Simon B Cormier
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Adèle Léger
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Samuel Robichaud
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Etienne Hebert-Chatelain
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Simon G Lamarre
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| |
Collapse
|
4
|
Elzinga DC, Strickland WC. Generalized Stressors on Hive and Forager Bee Colonies. Bull Math Biol 2023; 85:112. [PMID: 37823943 DOI: 10.1007/s11538-023-01219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Hive-forming bees play an integral role in promoting agricultural sustainability and ecosystem preservation. The recent worldwide decline of several species of bees, and in particular, the honeybee in the United States, highlights the value in understanding possible causes. Over the past decade, numerous mathematical models and empirical experiments have worked to understand the causes of colony stress, with a particular focus on colony collapse disorder. We integrate and enhance major mathematical models of the past decade to create a single, analytically tractable model using a traditional disease modeling framework that incorporates both lethal and sublethal stressors. On top of this synthesis, a major innovation of our model is the generalization of stressor attributes including their transmissibility, impairment level, lethality, duration, and temporal-occurrence. Our model is validated against numerous emergent, biological characteristics and demonstrates that precocious foraging and labor destabilization can produce colony collapse disorder. The thresholds for these phenomena to occur depend on the characteristics and timing of the stressor, thus motivating further empirical and theoretical studies into stressor characteristics.
Collapse
Affiliation(s)
- David C Elzinga
- Department of Mathematics and Statistics, University of Wisconsin-La Crosse, La Crosse, WI, 54601, USA.
- Department of Mathematics, University of Tennessee Knoxville, Knoxville, TN, 37916, USA.
| | - W Christopher Strickland
- Department of Mathematics, University of Tennessee Knoxville, Knoxville, TN, 37916, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN, 37916, USA
| |
Collapse
|
5
|
Barascou L, Sene D, Le Conte Y, Alaux C. Pesticide risk assessment: honeybee workers are not all equal regarding the risk posed by exposure to pesticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90328-90337. [PMID: 35864404 DOI: 10.1007/s11356-022-21969-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Toxicological studies in honeybees have long shown that a single pesticide dose or concentration does not necessarily induce a single response. Inter-individual differences in pesticide sensitivity and/or the level of exposure (e.g., ingestion of pesticide-contaminated matrices) may explain this variability in risk posed by a pesticide. Therefore, to better inform pesticide risk assessment for honeybees, we studied the risk posed by pesticides to two behavioral castes, nurse, and forager bees, which are largely represented within colonies and which exhibit large differences in their physiological backgrounds. For that purpose, we determined the sensitivity of nurses and foragers to azoxystrobin (fungicide) and sulfoxaflor (insecticide) upon acute or chronic exposure. Azoxystrobin was found to be weakly toxic to both types of bees. However, foragers were more sensitive to sulfoxaflor than nurses upon acute and chronic exposure. This phenomenon was not explained by better sulfoxaflor metabolization in nurses, but rather by differences in body weight (nurses being 1.6 times heavier than foragers). Foragers consistently consumed more sugar syrup than nurses, and this increased consumption was even more pronounced with pesticide-contaminated syrup (at specific concentrations). Altogether, the stronger susceptibility and exposure of foragers to sulfoxaflor contributed to increases of 2 and tenfold for the acute and chronic risk quotients, respectively, compared to nurses. In conclusion, to increase the safety margin and avoid an under-estimation of the risk posed by insecticides to honeybees, we recommend systematically including forager bees in regulatory tests.
Collapse
Affiliation(s)
| | - Deborah Sene
- INRAE, Abeilles Et Environnement, Avignon, France
| | | | - Cedric Alaux
- INRAE, Abeilles Et Environnement, Avignon, France.
| |
Collapse
|
6
|
Wójcik Ł, Chęć M, Skowronek P, Grabowski M, Persona K, Strachecka A. Do the different life history strategies of ants and honeybees determine fat body morphology? ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 69:101186. [PMID: 35696737 DOI: 10.1016/j.asd.2022.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/22/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
The separation of two sister groups such as ants and bees in the Cretaceous involved the development of distinctive characteristics to occupy separate ecological niches. From the point of view of biology and ecology, it is important to see how different life history strategies affect the physiology of these insects. The fat body is the most metabolically important tissue in the organism of each insect. Therefore, we conducted a comparative analysis of the morphological image of the subcuticular fat body in different localisation/segments in Formica (Seviformica) cinerea and Apis mellifera mellifera foragers, because of the similarity of their functions in colonies. We observed that the fat bodies of ants and bees were composed of the same cell types: trophocytes and oenocytes. However, in each of the segments, the fat body cells in ants were bigger and there were fewer of them in comparison with bees. The dorsal part of the fat body of ants had a bilayer structure, where the outer layer was formed by binucleated oenocytes. Binucleated oenocytes were also found in the inner layer near the heart and tracheole. In bees, the fat body was unilayered and the trophocytes and oenocytes were present side by side. The similarities and, in particular, the differences in the structure of the fat body are the adaptation of these sister groups to life in a diverse environment.
Collapse
Affiliation(s)
- Łukasz Wójcik
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Magdalena Chęć
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Patrycja Skowronek
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Marcin Grabowski
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Kamil Persona
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Aneta Strachecka
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| |
Collapse
|
7
|
Strachecka A, Migdał P, Kuszewska K, Skowronek P, Grabowski M, Paleolog J, Woyciechowski M. Humoral and Cellular Defense Mechanisms in Rebel Workers of Apis mellifera. BIOLOGY 2021; 10:1146. [PMID: 34827139 PMCID: PMC8615136 DOI: 10.3390/biology10111146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022]
Abstract
The physiological state of an insect depends on efficiently functioning immune mechanisms such as cellular and humoral defenses. However, compounds participating in these mechanisms also regulate reproductive caste formation and are responsible for reproductive division of labor as well as for labor division in sterile workers. Divergent reaction of the same genotype yielding reproductive queens and worker castes led to shaping of the physiological and behavioral plasticity of sterile or reproductive workers. Rebels that can lay eggs while maintaining tasks inside and outside the colony exhibit both queen and worker traits. So, we expected that the phagocytic index, JH3 titer, and Vg concentration would be higher in rebels than in normal workers and would increase with their age. We also assumed that the numbers of oenocytes and their sizes would be greater in rebels than in normal workers. The rebels and the normal workers were collected at the age of 1, 7, 14, and 21 days, respectively. Hemolymph and fat bodies were collected for biochemical and morphological analyses. The high levels of JH, Vg, and the phagocytic index, as well as increased numbers and sizes of oenocytes in the fat body cells demonstrate the physiological and phenotypic adaptation of rebels to the eusocial life of honeybees.
Collapse
Affiliation(s)
- Aneta Strachecka
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (P.S.); (M.G.); (J.P.)
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Karolina Kuszewska
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Krakow, Poland; (K.K.); (M.W.)
| | - Patrycja Skowronek
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (P.S.); (M.G.); (J.P.)
| | - Marcin Grabowski
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (P.S.); (M.G.); (J.P.)
| | - Jerzy Paleolog
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (P.S.); (M.G.); (J.P.)
| | - Michał Woyciechowski
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Krakow, Poland; (K.K.); (M.W.)
| |
Collapse
|
8
|
Penick CA, Ghaninia M, Haight KL, Opachaloemphan C, Yan H, Reinberg D, Liebig J. Reversible plasticity in brain size, behaviour and physiology characterizes caste transitions in a socially flexible ant ( Harpegnathos saltator). Proc Biol Sci 2021; 288:20210141. [PMID: 33849311 DOI: 10.1098/rspb.2021.0141] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phenotypic plasticity allows organisms to respond to changing environments throughout their lifetime, but these changes are rarely reversible. Exceptions occur in relatively long-lived vertebrate species that exhibit seasonal plasticity in brain size, although similar changes have not been identified in short-lived species, such as insects. Here, we investigate brain plasticity in reproductive workers of the ant Harpegnathos saltator. Unlike most ant species, workers of H. saltator are capable of sexual reproduction, and they compete in a dominance tournament to establish a group of reproductive workers, termed 'gamergates'. We demonstrated that, compared to foragers, gamergates exhibited a 19% reduction in brain volume in addition to significant differences in behaviour, ovarian status, venom production, cuticular hydrocarbon profile, and expression profiles of related genes. In experimentally manipulated gamergates, 6-8 weeks after being reverted back to non-reproductive status their phenotypes shifted to the forager phenotype across all traits we measured, including brain volume, a trait in which changes were previously shown to be irreversible in honeybees and Drosophila. Brain plasticity in H. saltator is therefore more similar to that found in some long-lived vertebrates that display reversible changes in brain volume throughout their lifetimes.
