1
|
Zhong Y, Zeng W, Chen Y, Zhu X. The effect of lipid metabolism on cuproptosis-inducing cancer therapy. Biomed Pharmacother 2024; 172:116247. [PMID: 38330710 DOI: 10.1016/j.biopha.2024.116247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Cuproptosis provides a new therapeutic strategy for cancer treatment and is thought to have broad clinical application prospects. Nevertheless, some oncological clinical trials have yet to demonstrate favorable outcomes, highlighting the need for further research into the molecular mechanisms underlying cuproptosis in tumors. Cuproptosis primarily hinges on the intracellular accumulation of copper, with lipid metabolism exerting a profound influence on its course. The interaction between copper metabolism and lipid metabolism is closely related to cuproptosis. Copper imbalance can affect mitochondrial respiration and lipid metabolism changes, while lipid accumulation can promote copper uptake and absorption, and inhibit cuproptosis induced by copper. Anomalies in lipid metabolism can disrupt copper homeostasis within cells, potentially triggering cuproptosis. The interaction between cuproptosis and lipid metabolism regulates the occurrence, development, metastasis, chemotherapy drug resistance, and tumor immunity of cancer. Cuproptosis is a promising new target for cancer treatment. However, the influence of lipid metabolism and other factors should be taken into consideration. This review provides a brief overview of the characteristics of the interaction between cuproptosis and lipid metabolism in cancer and analyses potential strategies of applying cuproptosis for cancer treatment.
Collapse
Affiliation(s)
- Yue Zhong
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Wei Zeng
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yongbo Chen
- Rehabilitation College of Gannan Medical University, Ganzhou 341000, China
| | - Xiuzhi Zhu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
2
|
Huo Y, Ma F, Li L, Li Y, Zhong G, Liao J, Han Q, Li Y, Pan J, Hu L, Zhang H, Guo J, Tang Z. Effect of Copper Exposure on the Cholesterol Metabolism in Broiler Liver. Biol Trace Elem Res 2023; 201:5747-5755. [PMID: 36929115 DOI: 10.1007/s12011-023-03609-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Copper (Cu) is a kind of widely used dietary supplement in poultry production, and a common environmental pollutant at the same time. Excess Cu exposure has been reported to accumulate in the liver and induce cytotoxicity, but the effect of Cu toxicity on hepatic cholesterol metabolism is still uncertain. Herein, we aimed to reveal the effect of excess Cu on the liver and primary hepatocytes of broilers at various concentrations. We found that 110 mg/kg Cu supplement remarkably increased blood cholesterol levels by detecting serum TC, LDL-C, and HDL-C in the broilers, while there was no significant difference in 220 and 330 mg/kg Cu supplements. In addition, high Cu exposure resulted in severe hepatic steatosis and hepatic cord derangement in the broilers. Oil red O staining of primary hepatocytes showed that Cu treatment caused intracellular neutral lipid accumulation. However, the hepatic TC content indicated a downward trend in both liver tissues and hepatocytes after Cu exposure. Furthermore, the expression of cholesterol metabolism-related indicators (SREBP2, HMGCR, LDLR, and CYP7A1) was notably decreased in the Cu-treated groups. While the expression of the key enzyme of cholesterol esterification (ACAT2) did not change significantly. Taken together, our findings preliminarily revealed excess Cu-induced hepatic cholesterol metabolism dysfunction, providing a deeper understanding of the molecular mechanisms of Cu-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yihui Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Lei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Yuanxu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
3
|
Liu J, Lin S, Wu S, Lin Q, Fan Z, Wang C, Ye D, Guo P. Dietary supplementation with nano-composite of copper and carbon on growth performance, immunity, and antioxidant ability of yellow-feathered broilers. J Anim Sci 2023; 101:skad362. [PMID: 37899715 PMCID: PMC10630021 DOI: 10.1093/jas/skad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023] Open
Abstract
