1
|
Pike B, Zhao J, Hicks JA, Wang F, Hagen R, Liu HC, Odle J, Lin X. Intestinal Carnitine Status and Fatty Acid Oxidation in Response to Clofibrate and Medium-Chain Triglyceride Supplementation in Newborn Pigs. Int J Mol Sci 2023; 24:ijms24076066. [PMID: 37047049 PMCID: PMC10094207 DOI: 10.3390/ijms24076066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
To investigate the role of peroxisome proliferator-activated receptor alpha (PPARα) in carnitine status and intestinal fatty acid oxidation in neonates, a total of 72 suckled newborn piglets were assigned into 8 dietary treatments following a 2 (±0.35% clofibrate) × 4 (diets with: succinate+glycerol (Succ), tri-valerate (TC5), tri-hexanoate (TC6), or tri-2-methylpentanoate (TMPA)) factorial design. All pigs received experimental milk diets with isocaloric energy for 5 days. Carnitine statuses were evaluated, and fatty acid oxidation was measured in vitro using [1-14C]-palmitic acid (1 mM) as a substrate in absence or presence of L659699 (1.6 µM), iodoacetamide (50 µM), and carnitine (1 mM). Clofibrate increased concentrations of free (41%) and/or acyl-carnitine (44% and 15%) in liver and plasma but had no effects in the intestine. The effects on carnitine status were associated with the expression of genes involved in carnitine biosynthesis, absorption, and transportation. TC5 and TMPA stimulated the increased fatty acid oxidation rate induced by clofibrate, while TC6 had no effect on the increased fatty acid oxidation induced by clofibrate (p > 0.05). These results suggest that dietary clofibrate improved carnitine status and increased fatty acid oxidation. Propionyl-CoA, generated from TC5 and TMPA, could stimulate the increased fatty acid oxidation rate induced by clofibrate as anaplerotic carbon sources.
Collapse
Affiliation(s)
- Brandon Pike
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Jinan Zhao
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Julie A Hicks
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Feng Wang
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Rachel Hagen
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Xi Lin
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Rooney HB, O'Driscoll K, Silacci P, Bee G, O'Doherty JV, Lawlor PG. Effect of dietary L-carnitine supplementation to sows during gestation and/or lactation on sow productivity, muscle maturation and lifetime growth in progeny from large litters. Br J Nutr 2020; 124:1-36. [PMID: 32127055 DOI: 10.1017/s0007114520000811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Genetic selection for increased sow prolificacy has resulted in decreased mean piglet birth-weight. This study aimed to investigate the effect of L-carnitine (CAR) supplementation to sows during gestation and/or lactation on sow productivity, semitendinosus muscle (STM) maturity, and lifetime growth in progeny. Sixty-four sows were randomly assigned to one of four dietary treatments at breeding until weaning; CONTROL (0mg CAR/d), GEST (125mg CAR/d during gestation), LACT (250mg CAR/d during lactation), and BOTH (125mg CAR/d during gestation & 250mg CAR/d during lactation). The total number of piglets born per litter was greater for sows supplemented with CAR during gestation (17.3 v 15.8 ± 0.52; P<0.05). Piglet birth-weight (total and live) was unaffected by sow treatment (P>0.05). Total myofibre number (P=0.08) and the expression level of selected myosin heavy chain genes in the STM (P<0.05) was greater in piglets of sows supplemented with CAR during gestation. Pigs from sows supplemented with CAR during gestation had lighter carcasses at slaughter than pigs from non-supplemented sows during gestation (83.8 v 86.7 ± 0.86kg; P<0.05). In conclusion, CAR supplementation during gestation increased litter size at birth without compromising piglet birth-weight. Results also showed that the STM of piglets born to sows supplemented with CAR during gestation was more developed at birth. However, carcass weight at slaughter was reduced in progeny of sows supplemented with CAR during gestation. The CAR supplementation strategy applied during gestation in this study could be utilized by commercial pork producers to increase sow litter size and improve offspring muscle development.