Collapse
Affiliation(s)
- Clint A Penick
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, GA 30144, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Majid Ghaninia
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kevin L Haight
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Hua Yan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.,Department of Biology, University of Florida, Gainesville, FL 32611, USA.,Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
9
|
Fine JD. Evaluation and comparison of the effects of three insect growth regulators on honey bee queen oviposition and egg eclosion. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111142. [PMID: 32829209 DOI: 10.1016/j.ecoenv.2020.111142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Honey bees (Apis mellifera) are highly valued pollinators that help to ensure national food security in the United States, but reports of heavy annual losses to managed colonies have caused concerns and prompted investigations into the causes of colony losses. One factor that can negatively affect honey bee health and survival is agrochemical exposure. Investigations into the sublethal effects of agrochemicals on important metrics of colony health such as reproduction and queen fecundity has been limited by the availability of targeted methods to study honey bee queens. This work investigates the effects of three insect growth regulators (IGR), a class of agrochemicals known to target pathways involved in insect reproduction, on honey bee queen oviposition, egg hatching, and worker hypopharyngeal development in order to quantify their effects on the fecundity of mated queens. The reported results demonstrate that none of the IGRs affected oviposition, but all three affected egg eclosion. Worker bees consuming methoxyfenozide had significantly larger hypopharyngeal glands at two weeks of age than bees not fed this compound. The results suggest that although IGRs may not exhibit direct toxic effects on adult honey bees, they can affect larval eclosion from eggs and the physiology of workers, which may contribute to colony population declines over time.
Collapse
Affiliation(s)
- Julia D Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, 3026 Bee Biology Rd., Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Betti MI, Lee I. The effects of diploid male production on honey bee colony evolution and survival. Theor Popul Biol 2020; 135:49-55. [PMID: 32888942 DOI: 10.1016/j.tpb.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/10/2020] [Accepted: 08/15/2020] [Indexed: 12/14/2022]
Abstract
The order Hymenoptera includes most of the eusocial species on the planet. Correlated is the fact that many of the social species within the order are haplodiploid and use complementary sex determination (CSD) to determine the sex of offspring. CSD is the mechanism by why single sex alleles within an organism result in male development (haploid) and mismatched sex alleles develop into females (diploids). Related to this is the production of diploid males: fertilized eggs with matched sex alleles which develop as male instead of female. Honey bees are no exception to this, and as their numbers continue to suffer globally and their genetic diversity lowers, the effects of diploid male production (DMP) may pose an increased risk to the survival of bee colonies. In the present study, we develop a model for diploid male production in a honey bee colony and show that with ample resources, this phenomena has little effect on a colony's health, but there is a limit to the sustainability of a colony suffering from diploid male production. We use our model to show that there were likely no great evolutionary pressures against CSD and DMP in wild honey bees as its effects on colony health in the wild would have been negligible but increased environmental hazards such as pesticides and monoculture crops increase the effects of DMP on colony health.
Collapse
Affiliation(s)
- Matthew I Betti
- Mathematics and Computer Science, Mount Allison University, Sackville, New Brunswick, Canada.
| | - Isaac Lee
- Mathematics and Computer Science, Mount Allison University, Sackville, New Brunswick, Canada
| |
Collapse
|
11
|
Cini A, Bordoni A, Cappa F, Petrocelli I, Pitzalis M, Iovinella I, Dani FR, Turillazzi S, Cervo R. Increased immunocompetence and network centrality of allogroomer workers suggest a link between individual and social immunity in honeybees. Sci Rep 2020; 10:8928. [PMID: 32488140 PMCID: PMC7265547 DOI: 10.1038/s41598-020-65780-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/24/2020] [Indexed: 01/11/2023] Open
Abstract
The significant risk of disease transmission has selected for effective immune-defense strategies in insect societies. Division of labour, with individuals specialized in immunity-related tasks, strongly contributes to prevent the spread of diseases. A trade-off, however, may exist between phenotypic specialization to increase task efficiency and maintenance of plasticity to cope with variable colony demands. We investigated the extent of phenotypic specialization associated with a specific task by using allogrooming in the honeybee, Apis mellifera, where worker behaviour might lower ectoparasites load. We adopted an integrated approach to characterize the behavioural and physiological phenotype of allogroomers, by analyzing their behavior (both at individual and social network level), their immunocompetence (bacterial clearance tests) and their chemosensory specialization (proteomics of olfactory organs). We found that allogroomers have higher immune capacity compared to control bees, while they do not differ in chemosensory proteomic profiles. Behaviourally, they do not show differences in the tasks performed (other than allogrooming), while they clearly differ in connectivity within the colonial social network, having a higher centrality than control bees. This demonstrates the presence of an immune-specific physiological and social behavioural specialization in individuals involved in a social immunity related task, thus linking individual to social immunity, and it shows how phenotypes may be specialized in the task performed while maintaining an overall plasticity.
Collapse
Affiliation(s)
- Alessandro Cini
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy.
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Adele Bordoni
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Federico Cappa
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Iacopo Petrocelli
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Martina Pitzalis
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Immacolata Iovinella
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Francesca Romana Dani
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy
- CISM, Mass Spectrometry Centre, Università di Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Stefano Turillazzi
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Rita Cervo
- Dipartimento di Biologia, Università di Firenze, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
12
|
Amiri E, Le K, Melendez CV, Strand MK, Tarpy DR, Rueppell O. Egg-size plasticity in Apis mellifera: Honey bee queens alter egg size in response to both genetic and environmental factors. J Evol Biol 2020; 33:534-543. [PMID: 31961025 DOI: 10.1111/jeb.13589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Social evolution has led to distinct life-history patterns in social insects, but many colony-level and individual traits, such as egg size, are not sufficiently understood. Thus, a series of experiments was performed to study the effects of genotypes, colony size and colony nutrition on variation in egg size produced by honey bee (Apis mellifera) queens. Queens from different genetic stocks produced significantly different egg sizes under similar environmental conditions, indicating standing genetic variation for egg size that allows for adaptive evolutionary change. Further investigations revealed that eggs produced by queens in large colonies were consistently smaller than eggs produced in small colonies, and queens dynamically adjusted egg size in relation to colony size. Similarly, queens increased egg size in response to food deprivation. These results could not be solely explained by different numbers of eggs produced in the different circumstances but instead seem to reflect an active adjustment of resource allocation by the queen in response to colony conditions. As a result, larger eggs experienced higher subsequent survival than smaller eggs, suggesting that honey bee queens might increase egg size under unfavourable conditions to enhance brood survival and to minimize costly brood care of eggs that fail to successfully develop, and thus conserve energy at the colony level. The extensive plasticity and genetic variation of egg size in honey bees has important implications for understanding life-history evolution in a social context and implies this neglected life-history stage in honey bees may have trans-generational effects.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA.,Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Kevin Le
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Carlos Vega Melendez
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Micheline K Strand
- Life Sciences Division, U.S. Army Research Office, CCDC-ARL, Research Triangle Park, NC, USA
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
13
|
Bartlett LJ, Rozins C, Brosi BJ, Delaplane KS, de Roode JC, White A, Wilfert L, Boots M. Industrial bees: The impact of apicultural intensification on local disease prevalence. J Appl Ecol 2019; 56:2195-2205. [PMID: 31588148 PMCID: PMC6771535 DOI: 10.1111/1365-2664.13461] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 06/11/2019] [Indexed: 02/01/2023]
Abstract
It is generally thought that the intensification of farming will result in higher disease prevalences, although there is little specific modelling testing this idea. Focussing on honeybees, we build multi-colony models to inform how "apicultural intensification" is predicted to impact honeybee pathogen epidemiology at the apiary scale.We used both agent-based and analytical models to show that three linked aspects of apicultural intensification (increased population sizes, changes in population network structure and increased between-colony transmission) are unlikely to greatly increase disease prevalence in apiaries. Principally this is because even low-intensity apiculture exhibits high disease prevalence.The greatest impacts of apicultural intensification are found for diseases with relatively low R0 (basic reproduction number), however, such diseases cause little overall disease prevalence and, therefore, the impacts of intensification are minor. Furthermore, the smallest impacts of intensification are for diseases with high R0 values, which we argue are typical of important honeybee diseases. Policy Implications: Our findings contradict the idea that apicultural intensification by crowding honeybee colonies in large, dense apiaries leads to notably higher disease prevalences for established honeybee pathogens. More broadly, our work demonstrates the need for informative models of all agricultural systems and management practices in order to understand the implications of management changes on diseases.