New feed additives as antibiotics substitutes are in urgent need in poultry production. Nano-composite of copper and carbon (NCCC), a novel copper donor with stronger antibacterial properties, is expected to promote broiler growth and diminish the negative effects of excess copper (Cu). Hence, the purpose of this study is to investigate the effects of NCCC on growth performance, immunity, and antioxidant ability of yellow-feathered broilers. A total of 240 1-d-old male yellow-feathered broilers were selected and randomly divided into four groups, with five replications per group and 12 birds per replication. The CON group was fed corn-soybean basal diets, while the N50, N100, and N200 groups were supplemented with 50, 100, and 200 mg/kg of NCCC in basal diets, respectively. The trial lasted for 63 d. The results demonstrated that only 200 mg/kg NCCC addition significantly increased the Cu content in serum and feces, and liver Cu content linearly increased with NCCC dosage increment (P < 0.05). Meanwhile, NCCC supplementation did not alter the growth performance, slaughter performance, immune organ indexes, and liver antioxidant ability of broilers (P > 0.05), but optimized the serum cytokine pattern by elevating the level of serum IL-10 (P < 0.05), and there were linear and quadratic increases in serum IL-4 with NCCC dosage increment (P < 0.05). On the whole, in spite of no impact on growth performance, 50 mg/kg NCCC was optimal to supplement in chicken diets due to the rise of serum IL-10 level and no extra environmental pollution and tissue residues.
Collapse
Affiliation(s)
- Jing Liu
- Instituteof AnimalHusbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Shiying Lin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuqin Wu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingjie Lin
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zitao Fan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Changkang Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingcheng Ye
- Instituteof AnimalHusbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Pingting Guo
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Espinosa CD, Stein HH. Digestibility and metabolism of copper in diets for pigs and influence of dietary copper on growth performance, intestinal health, and overall immune status: a review. J Anim Sci Biotechnol 2021; 12:13. [PMID: 33431053 PMCID: PMC7798237 DOI: 10.1186/s40104-020-00533-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/22/2020] [Indexed: 01/15/2023] Open
Abstract
The current contribution reviews absorption and metabolism of copper (Cu), Cu deficiency, Cu toxicity, Cu bioavailability, and effects of pharmacological levels of Cu on growth performance and intestinal health of pigs. Copper is a micro mineral involved in metabolic reactions including cellular respiration, tissue pigmentation, hemoglobin formation, and connective tissue development. Copper is mostly absorbed in the upper gastrointestinal tract, particularly in the duodenum, but some Cu is absorbed in the stomach. One way to evaluate the efficacy of sources of Cu is to measure relative bioavailability where responses include tissue concentrations of Cu, concentrations of metalloproteins, and enzymatic activity of animals fed test diets containing graded levels of Cu. The requirement for Cu by pigs is 5 to 10 mg/kg diet, however, Cu can be included at growth-promoting levels (i.e., 75 to 250 mg/kg diet) in diets for weanling and growing pigs to reduce post-weaning diarrhea and improve growth performance. The consistently observed improvement in growth performance upon Cu supplementation is likely a result of increases in lipase activity, growth hormone secretion, and expression of genes involved in post-absorptive metabolism of lipids. The growth-promoting effects of dietary Cu have also been attributed to its bacteriostatic and bactericidal properties because Cu may change bacterial populations in the intestine, and thereby reduce inflammation caused by pathogens. However, further research is needed to determine potential interactions between Cu and non-nutritive feed additives (e.g., enzymes, probiotics, phytobiotics), and the optimum quantity of Cu as well as the optimum duration of feeding supplemental Cu in diets for pigs should be further investigated. These gaps needs to be addressed to maximize inclusion of Cu in diets to improve growth performance while minimizing diseases and mortality.