Collapse
Affiliation(s)
- Hazel B Rooney
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 W6F6, Ireland
| | - K O'Driscoll
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| | - P Silacci
- Institute for Livestock Sciences, Agroscope, Tioleyre, 1725 Posieux, Switzerland
| | - G Bee
- Institute for Livestock Sciences, Agroscope, Tioleyre, 1725 Posieux, Switzerland
| | - J V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 W6F6, Ireland
| | - P G Lawlor
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland
| |
Collapse
|
3
|
Lin X, Pike B, Zhao J, Fan Y, Zhu Y, Zhang Y, Wang F, Odle J. Effects of Dietary Anaplerotic and Ketogenic Energy Sources on Renal Fatty Acid Oxidation Induced by Clofibrate in Suckling Neonatal Pigs. Int J Mol Sci 2020; 21:ijms21030726. [PMID: 31979102 PMCID: PMC7037708 DOI: 10.3390/ijms21030726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/10/2023] Open
Abstract
Maintaining an active fatty acid metabolism is important for renal growth, development, and health. We evaluated the effects of anaplerotic and ketogenic energy sources on fatty acid oxidation during stimulation with clofibrate, a pharmacologic peroxisome proliferator-activated receptor α (PPARα) agonist. Suckling newborn pigs (n = 72) were assigned into 8 dietary treatments following a 2 × 4 factorial design: ± clofibrate (0.35%) and diets containing 5% of either (1) glycerol-succinate (GlySuc), (2) tri-valerate (TriC5), (3) tri-hexanoate (TriC6), or (4) tri-2-methylpentanoate (Tri2MPA). Pigs were housed individually and fed the iso-caloric milk replacer diets for 5 d. Renal fatty acid oxidation was measured in vitro in fresh tissue homogenates using [1-14C]-labeled palmitic acid. The oxidation was 30% greater in pig received clofibrate and 25% greater (p < 0.05) in pigs fed the TriC6 diet compared to those fed diets with GlySuc, TriC5, and Tri2MPA. Addition of carnitine also stimulated the oxidation by twofold (p < 0.05). The effects of TriC6 and carnitine on palmitic acid oxidation were not altered by clofibrate stimulation. However, renal fatty acid composition was altered by clofibrate and Tri2MPA. In conclusion, modification of anaplerosis or ketogenesis via dietary substrates had no influence on in vitro renal palmitic acid oxidation induced by PPARα activation.
Collapse
Affiliation(s)
- Xi Lin
- Correspondence: ; Tel.: +1-919-515-4014
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Rooney HB, O'Driscoll K, O'Doherty JV, Lawlor PG. Effect of l-carnitine supplementation and sugar beet pulp inclusion in gilt gestation diets on gilt live weight, lactation feed intake, and offspring growth from birth to slaughter1. J Anim Sci 2020; 97:4208-4218. [PMID: 31410445 DOI: 10.1093/jas/skz268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/08/2019] [Indexed: 01/07/2023] Open
Abstract
This study evaluated the effects of l-carnitine (CAR) and sugar beet pulp (SBP) inclusion in gilt gestation diets on gilt live weight, cortisol concentration, lactation feed intake, and lifetime growth of progeny. Eighty-four pregnant gilts (Large White × Landrace) were randomly assigned to a treatment at day 38 of gestation until parturition; Control (0% SBP, 0 g CAR), CAR (0.125 g/d CAR), SBP (40% SBP), and SBP plus CAR (40% SBP, 0.125 g/d CAR). Gilts were weighed and back-fat depth was recorded on day 38, day 90, and day 108 of gestation and at weaning. Gilt saliva samples were collected pre-farrowing and fecal consistency was scored from entry to the farrowing room until day 5 post-partum. The number of piglets born (total, live, and stillborn) and individual birth weight was recorded. Piglet blood glucose concentration was measured 24 h post-partum and pigs were weighed on day 1, day 6, day 14, day 26, day 76, day 110, and day 147 of life. Carcass data were collected at slaughter. There was no interaction between CAR and SBP for any variable measured. The SBP-fed gilts were heavier on day 90 and day 108 of gestation (P < 0.05) and lost more weight during lactation (P < 0.05) than control gilts. They also had a greater fecal consistency score (P < 0.01). Total farrowing duration, piglet birth interval, and lactation feed intakes were similar between treatments (P > 0.05). The number of piglets born (total, live, and stillborn) and piglet birth weight was likewise similar between treatments (P > 0.05). Piglets from CAR-fed gilts had lower blood glucose concentrations (P < 0.01), while piglets from SBP-fed gilts had greater blood glucose concentrations (P < 0.01). Piglets from CAR gilts had a lower average daily gain between day 1 and day 6 (P < 0.05) and day 14 and day 26 post-partum (P < 0.05) compared to piglets from control gilts. However, CAR gilts weaned a greater number of pigs (P = 0.07). Live weight and carcass weight at slaughter were heavier for pigs from CAR gilts (P < 0.05) and from SBP gilts (P < 0.05). Pigs from CAR gilts (P < 0.01) and SBP gilts (P < 0.05) had increased carcass muscle depth. In conclusion, no benefit was found from the combined feeding of CAR and SBP. Fed separately, CAR increased the live weight, carcass weight, and muscle depth of progeny at slaughter. Feeding a high SBP diet increased fecal consistency in gilts pre-farrowing and increased live weight and carcass muscle depth of progeny.