Collapse
Affiliation(s)
- Lewis J. Bartlett
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Department of BiologyEmory UniversityAtlantaGeorgia
| | - Carly Rozins
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
| | - Berry J. Brosi
- Department of Environmental SciencesEmory UniversityAtlantaGeorgia
| | | | | | - Andrew White
- Department of MathematicsHeriot‐Watt UniversityEdinburghUK
| | - Lena Wilfert
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
| | - Michael Boots
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia
| |
Collapse
|
14
|
Melicher D, Wilson ES, Bowsher JH, Peterson SS, Yocum GD, Rinehart JP. Long-Distance Transportation Causes Temperature Stress in the Honey Bee, Apis mellifera (Hymenoptera: Apidae). ENVIRONMENTAL ENTOMOLOGY 2019; 48:681-701. [PMID: 30927358 PMCID: PMC6554651 DOI: 10.1093/ee/nvz027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 06/09/2023]
Abstract
Pollination services provided by the honey bee, Apis mellifera (Hymenoptera: Apidae, Linnaeus, 1758) have broad economic impacts and are necessary for production of a diversity of important crops. Hives may be transported multiple times per year to provide pollination. To test how temperature may contribute to transportation stress, temperature sensors were placed in hives in different locations and orientations on the trailer during shipping. Colony size prior to shipping significantly contributed to loss of population immediately after shipping which contributed to colony failure with smaller colonies more likely to fail and fail faster. Colony size also affects thermoregulation and temperature stress. Internal hive temperature varies significantly based on location and orientation. While colonies near the front and rear of the trailer and those oriented toward the center aisle had significantly different average internal temperatures, colony size best predicts loss of thermoregulation. Additionally, we profiled gene expression at departure, on arrival, and after a recovery period to identify transcriptional responses to transportation. Functional and enrichment analysis identified increased methylation and decreased ribosomal and protein-folding activity. Pheromone and odorant-binding transcripts were up-regulated after transportation. After recovery, transcripts associated with defense response, immune activity, and heat shock decreased, while production of antibiotic peptides increased. We conclude that hives experience considerable temperature stress possibly caused by turbulent airflow in exposed locations. Transportation stress should be considered an important component of annual colony losses which can be mitigated with improved management strategies.
Collapse
Affiliation(s)
- Dacotah Melicher
- Bioscience Research Laboratory, U.S. Department of Agriculture/Agricultural Research Service, Fargo, ND
| | - Elisabeth S Wilson
- Department of Biological Sciences, North Dakota State University, Fargo, ND
| | - Julia H Bowsher
- Department of Biological Sciences, North Dakota State University, Fargo, ND
| | | | - George D Yocum
- Bioscience Research Laboratory, U.S. Department of Agriculture/Agricultural Research Service, Fargo, ND
| | - Joseph P Rinehart
- Bioscience Research Laboratory, U.S. Department of Agriculture/Agricultural Research Service, Fargo, ND
| |
Collapse
|
15
|
Lourenço AP, Martins JR, Torres FAS, Mackert A, Aguiar LR, Hartfelder K, Bitondi MMG, Simões ZLP. Immunosenescence in honey bees (Apis mellifera L.) is caused by intrinsic senescence and behavioral physiology. Exp Gerontol 2019; 119:174-183. [DOI: 10.1016/j.exger.2019.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 01/15/2023]
|
16
|
Vernier CL, Krupp JJ, Marcus K, Hefetz A, Levine JD, Ben-Shahar Y. The cuticular hydrocarbon profiles of honey bee workers develop via a socially-modulated innate process. eLife 2019; 8:41855. [PMID: 30720428 PMCID: PMC6382352 DOI: 10.7554/elife.41855] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
Large social insect colonies exhibit a remarkable ability for recognizing group members via colony-specific cuticular pheromonal signatures. Previous work suggested that in some ant species, colony-specific pheromonal profiles are generated through a mechanism involving the transfer and homogenization of cuticular hydrocarbons (CHCs) across members of the colony. However, how colony-specific chemical profiles are generated in other social insect clades remains mostly unknown. Here we show that in the honey bee (Apis mellifera), the colony-specific CHC profile completes its maturation in foragers via a sequence of stereotypic age-dependent quantitative and qualitative chemical transitions, which are driven by environmentally-sensitive intrinsic biosynthetic pathways. Therefore, the CHC profiles of individual honey bees are not likely produced through homogenization and transfer mechanisms, but instead mature in association with age-dependent division of labor. Furthermore, non-nestmate rejection behaviors seem to be contextually restricted to behavioral interactions between entering foragers and guards at the hive entrance. Honey bees are social insects that live in large groups called colonies, within structures known as hives. The young adult bees stay within the hive to build nests and care for the young, while the older bees leave the hive to forage for food. Honey bees store food and other valuable resources in their hives, so they are often targeted by predators, parasites and ‘robber’ bees from other colonies. Therefore, it is important for bees to determine whether individuals trying to enter the nest are group members or intruders. While it is known that social insects use blends of waxy chemicals called cuticular hydrocarbons to identify group members at the entrance to the colony, it is not clear how members of the same colony acquire a similar blend of cuticular hydrocarbons. Some previous work suggested that in some ant species (which are also social insects), colony members exchange cuticular hydrocarbons with each other so that all members of the colony are covered with a similar blend of chemicals. However, it was not known whether honey bees also share cuticular hydrocarbons between colony members in order to identify members of a hive. Vernier et al. used chemical, molecular and behavioral approaches to study the cuticular hydrocarbons found on honey bees. The results show that, rather than exchanging chemicals with other members of their colony, individual bees make their own blends of cuticular hydrocarbons. As a bee ages it makes different blends of cuticular hydrocarbons, and by the time it starts to leave the hive to forage it makes a blend that is specific to the colony it belongs to. The production of this final blend is influenced by the environment within the hive. Thus, the findings of Vernier et al. indicate that honey bees guarding the entrance to a hive can only identify non-colony-member forager bees as intruders, rather than any non-colony-member bee that happens upon the hive entrance. Honey bees play an essential role in pollinating many crop plants so understanding how these insects maintain their social groups may help to improve agriculture in the future. Furthermore, this work may aid our understanding of how other social insects interact in a variety of biological situations.
Collapse
Affiliation(s)
- Cassondra L Vernier
- Department of Biology, Washington University in Saint Louis, Saint Louis, United States
| | - Joshua J Krupp
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Katelyn Marcus
- Department of Biology, Washington University in Saint Louis, Saint Louis, United States
| | - Abraham Hefetz
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Joel D Levine
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in Saint Louis, Saint Louis, United States
| |
Collapse
|
17
|
Measuring biological age to assess colony demographics in honeybees. PLoS One 2018; 13:e0209192. [PMID: 30543711 PMCID: PMC6292630 DOI: 10.1371/journal.pone.0209192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/30/2018] [Indexed: 01/10/2023] Open
Abstract
Honeybee colonies are increasingly exposed to environmental stress factors, which can lead to their decline or failure. However, there are major gaps in stressor risk assessment due to the difficulty of assessing the honeybee colony state and detecting abnormal events. Since stress factors usually induce a demographic disturbance in the colony (e.g. loss of foragers, early transition from nurse to forager state), we suggest that disturbances could be revealed indirectly by measuring the age- and task-related physiological state of bees, which can be referred to as biological age (an indicator of the changes in physiological state that occur throughout an individual lifespan). We therefore estimated the biological age of bees from the relationship between age and biomarkers of task specialization (vitellogenin and the adipokinetic hormone receptor). This relationship was determined from a calibrated sample set of known-age bees and mathematically modelled for biological age prediction. Then, we determined throughout the foraging season the evolution of the biological age of bees from colonies with low (conventional apiary) or high Varroa destructor infestation rates (organic apiary). We found that the biological age of bees from the conventional apiary progressively decreased from the spring (17 days) to the fall (6 days). However, in colonies from the organic apiary, the population aged from spring (13 days) to summer (18.5 days) and then rejuvenated in the fall (13 days) after Varroa treatment. Biological age was positively correlated with the amount of brood (open and closed cells) in the apiary with low Varroa pressure, and negatively correlated with Varroa infestation level in the apiary with high Varroa pressure. Altogether, these results show that the estimation of biological age is a useful and effective method for assessing colony demographic state and likely detrimental effects of stress factors.