Collapse
Affiliation(s)
| | - Hans H. Stein
- Department of Animal Sciences, University of Illinois, Urbana, 61801 USA
- Division of Nutritional Sciences, University of Illinois, Urbana, 61801 USA
| |
Collapse
|
5
|
Gou Z, Fan Q, Li L, Wang Y, Lin X, Cui X, Ye J, Ding F, Cheng Z, Abouelezz K, Jiang S. High dietary copper induces oxidative stress and leads to decreased egg quality and reproductive performance of Chinese Yellow broiler breeder hens. Poult Sci 2020; 100:100779. [PMID: 33518335 PMCID: PMC7936131 DOI: 10.1016/j.psj.2020.10.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/05/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
The objective of this study was to investigate the effects of dietary copper (Cu) on production, egg quality, and hatchability of Chinese Yellow broiler breeder hens and growth performance of their offspring. A total of 576 30-week-old hens were randomly allotted into 6 groups, each with 6 replicates (8 cages for each replicate with 2 birds per cage). The basal diet contained 3.50 mg/kg Cu, and the other 5 treatment diets contained 8.5, 13.5, 23.5 43.5, and 83.5 mg/kg Cu, respectively, additionally supplemented with Cu on the basal diet. The trial lasted for 15 wk. Qualified egg rate of birds fed 23.5 or 83.5 mg/kg Cu was significantly decreased (P < 0.05) compared with those given 3.5, 8.5, or 13.5 mg/kg Cu. Plasma malondialdehyde concentration showed quadratic effect (P = 0.002) which that decreased first then increased with dietary Cu increased. Highest values of Cu content and hepatic activity of Cu-ATPase occurred in hens fed 83.5 mg/kg dietary Cu with linear (P = 0.001) and quadratic (P = 0.001) effects. Shell strength and proportion on 18th day of live embryos of hens fed 13.5 mg/kg Cu were the greatest compared with other groups respectively (P < 0.05); rate of qualified eggs for hatch and hatchability of fertilized eggs of hens fed 83.5 mg/kg Cu were the least (P < 0.05). In conclusion, both inadequate (3.5 mg/kg diet) and excess (83.5 mg/kg) of dietary Cu can induce oxidative stress in hens and lead to decreased egg quality. Hatchability and growth performance of offspring were decreased when breeder hens were fed excess Cu in spite of greater hatching weight. The appropriate dietary Cu level for Chinese Yellow broiler breeder hens during the egg-laying period is 15.7 to 21.2 mg/kg (1.81-2.44 mg Cu fed per day) when based on Cu level and Cu-ATPase activity in the liver. This dietary Cu requirement is approximately doubled (∼40 mg/kg, ∼4.60 mg Cu per bird per day) for maximal response of eggshell thickness.
Collapse
|
6
|
Espinosa CD, Fry RS, Kocher ME, Stein HH. Effects of copper hydroxychloride on growth performance and abundance of genes involved in lipid metabolism of growing pigs. J Anim Sci 2020; 98:skz369. [PMID: 31901093 PMCID: PMC6978892 DOI: 10.1093/jas/skz369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/02/2020] [Indexed: 12/16/2022] Open
Abstract
An experiment was conducted to test the hypothesis that copper (Cu) hydroxychloride improves growth performance by upregulating the mRNA transcription of genes involved in lipid metabolism of pigs fed a diet based on corn, soybean meal (SBM), and distillers dried grains with solubles (DDGS). Thirty-two pigs (15.05 ± 0.98 kg) were allotted to 2 dietary treatments with 2 pigs per pen for a total of 8 replicate pens per treatment. Pigs were fed a corn-SBM-DDGS control diet that included Cu to meet the requirement. A second diet was formulated by adding 150 mg Cu/kg from copper hydroxychloride to the control diet. On the last day of the experiment, one pig per pen was sacrificed, and samples from liver, skeletal muscle, and subcutaneous adipose tissue were collected to analyze relative mRNA abundance of genes involved in lipid metabolism. Results indicated that overall ADG and G:F were greater (P < 0.05) for pigs fed the diet containing copper hydroxychloride compared with pigs fed the control diet. Pigs fed the diet supplemented with copper hydroxychloride also had increased (P < 0.05) abundance of cluster of differentiation 36 in the liver and increased (P < 0.05) abundance of fatty acid-binding protein 4 and lipoprotein lipase in subcutaneous adipose tissue. Inclusion of copper hydroxychloride also tended to increase (P < 0.10) the abundance of fatty acid-binding protein 1, peroxisome proliferator-activated receptor α, and carnitine palmitoyltransferase 1B in the liver, skeletal muscle, and subcutaneous adipose tissue, respectively. This indicates that dietary Cu may affect signaling pathways associated with lipid metabolism by improving the uptake, transport, and utilization of fatty acids. In conclusion, supplementation of copper hydroxychloride to the control diet improved growth performance and upregulated the abundance of some genes involved in postabsorptive metabolism of lipids.