Collapse
Affiliation(s)
- Hazel B Rooney
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland, and.,School of Agriculture and Food Science, University College Dublin, Belfield, Co. Dublin, Ireland
| | - Keelin O'Driscoll
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland, and
| | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, Co. Dublin, Ireland
| | - Peadar G Lawlor
- Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland, and
| |
Collapse
|
5
|
Ringseis R, Keller J, Eder K. Basic mechanisms of the regulation of L-carnitine status in monogastrics and efficacy of L-carnitine as a feed additive in pigs and poultry. J Anim Physiol Anim Nutr (Berl) 2018; 102:1686-1719. [PMID: 29992642 DOI: 10.1111/jpn.12959] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022]
Abstract
A great number of studies have investigated the potential of L-carnitine as feed additive to improve performance of different monogastric and ruminant livestock species, with, however, discrepant outcomes. In order to understand the reasons for these discrepant outcomes, it is important to consider the determinants of L-carnitine status and how L-carnitine status is regulated in the animal's body. While it is a long-known fact that L-carnitine is endogenously biosynthesized in certain tissues, it was only recently recognized that critical determinants of L-carnitine status, such as intestinal L-carnitine absorption, tissue L-carnitine uptake, endogenous L-carnitine synthesis and renal L-carnitine reabsorption, are regulated by specific nutrient sensing nuclear receptors. This review aims to give a more in-depth understanding of the basic mechanisms of the regulation of L-carnitine status in monogastrics taking into account the most recent evidence on nutrient sensing nuclear receptors and evaluates the efficacy of L-carnitine as feed additive in monogastric livestock by providing an up-to-date overview about studies with L-carnitine supplementation in pigs and poultry.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Janine Keller
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Gießen, Gießen, Germany
| |
Collapse
|
6
|
Potential therapeutic role of L-carnitine in skeletal muscle oxidative stress and atrophy conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:646171. [PMID: 25838869 PMCID: PMC4369953 DOI: 10.1155/2015/646171] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/23/2015] [Indexed: 12/03/2022]
Abstract
The targeting of nutraceutical treatment to skeletal muscle damage is an emerging area of research, driven by the need for new therapies for a range of muscle-associated diseases. L-Carnitine (CARN) is an essential nutrient and plays a key role in mitochondrial β-oxidation and in the ubiquitin-proteasome system regulation. As a dietary supplement to improve athletic performance, CARN has been studied for its potential to enhance β-oxidation. However, CARN effects on myogenesis, mitochondrial activity, and hypertrophy process are not completely elucidated. This in vitro study aims to investigate CARN role on skeletal muscle remodeling, differentiation process, and myotubes formation. We analyzed muscle differentiation and morphological features in C2C12 myoblasts exposed to 5 mM CARN. Our results showed that CARN was able to accelerate C2C12 myotubes formation and induce morphological changes, characterizing the start of hypertrophy process. In addition, CARN improved AKT activation and downstream cellular signaling pathways involved in skeletal muscle atrophy process prevention. Also, CARN positively regulated the pathways involved in oxidative stress defense. In this work, we provide an interesting novel mechanism of the potential therapeutic use of CARN to treat pathological conditions characterized by skeletal muscle morphological and functional impairment, oxidative stress production, and atrophy process in aging.