Collapse
|
18
|
Jones BM, Robinson GE. Genetic accommodation and the role of ancestral plasticity in the evolution of insect eusociality. J Exp Biol 2018; 221:jeb153163. [PMID: 30478152 PMCID: PMC6288071 DOI: 10.1242/jeb.153163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For over a century, biologists have proposed a role for phenotypic plasticity in evolution, providing an avenue for adaptation in addition to 'mutation-first' models of evolutionary change. According to the various versions of this idea, the ability of organisms to respond adaptively to their environment through phenotypic plasticity may lead to novel phenotypes that can be screened by natural selection. If these initially environmentally induced phenotypes increase fitness, then genetic accommodation can lead to allele frequency change, influencing the expression of those phenotypes. Despite the long history of 'plasticity-first' models, the importance of genetic accommodation in shaping evolutionary change has remained controversial - it is neither fully embraced nor completely discarded by most evolutionary biologists. We suggest that the lack of acceptance of genetic accommodation in some cases is related to a lack of information on its molecular mechanisms. However, recent reports of epigenetic transgenerational inheritance now provide a plausible mechanism through which genetic accommodation may act, and we review this research here. We also discuss current evidence supporting a role for genetic accommodation in the evolution of eusociality in social insects, which have long been models for studying the influence of the environment on phenotypic variation, and may be particularly good models for testing hypotheses related to genetic accommodation. Finally, we introduce 'eusocial engineering', a method by which novel social phenotypes are first induced by environmental modification and then studied mechanistically to understand how environmentally induced plasticity may lead to heritable changes in social behavior. We believe the time is right to incorporate genetic accommodation into models of the evolution of complex traits, armed with new molecular tools and a better understanding of non-genetic heritable elements.
Collapse
Affiliation(s)
- Beryl M Jones
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gene E Robinson
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Opachaloemphan C, Yan H, Leibholz A, Desplan C, Reinberg D. Recent Advances in Behavioral (Epi)Genetics in Eusocial Insects. Annu Rev Genet 2018; 52:489-510. [PMID: 30208294 DOI: 10.1146/annurev-genet-120116-024456] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eusocial insects live in societies in which distinct family members serve specific roles in maintaining the colony and advancing the reproductive ability of a few select individuals. Given the genetic similarity of all colony members, the diversity of morphologies and behaviors is surprising. Social communication relies on pheromones and olfaction, as shown by mutants of orco, the universal odorant receptor coreceptor, and through electrophysiological analysis of neuronal responses to pheromones. Additionally, neurohormonal factors and epigenetic regulators play a key role in caste-specific behavior, such as foraging and caste switching. These studies start to allow an understanding of the molecular mechanisms underlying social behavior and provide a technological foundation for future studies of eusocial insects. In this review, we highlight recent findings in eusocial insects that advance our understanding of genetic and epigenetic regulations of social behavior and provide perspectives on future studies using cutting-edge technologies.
Collapse
Affiliation(s)
- Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; ,
| | - Hua Yan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; , .,Department of Biology, University of Florida, Gainesville, Florida 32611, USA; .,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA; ,
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; , .,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
20
|
Cardoso-Júnior CAM, Eyer M, Dainat B, Hartfelder K, Dietemann V. Social context influences the expression of DNA methyltransferase genes in the honeybee. Sci Rep 2018; 8:11076. [PMID: 30038377 PMCID: PMC6056497 DOI: 10.1038/s41598-018-29377-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022] Open
Abstract
DNA methylation is a reversible epigenetic modification that alters gene expression without altering the nucleotide sequence. Epigenetic modifications have been suggested as crucial mediators between social interactions and gene expression in mammals. However, little is known about the role of DNA methylation in the life cycle of social invertebrates. Recently, honeybees have become an attractive model to study epigenetic processes in social contexts. Although DNA methyltransferase (DNMT) enzymes responsible for DNA methylation are known in this model system, the influence of social stimuli on this process remains largely unexplored. By quantifying the expression of DNMT genes (dnmt1a, dnmt2 and dnmt3) under different demographical conditions characterized by the absence or presence of immatures and young adults, we tested whether the social context affected the expression of DNMT genes. The three DNMT genes had their expression altered, indicating that distinct molecular processes were affected by social interactions. These results open avenues for future investigations into regulatory epigenetic mechanisms underlying complex traits in social invertebrates.
Collapse
Affiliation(s)
- Carlos Antônio Mendes Cardoso-Júnior
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil.
| | - Michael Eyer
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| | - Benjamin Dainat
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| | - Klaus Hartfelder
- Departamento de Biologia Celular, Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Vincent Dietemann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003, Bern, Switzerland
| |
Collapse
|
21
|
Kohlmeier P, Feldmeyer B, Foitzik S. Vitellogenin-like A-associated shifts in social cue responsiveness regulate behavioral task specialization in an ant. PLoS Biol 2018; 16:e2005747. [PMID: 29874231 PMCID: PMC5991380 DOI: 10.1371/journal.pbio.2005747] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/03/2018] [Indexed: 11/22/2022] Open
Abstract
Division of labor and task specialization explain the success of human and insect societies. Social insect colonies are characterized by division of labor, with workers specializing in brood care early and foraging later in life. Theory posits that this task switching requires shifts in responsiveness to task-related cues, yet experimental evidence is weak. Here, we show that a Vitellogenin (Vg) ortholog identified in an RNAseq study on the ant T. longispinosus is involved in this process: using phylogenetic analyses of Vg and Vg-like genes, we firstly show that this candidate gene does not cluster with the intensively studied honey bee Vg but falls into a separate Vg-like A cluster. Secondly, an experimental knockdown of Vg-like A in the fat body caused a reduction in brood care and an increase in nestmate care in young ant workers. Nestmate care is normally exhibited by older workers. We demonstrate experimentally that this task switch is at least partly based on Vg-like A-associated shifts in responsiveness from brood to worker cues. We thus reveal a novel mechanism leading to early behavioral maturation via changes in social cue responsiveness mediated by Vg-like A and associated pathways, which proximately play a role in regulating division of labor.
Collapse
Affiliation(s)
- Philip Kohlmeier
- Institute of Organismic and Molecular and Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular and Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
22
|
Schmickl T, Karsai I. Resilience of honeybee colonies via common stomach: A model of self-regulation of foraging. PLoS One 2017; 12:e0188004. [PMID: 29161278 PMCID: PMC5697885 DOI: 10.1371/journal.pone.0188004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/30/2017] [Indexed: 02/04/2023] Open
Abstract
We propose a new regulation mechanism based on the idea of the "common stomach" to explain several aspects of the resilience and homeostatic regulation of honeybee colonies. This mechanism exploits shared pools of substances (pollen, nectar, workers, brood) that modulate recruitment, abandonment and allocation patterns at the colony-level and enable bees to perform several survival strategies to cope with difficult circumstances: Lack of proteins leads to reduced feeding of young brood, to early capping of old brood and to regaining of already spent proteins through brood cannibalism. We modeled this system by linear interaction terms and mass-action law. To test the predictive power of the model of this regulatory mechanism we compared our model predictions to experimental data of several studies. These comparisons show that the proposed regulation mechanism can explain a variety of colony level behaviors. Detailed analysis of the model revealed that these mechanisms could explain the resilience, stability and self-regulation observed in honeybee colonies. We found that manipulation of material flow and applying sudden perturbations to colony stocks are quickly compensated by a resulting counter-acting shift in task selection. Selective analysis of feedback loops allowed us to discriminate the importance of different feedback loops in self-regulation of honeybee colonies. We stress that a network of simple proximate mechanisms can explain significant colony-level abilities that can also be seen as ultimate reasoning of the evolutionary trajectory of honeybees.
Collapse
Affiliation(s)
- Thomas Schmickl
- Artificial Life Lab of the Department of Zoology, Karl-Franzens-University Graz, Graz, Austria
| | - Istvan Karsai
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States of America
- * E-mail:
| |
Collapse
|
23
|
Giehr J, Heinze J, Schrempf A. Group demography affects ant colony performance and individual speed of queen and worker aging. BMC Evol Biol 2017; 17:173. [PMID: 28764664 PMCID: PMC5540184 DOI: 10.1186/s12862-017-1026-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background The performance and fitness of social societies mainly depends on the efficiency of interactions between reproductive individuals and helpers. Helpers need to react to the group’s requirements and to adjust their tasks accordingly, while the reproductive individual has to adjust its reproductive rate. Social insects provide a good system to study the interrelations between individual and group characteristics. In general, sterile workers focus on brood care and foraging while the queen lays eggs. Reproductive division of labor is determined by caste and not interchangeable as, e.g., in social mammals or birds. Hence, changing social and environmental conditions require a flexible response by each caste. In the ant Cardiocondyla obscurior, worker task allocation is based on age polyethism, with young workers focusing on brood care and old workers on foraging. Here, we examine how group age demography affects colony performance and fitness in colonies consisting of only old or young workers and a single old or young queen. We hypothesized that both groups will be fully functional, but that the forced task shift affects the individuals’ performance. Moreover, we expected reduced worker longevity in groups with only young workers due to precocious foraging but no effect on queen longevity depending on group composition. Results Neither the performance of queens nor that of workers declined strongly with time per se, but offspring number and weight were influenced by queen age and the interaction between queen and worker age. Individual residual life expectancy strongly depended on colony demography instead of physiological age. While worker age affected queen longevity only slightly, exposing old workers to the conditions of colony founding increased their life spans by up to 50% relative to workers that had emerged shortly before colony set-up. Conclusions The social environment strongly affected the tempo of aging and senescence in C. obscurior, highlighting the plasticity of life expectancy in social insects. Furthermore, colonies obtained the highest reproductive output when consisting of same-aged queens and workers independent of their physiological age. However, workers appeared to be able to adjust their behavior to the colony’s needs and not to suffer from age-dependent restrictions. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1026-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Giehr
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany.