Collapse
Affiliation(s)
| | | | | | - Hans H Stein
- Department of Animal Sciences, University of Illinois, Urbana
| |
Collapse
|
7
|
|
8
|
Wu X, Dai S, Hua J, Hu H, Wang S, Wen A. Influence of Dietary Copper Methionine Concentrations on Growth Performance, Digestibility of Nutrients, Serum Lipid Profiles, and Immune Defenses in Broilers. Biol Trace Elem Res 2019; 191:199-206. [PMID: 30515712 DOI: 10.1007/s12011-018-1594-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
A 42-day experiment was conducted to evaluate the influence of dietary copper (Cu) concentrations on growth performance, nutrient digestibility, and serum parameters in broilers aged from 1 to 42 days. Five hundred forty 1-day-old broilers were randomly assigned into 1 of the following 6 dietary treatments: (1) control (basal diet without supplemental Cu), (2) 15 mg/kg supplemental Cu (Cu15), (3) 30 mg/kg supplemental Cu (Cu30), (4) 60 mg/kg supplemental Cu (Cu60), (5) 120 mg/kg supplemental Cu (Cu120), and (6) 240 mg/kg supplemental Cu (Cu240), Cu as copper methionine. A 4-day metabolism trial was conducted during the last week of the experiment feeding. The results showed that dietary Cu supplementation increased the average daily gain and the average daily feed intake (P < 0.01). The feed gain ratio, however, was not affected by dietary Cu (P > 0.10). Additionally, dietary Cu supplementation increased the digestibility of fat and energy (P < 0.05). The concentration of serum cholesterol, triglycerides, and high-density lipoprotein cholesterol decreased with dietary Cu supplementation (P < 0.05). The activities of serum Cu-Zn superoxide dismutase (P < 0.05), glutathione peroxidase (P < 0.05), and ceruloplasmin (P = 0.09), on the contrary, were increased by Cu addition. For immune indexes, dietary Cu supplementation increased serum IgA and IgM (P < 0.05). In addition, the activities of serum ALT increased with increasing dietary Cu supplementation (P < 0.05). In conclusion, our data suggest that Cu supplementation can increase fat digestibility and promote growth. Additionally, dietary Cu supplementation can reduce serum cholesterol and enhance antioxidant capacity in broilers.
Collapse
Affiliation(s)
- Xuezhuang Wu
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China
| | - Sifa Dai
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China
| | - Jinling Hua
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China
| | - Hong Hu
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China
| | - Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Bengbu, 233100, China.
| |
Collapse
|
9
|
Abstract
Many metals have biological functions and play important roles in human health. Copper (Cu) is an essential metal that supports normal cellular physiology. Significant research efforts have focused on identifying the molecules and pathways involved in dietary Cu uptake in the digestive tract. The lack of an adequate in vitro model for assessing Cu transport processes in the gut has led to contradictory data and gaps in our understanding of the mechanisms involved in dietary Cu acquisition. The recent development of organoid technology has provided a tractable model system for assessing the detailed mechanistic processes involved in Cu utilization and transport in the context of nutrition. Enteroid (intestinal epithelial organoid)-based studies have identified new links between intestinal Cu metabolism and dietary fat processing. Evidence for a metabolic coupling between the dietary uptake of Cu and uptake of fat (which were previously thought to be independent) is a new and exciting finding that highlights the utility of these three-dimensional primary culture systems. This review has three goals: (a) to critically discuss the roles of key Cu transport enzymes in dietary Cu uptake; (b) to assess the use, utility, and limitations of organoid technology in research into nutritional Cu transport and Cu-based diseases; and (c) to highlight emerging connections between nutritional Cu homeostasis and fat metabolism.