Collapse
|
7
|
Keller J, Ringseis R, Eder K. Supplemental carnitine affects the microRNA expression profile in skeletal muscle of obese Zucker rats. BMC Genomics 2014; 15:512. [PMID: 24952657 PMCID: PMC4078242 DOI: 10.1186/1471-2164-15-512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 06/17/2014] [Indexed: 11/16/2022] Open
Abstract
Background In the past, numerous studies revealed that supplementation with carnitine has multiple effects on performance characteristics and gene expression in livestock and model animals. The molecular mechanisms underlying these observations are still largely unknown. Increasing evidence suggests that microRNAs (miRNAs), a class of small non-coding RNA molecules, play an important role in post-transcriptional regulation of gene expression and thereby influencing several physiological and pathological processes. Based on these findings, the aim of the present study was to investigate the influence of carnitine supplementation on the miRNA expression profile in skeletal muscle of obese Zucker rats using miRNA microarray analysis. Results Obese Zucker rats supplemented with carnitine had higher concentrations of total carnitine in plasma and muscle than obese control rats (P < 0.05). miRNA expression profiling in skeletal muscle revealed a subset of 152 miRNAs out of the total number of miRNAs analysed (259) were identified to be differentially regulated (adjusted P-value < 0.05) by carnitine supplementation. Compared to the obese control group, 111 miRNAs were up-regulated and 41 down-regulated by carnitine supplementation (adjusted P-value < 0.05). 14 of these miRNAs showed a log2 ratio ≥ 0.5 and 7 miRNAs showed a log2 ratio ≤ −0.5 (adjusted P-value < 0.05). After confirmation by qRT-PCR, 11 miRNAs were found to be up-regulated and 6 miRNAs were down-regulated by carnitine supplementation (P < 0.05). Furthermore, a total of 1,446 target genes within the validated miRNAs were revealed using combined three bioinformatic algorithms. Analysis of Gene Ontology (GO) categories and KEGG pathways of the predicted targets revealed that carnitine supplementation regulates miRNAs that target a large set of genes involved in protein-localization and -transport, regulation of transcription and RNA metabolic processes, as well as genes involved in several signal transduction pathways, like ubiquitin-mediated proteolysis and longterm depression, are targeted by the miRNAs regulated by carnitine supplementation. Conclusion The present study shows for the first time that supplementation of carnitine affects a large set of miRNAs in skeletal muscle of obese Zucker rats suggesting a novel mechanism through which carnitine exerts its multiple effects on gene expression, which were observed during the past. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-512) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janine Keller
- Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany.
| | | | | |
Collapse
|
8
|
Lapointe J. Mitochondria as promising targets for nutritional interventions aiming to improve performance and longevity of sows. J Anim Physiol Anim Nutr (Berl) 2014; 98:809-21. [DOI: 10.1111/jpn.12160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/05/2013] [Indexed: 12/11/2022]
Affiliation(s)
- J. Lapointe
- Dairy and Swine R & D Centre; Agriculture and Agri-Food Canada; Sherbrooke QC Canada
| |
Collapse
|
9
|
Supplementation with l-carnitine downregulates genes of the ubiquitin proteasome system in the skeletal muscle and liver of piglets. Animal 2013; 6:70-8. [PMID: 22436156 DOI: 10.1017/s1751731111001327] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Supplementation of carnitine has been shown to improve performance characteristics such as protein accretion in growing pigs. The molecular mechanisms underlying this phenomenon are largely unknown. Based on recent results from DNA microchip analysis, we hypothesized that carnitine supplementation leads to a downregulation of genes of the ubiquitin proteasome system (UPS). The UPS is the most important system for protein breakdown in tissues, which in turn could be an explanation for increased protein accretion. To test this hypothesis, we fed sixteen male, four-week-old piglets either a control diet or the same diet supplemented with carnitine and determined the expression of several genes involved in the UPS in the liver and skeletal muscle. To further determine whether the effects of carnitine on the expression of genes of the UPS are mediated directly or indirectly, we also investigated the effect of carnitine on the expression of genes of the UPS in cultured C2C12 myotubes and HepG2 liver cells. In the liver of piglets fed the carnitine-supplemented diet, the relative mRNA levels of atrogin-1, E214k and Psma1 were lower than in those of the control piglets (P < 0.05). In skeletal muscle, the relative mRNA levels of atrogin-1, MuRF1, E214k, Psma1 and ubiquitin were lower in piglets fed the carnitine-supplemented diet than that in control piglets (P < 0.05). Incubating C2C12 myotubes and HepG2 liver cells with increasing concentrations of carnitine had no effect on basal and/or hydrocortisone-stimulated mRNA levels of genes of the UPS. In conclusion, this study shows that dietary carnitine decreases the transcript levels of several genes involved in the UPS in skeletal muscle and liver of piglets, whereas carnitine has no effect on the transcript levels of these genes in cultivated HepG2 liver cells and C2C12 myotubes. These data suggest that the inhibitory effect of carnitine on the expression of genes of the UPS is mediated indirectly, probably via modulating the release of inhibitors of the UPS such as IGF-1. The inhibitory effect of carnitine on the expression of genes of the UPS might explain, at least partially, the increased protein accretion in piglets supplemented with carnitine.