| | - Jürgen Heinze
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany
| | - Alexandra Schrempf
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
24
|
Reproduction Number and Asymptotic Stability for the Dynamics of a Honey Bee Colony with Continuous Age Structure. Bull Math Biol 2017. [DOI: 10.1007/s11538-017-0300-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Eyer M, Dainat B, Neumann P, Dietemann V. Social regulation of ageing by young workers in the honey bee, Apis mellifera. Exp Gerontol 2016; 87:84-91. [PMID: 27865886 DOI: 10.1016/j.exger.2016.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/23/2022]
Abstract
Organisms' lifespans are modulated by both genetic and environmental factors. The lifespan of eusocial insects is determined by features of the division of labor, which itself is influenced by social regulatory mechanisms. In the honey bee, Apis mellifera, the presence of brood and of old workers carrying out foraging tasks are important social drivers of ageing, but the influence of young adult workers is unknown, as it has not been experimentally teased apart from that of brood. In this study, we test the role of young workers in the ageing of their nestmates. We measured the impact of different social contexts characterized by the absence of brood and/or young adults on the lifespan of worker nestmates in field colonies. To acquire insight into the physiological processes occurring under these contexts, we analyzed the expression of genes known to affect honey bee ageing. The data showed that young workers significantly reduced the lifespan of nestmate workers, similar to the effect of brood on its own. Differential expression of vitellogenin, major royal jelly protein-1, and methylase transferase, but not methyl farneosate epoxidase genes suggests that young workers and brood influence ageing of adult nestmate workers via different physiological pathways. We identify young workers as an essential part of the social regulation of ageing in honey bee colonies.
Collapse
Affiliation(s)
- Michael Eyer
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland.
| | - Benjamin Dainat
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; Swiss Bee Health Service, Bienengesundheitsdienst, Apiservice, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Peter Neumann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; Institute of Bee Health, Vetsuisse Faculty, University of Bern, 3003 Bern, Switzerland; Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Vincent Dietemann
- Agroscope, Swiss Bee Research Centre, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; Social Insect Research Group, Zoology and Entomology Department, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
26
|
Betti MI, Wahl LM, Zamir M. Age structure is critical to the population dynamics and survival of honeybee colonies. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160444. [PMID: 28018627 PMCID: PMC5180125 DOI: 10.1098/rsos.160444] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Age structure is an important feature of the division of labour within honeybee colonies, but its effects on colony dynamics have rarely been explored. We present a model of a honeybee colony that incorporates this key feature, and use this model to explore the effects of both winter and disease on the fate of the colony. The model offers a novel explanation for the frequently observed phenomenon of 'spring dwindle', which emerges as a natural consequence of the age-structured dynamics. Furthermore, the results indicate that a model taking age structure into account markedly affects the predicted timing and severity of disease within a bee colony. The timing of the onset of disease with respect to the changing seasons may also have a substantial impact on the fate of a honeybee colony. Finally, simulations predict that an infection may persist in a honeybee colony over several years, with effects that compound over time. Thus, the ultimate collapse of the colony may be the result of events several years past.
Collapse
Affiliation(s)
- M. I. Betti
- Department of Applied Mathematics, Western University, London, Ontario, Canada N6A 5B7
| | - L. M. Wahl
- Department of Applied Mathematics, Western University, London, Ontario, Canada N6A 5B7
| | - M. Zamir
- Department of Applied Mathematics, Western University, London, Ontario, Canada N6A 5B7
- Department of Medical Biophysics, Western University, London, Ontario, Canada N6A 5B7
| |
Collapse
|
27
|
Lauren H, Lutz C, Wallon RC, Hug B. Integrating the Dimensions of NGSS within a Collaborative Board Game about Honey Bees. THE AMERICAN BIOLOGY TEACHER 2016; 78:755-763. [PMID: 27990024 PMCID: PMC5161416 DOI: 10.1525/abt.2016.78.9.755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The current reform in U.S. science education calls for the integration of three dimensions of science learning in classroom teaching and learning: Science and Engineering Practices, Crosscutting Concepts, and Disciplinary Core Ideas. While the Next Generation Science Standards provide flexibility in how curriculum and instruction are structured to meet learning goals, there are few examples of existing curricula that portray the integration of these dimensions as "three-dimensional learning." Here, we describe a collaborative board game about honey bees that incorporates scientific evidence on how genetic and environmental factors influence variations of traits and social behavior and requires students to collaboratively examine and use a system model. Furthermore, we show how students used and evaluated the game as a model in authentic classroom settings.
Collapse
Affiliation(s)
- Hillary Lauren
- College of Education at the University of Illinois at Champaign-Urbana (UIUC)
| | - Claudia Lutz
- Carl R. Woese Institute for Genomic Biology at UIUC
| | - Robert C Wallon
- Department of Curriculum and Instruction in the College of Education at UIUC
| | - Barbara Hug
- Department of Curriculum and Instruction in the College of Education at UIUC and the Principal Investigator of Project NEURON and Impact on Science Education
| |
Collapse
|
28
|
Assessing the health status of managed honeybee colonies (HEALTHY-B): a toolbox to facilitate harmonised data collection. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4578] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
Vleurinck C, Raub S, Sturgill D, Oliver B, Beye M. Linking Genes and Brain Development of Honeybee Workers: A Whole-Transcriptome Approach. PLoS One 2016; 11:e0157980. [PMID: 27490820 PMCID: PMC4973980 DOI: 10.1371/journal.pone.0157980] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 06/08/2016] [Indexed: 01/12/2023] Open
Abstract
Honeybees live in complex societies whose capabilities far exceed those of the sum of their single members. This social synergism is achieved mainly by the worker bees, which form a female caste. The worker bees display diverse collaborative behaviors and engage in different behavioral tasks, which are controlled by the central nervous system (CNS). The development of the worker brain is determined by the female sex and the worker caste determination signal. Here, we report on genes that are controlled by sex or by caste during differentiation of the worker's pupal brain. We sequenced and compared transcriptomes from the pupal brains of honeybee workers, queens and drones. We detected 333 genes that are differently expressed and 519 genes that are differentially spliced between the sexes, and 1760 genes that are differentially expressed and 692 genes that are differentially spliced between castes. We further found that 403 genes are differentially regulated by both the sex and caste signals, providing evidence of the integration of both signals through differential gene regulation. In this gene set, we found that the molecular processes of restructuring the cell shape and cell-to-cell signaling are overrepresented. Our approach identified candidate genes that may be involved in brain differentiation that ensures the various social worker behaviors.
Collapse
Affiliation(s)
- Christina Vleurinck
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Stephan Raub
- Centre for Information and Media Technology, Heinrich-Heine University, Düsseldorf, Germany
| | - David Sturgill
- Laboratory of Cellular and Developmental Biology, NIDDK, Bethesda, Maryland, United States of America
| | - Brian Oliver
- Laboratory of Cellular and Developmental Biology, NIDDK, Bethesda, Maryland, United States of America
| | - Martin Beye
- Institute of Evolutionary Genetics, Heinrich-Heine University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
30
|
Rueppell O, Aumer D, Moritz RF. Ties between ageing plasticity and reproductive physiology in honey bees (Apis mellifera) reveal a positive relation between fecundity and longevity as consequence of advanced social evolution. CURRENT OPINION IN INSECT SCIENCE 2016; 16:64-68. [PMID: 27720052 PMCID: PMC5094365 DOI: 10.1016/j.cois.2016.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 05/12/2023]
Abstract
Honey bees (Apis mellifera) are the best studied model of ageing among the social insects. As in other social insects, the reproductive queen far outlives her non-reproductive workers despite developing from the same genome in the same colony environment. Thus, the different social roles of the two female castes are critical for the profound phenotypic plasticity. In several special cases, such as the reproductive workers of Apis mellifera capensis, within-caste plasticity enables further studies of the fecundity-longevity syndrome in honey bees. At present, molecular evidence suggests that a reorganization of physiological control pathways may facilitate longevity of reproductive individuals. However, the social role and social environment of the different colony members are also very important and one of the key future questions is how much social facilitation versus internal regulation is responsible for the positive association between fecundity and longevity in honey bees.