Collapse
Affiliation(s)
- Hannah Pierson
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| | - Haojun Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| |
Collapse
|
10
|
Cholewińska E, Fotschki B, Juśkiewicz J, Rusinek-Prystupa E, Ognik K. The effect of copper level in the diet on the distribution,
and biological and immunological responses in a rat model. JOURNAL OF ANIMAL AND FEED SCIENCES 2018. [DOI: 10.22358/jafs/99893/2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Berwanger E, Vieira SL, Angel CR, Kindlein L, Mayer AN, Ebbing MA, Lopes M. Copper requirements of broiler breeder hens. Poult Sci 2018; 97:2785-2797. [PMID: 29767800 DOI: 10.3382/ps/pex437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One-hundred-twenty Cobb 500 hens, 20 wk of age, were randomly allocated into individual cages with the objective of estimating Cu requirements. After being fed a Cu deficient diet for 4 wk, hens were fed diets with graded increments of supplemental Cu (0.0; 3.5; 7.0; 10.5; 14; and 17.5 ppm) from Cu sulfate (CuSO4 5H2O), totaling 2.67; 5.82; 9.38; 12.92; 16.83; and 20.19 ppm analyzed Cu in feeds for 20 weeks. Estimations of Cu requirements were done using exponential asymptotic (EA), broken line quadratic (BLQ), and quadratic polynomial (QP) models. Obtained Cu requirements for hen d egg production and total settable eggs per hen were 6.2, 7.3, and 12.9 ppm and 8.1, 9.0, and 13.4 ppm, respectively, using EA, BLQ, and QP models. The QP model was the only one having a fit for total eggs per hen with 13.1 ppm Cu as a requirement. Hemoglobin, hematocrit, and serum Cu from hens had requirements estimated as 13.9, 11.3, and 18.5, ppm; 14.6, 13.0, and 19.0 ppm; and 16.2, 14.6, and 14.2 ppm, respectively, for EA, BLQ, and QP models. Hatching chick hemoglobin was not affected by dietary Cu, whereas requirements estimated for hatching chick hematocrit and body weight and length were 10.2, 12.3, and 13.3 ppm using EA, BLQ, and QP models; and 6.8 and 7.1 ppm, and 12.9 and 13.9 ppm Cu using EA and BLQ models, respectively. Maximum responses for egg weight, yolk Cu content, and eggshell membrane thickness were 14.9, 12.7, and 15.1 ppm; 15.0, 16.3, and 15.7 ppm; and 7.3, 7.8, and 14.0 ppm Cu, respectively, for EA, BLQ, and QP models. Yolk and albumen percentage were adjusted only with the QP model and had requirements estimated at 11.0 ppm and 11.3 ppm, respectively, whereas eggshell mammillary layer was maximized with 10.6, 10.1, and 14.4 ppm Cu using EA, BLQ, and QP models, respectively. The average of all Cu requirement estimates obtained in the present study was 12.5 ppm Cu.