Collapse
|
10
|
Ringseis R, Keller J, Eder K. Mechanisms underlying the anti-wasting effect of l-carnitine supplementation under pathologic conditions: evidence from experimental and clinical studies. Eur J Nutr 2013; 52:1421-42. [DOI: 10.1007/s00394-013-0511-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/03/2013] [Indexed: 01/17/2023]
|
11
|
Keller J, Couturier A, Haferkamp M, Most E, Eder K. Supplementation of carnitine leads to an activation of the IGF-1/PI3K/Akt signalling pathway and down regulates the E3 ligase MuRF1 in skeletal muscle of rats. Nutr Metab (Lond) 2013; 10:28. [PMID: 23497226 PMCID: PMC3631133 DOI: 10.1186/1743-7075-10-28] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/07/2013] [Indexed: 01/08/2023] Open
Abstract
Background Recently, it has been shown that carnitine down-regulates genes involved in the ubiquitin-proteasome system (UPS) in muscle of pigs and rats. The mechanisms underlying this observation are yet unknown. Based on the previous finding that carnitine increases plasma IGF-1 concentration, we investigated the hypothesis that carnitine down-regulates genes of the UPS by modulation of the of the IGF-1/PI3K/Akt signalling pathway which is an important regulator of UPS activity in muscle. Methods Male Sprague–Dawley rats, aged four weeks, were fed either a control diet with a low native carnitine concentration or the same diet supplemented with carnitine (1250 mg/kg diet) for four weeks. Components of the UPS and IGF-1/PI3K/Akt signalling pathway in skeletal muscle were examined. Results Rats fed the diet supplemented with carnitine had lower mRNA and protein levels of MuRF1, the most important E3 ubiquitin ligase in muscle, decreased concentrations of ubiquitin-protein conjugates in skeletal muscle and higher IGF-1 concentration in plasma than control rats (P < 0.05). Moreover, in skeletal muscle of rats fed the diet supplemented with carnitine there was an activation of the PI3K/Akt signalling pathway, as indicated by increased protein levels of phosphorylated (activated) Akt1 (P < 0.05). Conclusion The present study shows that supplementation of carnitine markedly decreases the expression of MuRF1 and concentrations of ubiquitinated proteins in skeletal muscle of rats, indicating a diminished degradation of myofibrillar proteins by the UPS. The study moreover shows that supplementation of carnitine leads to an activation of the IGF-1/PI3K/Akt signalling pathway which in turn might contribute to the observed down-regulation of MuRF1 and muscle protein ubiquitination.
Collapse
Affiliation(s)
- Janine Keller
- Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany.
| | | | | | | | | |
Collapse
|
12
|
Lösel D, Kalbe C, Rehfeldt C. L-Carnitine supplementation during suckling intensifies the early postnatal skeletal myofiber formation in piglets of low birth weight1. J Anim Sci 2009; 87:2216-26. [DOI: 10.2527/jas.2008-1662] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
13
|
Abstract
In recent years, l-carnitine has been used increasingly as a supplement in livestock animals. The present review gives an overview of the effects of dietary l-carnitine supplementation on the reproductive performance of sows. Results concerning the effect of l-carnitine supplementation during pregnancy on litter sizes are controversial. There are some studies reporting an increased number of piglets born alive per litter, while others could not find such an effect. In contrast, most studies performed show consistently that l-carnitine supplementation to a sow diet low in native carnitine during gestation increases piglet and litter weights at birth and enhances growth of litters during the suckling period. Biochemical mechanisms underlying the favourable effect of carnitine on intra-uterine growth have not been fully elucidated. There is, however, some evidence that carnitine influences the insulin-like growth factor-axis in sows and leads to greater placentae, which in turn improves intra-uterine nutrition, and stimulates oxidation of glucose in the fetuses. These effects may, at least in part, be responsible for higher birth weights of piglets. The stimulating effect of carnitine on growth of the litters might be due to an improved suckling behaviour of piglets born to l-carnitine-supplemented sows, causing the sows' milk production to rise. In conclusion, recent studies have clearly shown that dietary l-carnitine supplementation increases the reproductive performance of sows. These findings suggest that endogenous de novo synthesis of carnitine is insufficient to meet the metabolic requirement of sows during gestation.
Collapse
|