Collapse
Affiliation(s)
- Olav Rueppell
- University of North Carolina at Greensboro, Department of Biology, Greensboro, NC, USA.
| | - Denise Aumer
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Robin Fa Moritz
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
31
|
Dussutour A, Poissonnier LA, Buhl C, Simpson SJ. Resistance to nutritional stress in ants: when being fat is advantageous. J Exp Biol 2016; 219:824-33. [PMID: 26985052 DOI: 10.1242/jeb.136234] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In ants, nutrient acquisition for the whole colony relies on a minority of workers, the foragers, which are often old and lean. Some studies have shown that the link between age, physiology and foraging activity is more flexible than once thought, especially in response to colony or environmental perturbations. This great plasticity offers the intriguing possibility to disentangle the effect of age, behaviour and physiology on the ants' abilities to cope with nutritional stresses. In this paper, we first looked at the capacity of groups of foragers and inner-nest workers to resist starvation and macronutrient imbalance. Second, we investigated whether behavioural task reversion modified the tolerance to nutritional stresses and by extension, changed mortality rate. We found that inner-nest workers live longer than foragers under nutritional stresses but not under optimal conditions. The reversion from foraging to inner-nest activities is followed by an increase in fat content and longevity. Finally, we demonstrated that changes in fat content associated with behavioural transition are highly flexible and strongly correlated to tolerance of nutritional stress. Our results have considerable implications for our understanding of the population dynamics of social insects under adverse nutritional conditions.
Collapse
Affiliation(s)
- Audrey Dussutour
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, Toulouse 31062, France
| | - Laure-Anne Poissonnier
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Camille Buhl
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Stephen J Simpson
- School of Biological Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
32
|
Kwapich CL, Tschinkel WR. Limited flexibility and unusual longevity shape forager allocation in the Florida harvester ant (Pogonomyrmex badius). Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-2039-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Diversity in identity: behavioral flexibility, dominance, and age polyethism in a clonal ant. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-1950-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Chang LH, Barron AB, Cheng K. Effects of the juvenile hormone analogue methoprene on rate of behavioural development, foraging performance and navigation in honey bees (Apis mellifera). ACTA ACUST UNITED AC 2015; 218:1715-24. [PMID: 25883376 DOI: 10.1242/jeb.119198] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/08/2015] [Indexed: 12/30/2022]
Abstract
Worker honey bees change roles as they age as part of a hormonally regulated process of behavioural development that ends with a specialised foraging phase. The rate of behavioural development is highly plastic and responsive to changes in colony condition such that forager losses, disease or nutritional stresses accelerate behavioural development and cause an early onset of foraging in workers. It is not clear to what degree the behavioural development of workers can be accelerated without there being a cost in terms of reduced foraging performance. Here, we compared the foraging performance of bees induced to accelerate their behavioural development by treatment with the juvenile hormone analogue methoprene with that of controls that developed at a normal rate. Methoprene treatment accelerated the onset of both flight and foraging behaviour in workers, but it also reduced foraging span, the total time spent foraging and the number of completed foraging trips. Methoprene treatment did not alter performance in a short-range navigation task, however. These data indicate a limitation to the physiological plasticity of bees, and a trade off between forager performance and the speed at which bees begin foraging. Chronic stressors will be expected to reduce the mean age of the foraging force, and therefore also reduce the efficiency of the foraging force. This interaction may explain why honey bee colonies react to sustained stressors with non-linear population decline.
Collapse
Affiliation(s)
- Lun-Hsien Chang
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
35
|
Symonowicz B, Kieruzel M, Szczuka A, Korczyńska J, Wnuk A, Mazurkiewicz PJ, Chiliński M, Godzińska EJ. Behavioral Reversion and Dark-Light Choice Behavior in Workers of the Red Wood Ant Formica polyctena. JOURNAL OF INSECT BEHAVIOR 2015; 28:245-256. [PMID: 26005288 PMCID: PMC4435637 DOI: 10.1007/s10905-015-9496-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 03/03/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
Social insect workers usually start adult life from intranidal tasks and then switch to extranidal activities, but this process may be reversed: foragers may switch again to intranidal brood care. The transition forager - reverted nurse is known as the behavioral reversion. Ant foragers are known to avoid illuminated zones less strongly than intranidal workers, but illumination responses of reverted nurses were so far never investigated. We compared dark-light choice behavior of three classes of workers of the red wood ant Formica polyctena: nurses, foragers and reverted nurses. Sets of ten ants belonging to the same class were tested in "double nests" made of two interconnected test tubes, one kept in darkness and the other exposed to light. The number of ants present in the illuminated zone of each nest (ni) was recorded on 10 sample points at 30 min intervals. The values of ni were lower in nurses than in foragers and reverted nurses and decreased as a function of time in all three groups. Nurses differed from foragers with respect to the dynamics of dark-light choice behavior, but reverted nurses did not differ in that respect either from nurses, or from foragers. Reverted nurses and foragers did not differ significantly from each other with respect to the overall level of avoidance of illuminated zone, nor with respect to the dynamics of dark-light choice behavior. This implies that behavioral reversion is not accompanied by the return of illumination responses of workers of F. polyctena to the state characteristic for nurses.
Collapse
Affiliation(s)
- Beata Symonowicz
- Department of Neurophysiology Laboratory of Ethology, Nencki Institute of Experimental Biology, Pasteur St 3, 02-093 Warsaw, Poland
| | - Maria Kieruzel
- Department of Neurophysiology Laboratory of Ethology, Nencki Institute of Experimental Biology, Pasteur St 3, 02-093 Warsaw, Poland
| | - Anna Szczuka
- Department of Neurophysiology Laboratory of Ethology, Nencki Institute of Experimental Biology, Pasteur St 3, 02-093 Warsaw, Poland
| | - Julita Korczyńska
- Department of Neurophysiology Laboratory of Ethology, Nencki Institute of Experimental Biology, Pasteur St 3, 02-093 Warsaw, Poland
| | - Andrzej Wnuk
- Department of Neurophysiology Laboratory of Ethology, Nencki Institute of Experimental Biology, Pasteur St 3, 02-093 Warsaw, Poland
| | - Paweł Jarosław Mazurkiewicz
- Department of Neurophysiology Laboratory of Ethology, Nencki Institute of Experimental Biology, Pasteur St 3, 02-093 Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Żwirki i Wigury St. 93, 02-089 Warsaw, Poland
| | - Michał Chiliński
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Żwirki i Wigury St. 93, 02-089 Warsaw, Poland
| | - Ewa Joanna Godzińska
- Department of Neurophysiology Laboratory of Ethology, Nencki Institute of Experimental Biology, Pasteur St 3, 02-093 Warsaw, Poland
| |
Collapse
|
36
|
Ihle KE, Fondrk MK, Page RE, Amdam GV. Genotype effect on lifespan following vitellogenin knockdown. Exp Gerontol 2014; 61:113-22. [PMID: 25497555 DOI: 10.1016/j.exger.2014.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 11/27/2014] [Accepted: 12/06/2014] [Indexed: 01/20/2023]
Abstract
Honey bee workers display remarkable flexibility in the aging process. This plasticity is closely tied to behavioral maturation. Workers who initiate foraging behavior at earlier ages have shorter lifespans, and much of the variation in total lifespan can be explained by differences in pre-foraging lifespan. Vitellogenin (Vg), a yolk precursor protein, influences worker lifespan both as a regulator of behavioral maturation and through anti-oxidant and immune functions. Experimental reduction of Vg mRNA, and thus Vg protein levels, in wild-type bees results in precocious foraging behavior, decreased lifespan, and increased susceptibility to oxidative damage. We sought to separate the effects of Vg on lifespan due to behavioral maturation from those due to immune and antioxidant function using two selected strains of honey bees that differ in their phenotypic responsiveness to Vg gene knockdown. Surprisingly, we found that lifespans lengthen in the strain described as behaviorally and hormonally insensitive to Vg reduction. We then performed targeted gene expression analyses on genes hypothesized to mediate aging and lifespan: the insulin-like peptides (Ilp1 and 2) and manganese superoxide dismutase (mnSOD). The two honey bee Ilps are the most upstream components in the insulin-signaling pathway, which influences lifespan in Drosophila melanogaster and other organisms, while manganese superoxide dismutase encodes an enzyme with antioxidant functions in animals. We found expression differences in the llps in fat body related to behavior (llp1 and 2) and genetic background (Ilp2), but did not find strain by treatment effects. Expression of mnSOD was also affected by behavior and genetic background. Additionally, we observed a differential response to Vg knockdown in fat body expression of mnSOD, suggesting that antioxidant pathways may partially explain the strain-specific lifespan responses to Vg knockdown.
Collapse
Affiliation(s)
- Kate E Ihle
- Arizona State University, School of Life Sciences, Tempe, AZ 85287, USA; Smithsonian Tropical Research Institute, Panama City, Panama, Apartado Postal 0843-03092, Panama.
| | - M Kim Fondrk
- Arizona State University, School of Life Sciences, Tempe, AZ 85287, USA; University of California, Davis, Department of Entomology and Nematology, Shields Avenue, Davis, CA 95616-5270, USA.
| | - Robert E Page
- Arizona State University, School of Life Sciences, Tempe, AZ 85287, USA.
| | - Gro V Amdam
- Arizona State University, School of Life Sciences, Tempe, AZ 85287, USA; Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, Aas 1432, Norway.
| |
Collapse
|
37
|
Korczyńska J, Szczuka A, Symonowicz B, Wnuk A, Anna GS, Mazurkiewicz PJ, Studnicki M, Godzińska EJ. The effects of age and past and present behavioral specialization on behavior of workers of the red wood ant Formica polyctena Först. during nestmate reunion tests. Behav Processes 2014; 107:29-41. [DOI: 10.1016/j.beproc.2014.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 11/26/2022]
|
38
|
Welch M, Lister R. Epigenomics and the control of fate, form and function in social insects. CURRENT OPINION IN INSECT SCIENCE 2014; 1:31-38. [PMID: 32846727 DOI: 10.1016/j.cois.2014.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 06/11/2023]
Abstract
Phenotypic plasticity is central to the success of social insects. The ability to form functionally and behaviourally diverse phenotypes from a common genome enables synthesis of highly specialised castes that carry out unique roles essential for colony survival. There is accumulating evidence that the epigenome may underlie some of this diversity in social insects. Here we discuss recent research into the role of epigenomic control of behavioural and developmental caste determination in social insects. Furthermore we suggest future strategies for unravelling the complex mechanisms by which the epigenome may shape these diverse societies.
Collapse
Affiliation(s)
- Mat Welch
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia; Centre for Integrative Bee Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
39
|
Scholl C, Wang Y, Krischke M, Mueller MJ, Amdam GV, Rössler W. Light exposure leads to reorganization of microglomeruli in the mushroom bodies and influences juvenile hormone levels in the honeybee. Dev Neurobiol 2014; 74:1141-53. [DOI: 10.1002/dneu.22195] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Christina Scholl
- Behavioral Physiology and Sociobiology (Zoology II); Biocenter; University of Würzburg; 97074 Würzburg Germany
| | - Ying Wang
- School of Life Sciences; Arizona State University; Tempe 85004 Arizona USA
| | - Markus Krischke
- Pharmaceutical Biology; Biocenter; Julius-von-Sachs-Institute for Biosciences; University of Würzburg; 97082 Würzburg Germany
| | - Martin J. Mueller
- Pharmaceutical Biology; Biocenter; Julius-von-Sachs-Institute for Biosciences; University of Würzburg; 97082 Würzburg Germany
| | - Gro V. Amdam
- School of Life Sciences; Arizona State University; Tempe 85004 Arizona USA
- Department of Chemistry; Biotechnology; and Food Science; University of Life Sciences; 1432 Aas Norway
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II); Biocenter; University of Würzburg; 97074 Würzburg Germany
| |
Collapse
|
40
|
Münch D, Kreibich CD, Amdam GV. Aging and its modulation in a long-lived worker caste of the honey bee. ACTA ACUST UNITED AC 2013; 216:1638-49. [PMID: 23596282 DOI: 10.1242/jeb.078915] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Highly social animals provide alternative aging models in which vastly different lifespan patterns are flexible, and linked to social caste. Research in these species aims to reveal how environment, including social cues, can shape the transition between short-lived and extremely long-lived phenotypes with negligible senescence. Among honey bee workers, short to intermediate lifespans are typical for summer castes, while the winter caste can live up to 10 times longer. For summer castes, experimental interventions could predictably accelerate, slow or revert functional senescence. In contrast, little is known about the partic ular conditions under which periods of negligible senescence in winter castes can be disrupted or sustained. We asked how manipulation of social environment in colonies with long-lived winter bees might alter the pace of functional senescence, measured as learning performance, as well as of cellular senescence, measured as lipofuscin accumulation. We show that behavioral senescence becomes rapidly detectable when the winter state is disrupted, and changes in social task behaviors and social environment (brood) are induced. Likewise, we found that cellular senescence was induced by such social intervention. However, cellular senescence showed marked regional differences, suggesting that particular brain regions age slower than others. Finally, by preventing post-winter colonies from brood rearing, behavioral senescence became undetectable, even after transition to the usually short-lived phenotypes had occurred. We envision that social regulation of negligible functional senescence and highly dynamic accumulation of a universal symptom of cellular aging (lipofuscin) offers rewarding perspectives to target proximate mechanisms of slowed aging.
Collapse
Affiliation(s)
- Daniel Münch
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway.
| | | | | |
Collapse
|
41
|
Kwapich CL, Tschinkel WR. Demography, demand, death, and the seasonal allocation of labor in the Florida harvester ant (Pogonomyrmex badius). Behav Ecol Sociobiol 2013. [DOI: 10.1007/s00265-013-1611-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
42
|
Khoury DS, Barron AB, Myerscough MR. Modelling food and population dynamics in honey bee colonies. PLoS One 2013; 8:e59084. [PMID: 23667418 PMCID: PMC3647073 DOI: 10.1371/journal.pone.0059084] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/11/2013] [Indexed: 11/18/2022] Open
Abstract
Honey bees (Apis mellifera) are increasingly in demand as pollinators for various key agricultural food crops, but globally honey bee populations are in decline, and honey bee colony failure rates have increased. This scenario highlights a need to understand the conditions in which colonies flourish and in which colonies fail. To aid this investigation we present a compartment model of bee population dynamics to explore how food availability and bee death rates interact to determine colony growth and development. Our model uses simple differential equations to represent the transitions of eggs laid by the queen to brood, then hive bees and finally forager bees, and the process of social inhibition that regulates the rate at which hive bees begin to forage. We assume that food availability can influence both the number of brood successfully reared to adulthood and the rate at which bees transition from hive duties to foraging. The model predicts complex interactions between food availability and forager death rates in shaping colony fate. Low death rates and high food availability results in stable bee populations at equilibrium (with population size strongly determined by forager death rate) but consistently increasing food reserves. At higher death rates food stores in a colony settle at a finite equilibrium reflecting the balance of food collection and food use. When forager death rates exceed a critical threshold the colony fails but residual food remains. Our model presents a simple mathematical framework for exploring the interactions of food and forager mortality on colony fate, and provides the mathematical basis for more involved simulation models of hive performance.
Collapse
Affiliation(s)
- David S. Khoury
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew B. Barron
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Mary R. Myerscough
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Mathematical Biology, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
43
|
Oostindjer M, Amdam GV. Systems integrity in health and aging - an animal model approach. LONGEVITY & HEALTHSPAN 2013; 2:2. [PMID: 24472488 PMCID: PMC3922947 DOI: 10.1186/2046-2395-2-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/09/2012] [Indexed: 11/21/2022]
Abstract
Human lifespan is positively correlated with childhood intelligence, as measured by psychometric (IQ) tests. The strength of this correlation is similar to the negative effect that smoking has on the life course. This result suggests that people who perform well on psychometric tests in childhood may remain healthier and live longer. The correlation, however, is debated: is it caused exclusively by social-environmental factors or could it also have a biological component? Biological traits of systems integrity that might result in correlations between brain function and lifespan have been suggested but are not well-established, and it is questioned what useful knowledge can come from understanding such mechanisms. In a recent study, we found a positive correlation between brain function and longevity in honey bees. Honey bees are highly social, but relevant social-environmental factors that contribute to cognition-survival correlations in humans are largely absent from insect colonies. Our results, therefore, suggest a biological explanation for the correlation in the bee. Here, we argue that individual differences in stress handling (coping) mechanisms, which both affect the bees' performance in tests of brain function and their survival could be a trait of systems integrity. Individual differences in coping are much studied in vertebrates, and several species provide attractive models. Here, we discuss how pigs are an interesting model for studying behavioural, physiological and molecular mechanisms that are recruited during stress and that can drive correlations between health, cognition and longevity traits. By revealing biological factors that make individuals susceptible to stress, it might be possible to alleviate health and longevity disparities in people.
Collapse
Affiliation(s)
- Marije Oostindjer
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432, Aas, Norway
| | - Gro V Amdam
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432, Aas, Norway
- School of Life Sciences, Arizona State University, PO Box 874501, 85287, Tempe, AZ, USA
| |
Collapse
|
44
|
|
45
|
Effects of Flight on Gene Expression and Aging in the Honey Bee Brain and Flight Muscle. INSECTS 2012; 4:9-30. [PMID: 26466793 PMCID: PMC4553427 DOI: 10.3390/insects4010009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/12/2012] [Accepted: 12/04/2012] [Indexed: 01/13/2023]
Abstract
Honey bees move through a series of in-hive tasks (e.g., “nursing”) to outside tasks (e.g., “foraging”) that are coincident with physiological changes and higher levels of metabolic activity. Social context can cause worker bees to speed up or slow down this process, and foragers may revert back to their earlier in-hive tasks accompanied by reversion to earlier physiological states. To investigate the effects of flight, behavioral state and age on gene expression, we used whole-genome microarrays and real-time PCR. Brain tissue and flight muscle exhibited different patterns of expression during behavioral transitions, with expression patterns in the brain reflecting both age and behavior, and expression patterns in flight muscle being primarily determined by age. Our data suggest that the transition from behaviors requiring little to no flight (nursing) to those requiring prolonged flight bouts (foraging), rather than the amount of previous flight per se, has a major effect on gene expression. Following behavioral reversion there was a partial reversion in gene expression but some aspects of forager expression patterns, such as those for genes involved in immune function, remained. Combined with our real-time PCR data, these data suggest an epigenetic control and energy balance role in honey bee functional senescence.
Collapse
|
46
|
Herb BR, Wolschin F, Hansen KD, Aryee MJ, Langmead B, Irizarry R, Amdam GV, Feinberg AP. Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat Neurosci 2012; 15:1371-3. [PMID: 22983211 PMCID: PMC3518384 DOI: 10.1038/nn.3218] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/20/2012] [Indexed: 12/12/2022]
Abstract
In honeybee societies, distinct caste phenotypes are created from the same genotype, suggesting a role for epigenetics in deriving these behaviorally different phenotypes. We found no differences in DNA methylation between irreversible worker and queen castes, but substantial differences between nurses and forager subcastes. Reverting foragers back to nurses reestablished methylation levels for a majority of genes and provides, to the best of our knowledge, the first evidence in any organism of reversible epigenetic changes associated with behavior.
Collapse
Affiliation(s)
- Brian R. Herb
- Center for Epigenetics, Johns Hopkins University School of Medicine
- Department of Medicine, Johns Hopkins University School of Medicine
| | - Florian Wolschin
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences
- School of Life Science, Arizona State University
| | - Kasper D. Hansen
- Center for Epigenetics, Johns Hopkins University School of Medicine
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| | - Martin J. Aryee
- Center for Epigenetics, Johns Hopkins University School of Medicine
- Department of Oncology, Johns Hopkins University School of Medicine
| | - Ben Langmead
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| | - Rafael Irizarry
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| | - Gro V. Amdam
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences
- School of Life Science, Arizona State University
| | - Andrew P. Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine
- Department of Medicine, Johns Hopkins University School of Medicine
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
- Molecular Biology & Genetics, Johns Hopkins University School of Medicine
| |
Collapse
|
47
|
Nagari M, Bloch G. The involvement of the antennae in mediating the brood influence on circadian rhythms in "nurse" honey bee (Apis mellifera) workers. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1096-1103. [PMID: 22641119 DOI: 10.1016/j.jinsphys.2012.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 05/06/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
Age-related division of labor in honey bees is associated with plasticity in circadian rhythms. Forager bees that are typically older than 3 weeks of age show strong behavioral and molecular circadian rhythms with higher activity during the day. Younger bees that typically care for ("nurse") the brood are active around the clock with similar brain clock gene levels throughout the day. However, nurses that are caged on brood-less combs inside or outside the hive show robust circadian rhythms with higher activity during the day, suggesting that direct contact with the brood mediates the plasticity in the circadian system. The nature of the brood signals affecting the workers' circadian system and the modalities by which they are detected are unknown. Given that the antennae are pivotal sensory organs in bees, we hypothesized that they are involved in mediating the brood influence on the plasticity in circadian rhythms. The flagella of the antennae are densely covered with diverse sensory structures able to detect a wide range of signals. To test our hypothesis, we removed the flagella of nurses and observed their behavior in isolation and in free-foraging colonies. We found that individually-isolated flagella-less bees under constant laboratory conditions show robust circadian rhythms in locomotor activity. In observation hives, flagella-less bees cared for the brood, but were more active during the day. By contrast, sham-treated bees were active around the clock as typical of nurses. Detailed video recordings showed that the brood-tending behavior of flagella-less and sham-treated bees is similar. These observations suggest that the difference in the patterns of brood care activity is not because the flagella-less bees did not contact the brood. Our results suggest that nurses are able to find the brood in the dark environment of the hive without their flagella, perhaps by using other sensory organs. The higher activity of flagella-less bees during the day further suggests that the flagella are involved in mediating the brood signals modulating plasticity in the circadian system.
Collapse
Affiliation(s)
- Moshe Nagari
- The Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
48
|
Age-related learning deficits can be reversible in honeybees Apis mellifera. Exp Gerontol 2012; 47:764-72. [PMID: 22626973 DOI: 10.1016/j.exger.2012.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 01/12/2023]
Abstract
Many animals are characterized by declining brain function at advanced ages, including honeybees (Apis mellifera). Variation in honeybee social development, moreover, results in individual differences in the progression of aging that may be accelerated, delayed, and sometimes reversed by changes in behavior. Here, we combine manipulations of social development with a measurement of sensory sensitivity, Pavlovian (associative) learning, and a proteomic technique to study the brain of aged honeybees. First, we confirm that sensory sensitivity can remain intact during aging, and that age-associated learning deficits are specific to bees that forage, a behavior typically expressed after a period of nursing activity. These initial data go beyond previous findings by showing how foragers age in social groups of different age compositions and sizes. Thereafter, we establish that learning ability can recover in aged foragers that revert to nursing tasks. Finally, we use liquid chromatography coupled to tandem mass spectrometry (LC-MS(2)) to describe proteomic differences between central brains, from reverted former foragers that varied in recovery of learning performance, and from nurse bees that varied in learning ability but never foraged. We find that recovery is positively associated with levels of stress response/cellular maintenance proteins in the central brain, while variation in learning before aging is negatively associated with the amounts of metabolic enzymes in the brain tissue. Our work provides the strongest evidence, thus far, for reversibility of learning deficits in aged honeybees, and indicates that recovery-related brain plasticity is connected to cellular stress resilience, maintenance and repair processes.
Collapse
|
49
|
Khoury DS, Myerscough MR, Barron AB. A quantitative model of honey bee colony population dynamics. PLoS One 2011; 6:e18491. [PMID: 21533156 PMCID: PMC3078911 DOI: 10.1371/journal.pone.0018491] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 03/09/2011] [Indexed: 11/19/2022] Open
Abstract
Since 2006 the rate of honey bee colony failure has increased significantly. As an aid to testing hypotheses for the causes of colony failure we have developed a compartment model of honey bee colony population dynamics to explore the impact of different death rates of forager bees on colony growth and development. The model predicts a critical threshold forager death rate beneath which colonies regulate a stable population size. If death rates are sustained higher than this threshold rapid population decline is predicted and colony failure is inevitable. The model also predicts that high forager death rates draw hive bees into the foraging population at much younger ages than normal, which acts to accelerate colony failure. The model suggests that colony failure can be understood in terms of observed principles of honey bee population dynamics, and provides a theoretical framework for experimental investigation of the problem.
Collapse
Affiliation(s)
- David S. Khoury
- School of Mathematics and Statistics, The
University of Sydney, Sydney, New South Wales, Australia
| | - Mary R. Myerscough
- School of Mathematics and Statistics, The
University of Sydney, Sydney, New South Wales, Australia
- Centre for Mathematical Biology, The
University of Sydney, Sydney, New South Wales, Australia
| | - Andrew B. Barron
- Department of Biology, Macquarie University,
Sydney, New South Wales, Australia
| |
Collapse
|
50
|
Abstract
Positive social contact is an important factor in healthy aging, but our understanding of how social interactions influence senescence is incomplete. As life expectancy continues to increase because of reduced death rates among elderly, the beneficial role of social relationships is emerging as a cross-cutting theme in research on aging and healthspan. There is a need to improve knowledge on how behavior shapes, and is shaped by, the social environment, as well as needs to identify and study biological mechanisms that can translate differences in the social aspects of behavioral efforts, relationships, and stress reactivity (the general physiological and behavioral response-pattern to harmful, dangerous or unpleasant situations) into variation in aging. Honey bees (Apis mellifera) provide a genetic model in sociobiology, behavioral neuroscience, and gerontology that is uniquely sensitive to social exchange. Different behavioral contact between these social insects can shorten or extend lifespan more than 10-fold, and some aspects of their senescence are reversed by social cues that trigger aged individuals to express youthful repertoires of behavior. Here, I summarize how variation in social interactions contributes to this plasticity of aging and explain how beneficial and detrimental roles of social relationships can be traced from environmental and biological effects on honey bee physiology and behavior, to the expression of recovery-related plasticity, stress reactivity, and survival during old age. This system provides intriguing opportunities for research on aging.
Collapse
Affiliation(s)
- Gro V Amdam
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA.
| |
Collapse
|