Collapse
Affiliation(s)
- E Berwanger
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, Brazil, 91540-000
| | - S L Vieira
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, Brazil, 91540-000
| | - C R Angel
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742
| | - L Kindlein
- Department of Preventive Veterinary Medicine, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 8834, Porto Alegre, RS, Brazil, 91540-000
| | - A N Mayer
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, Brazil, 91540-000
| | - M A Ebbing
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, Brazil, 91540-000
| | - M Lopes
- Department of Animal Science, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 7712, Porto Alegre, RS, Brazil, 91540-000
| |
Collapse
|
12
|
Cholewińska E, Juśkiewicz J, Ognik K. Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the metabolic and immune status in a rat model. J Trace Elem Med Biol 2018; 48:111-117. [PMID: 29773169 DOI: 10.1016/j.jtemb.2018.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/26/2018] [Accepted: 03/19/2018] [Indexed: 01/22/2023]
Abstract
The aim of the study was to evaluate the effects of a diet containing different levels of Cu in two different chemical forms (carbonate and nanoparticles) on metabolic, immune and antioxidant status in a rat model. Five experimental treatments (8 rats in each) were used to test different dosages of Cu added to the diet (standard -6.5 mg/kg, half the standard dosage -3.25 mg/kg, and no added Cu as a negative control) and two sources of added copper (standard -CuCO3 and copper nanoparticles -CuNPs). Blood and urine samples were collected from all the animals after four weeks of treatment. Metabolic and immune parameters were determined in blood and urine samples. The study has shown that a dietary Cu deficiency (negative control) decreases rat's plasma levels of Cu, Fe, CREAT, BIL and IL-6, whereas reducing the level of Cu from the recommended 6.5 mg/kg to 3.25 mg/kg decreases only the plasma concentration of TG, IgE and IL-6. Replacing CuCO3 with CuNPs in rat diets affects their metabolism, as indicated by decreased Ca, CREAT, BIL, ALB and IL-6 plasma levels. To sum up, CuNP added to a diet of rats have a more beneficial effect on metabolic indices (indicative of kidney and liver function) and inhibit inflammatory processes more effectively than CuCO3.
Collapse
Affiliation(s)
- Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy. University of Life Science in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Division of Food Science, Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy. University of Life Science in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| |
Collapse
|
13
|
Medici V, Kieffer DA, Shibata NM, Chima H, Kim K, Canovas A, Medrano JF, Islas-Trejo AD, Kharbanda KK, Olson K, Su RJ, Islam MS, Syed R, Keen CL, Miller AY, Rutledge JC, Halsted CH, LaSalle JM. Wilson Disease: Epigenetic effects of choline supplementation on phenotype and clinical course in a mouse model. Epigenetics 2016; 11:804-818. [PMID: 27611852 DOI: 10.1080/15592294.2016.1231289] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wilson disease (WD), a genetic disorder affecting copper transport, is characterized by hepatic and neurological manifestations with variable and often unpredictable presentation. Global DNA methylation in liver was previously modified by dietary choline in tx-j mice, a spontaneous mutant model of WD. We therefore hypothesized that the WD phenotype and hepatic gene expression of tx-j offspring could be modified by maternal methyl supplementation during pregnancy. In an initial experiment, female tx-j mice or wild type mice were fed control or choline-supplemented diets 2 weeks prior to mating through embryonic day 17. Transcriptomic analysis (RNA-seq) on embryonic livers revealed tx-j-specific differences in genes related to oxidative phosphorylation, mitochondrial dysfunction, and the neurological disorders Huntington's disease and Alzheimer disease. Maternal choline supplementation restored the transcript levels of a subset of genes to wild type levels. In a separate experiment, a group of tx-j offspring continued to receive choline-supplemented or control diets, with or without the copper chelator penicillamine (PCA) for 12 weeks until 24 weeks of age. Combined choline supplementation and PCA treatment of 24-week-old tx-j mice was associated with increased liver transcript levels of methionine metabolism and oxidative phosphorylation-related genes. Sex differences in gene expression within each treatment group were also observed. These results demonstrate that the transcriptional changes in oxidative phosphorylation and methionine metabolism genes in WD that originate during fetal life are, in part, prevented by prenatal maternal choline supplementation, a finding with potential relevance to preventive treatments of WD.
Collapse
Affiliation(s)
- Valentina Medici
- a Department of Internal Medicine, Division of Gastroenterology and Hepatology , University of California Davis , CA , USA
| | - Dorothy A Kieffer
- a Department of Internal Medicine, Division of Gastroenterology and Hepatology , University of California Davis , CA , USA
| | - Noreene M Shibata
- a Department of Internal Medicine, Division of Gastroenterology and Hepatology , University of California Davis , CA , USA
| | - Harpreet Chima
- b Department of Nutrition , University of California Davis , CA , USA
| | - Kyoungmi Kim
- c Department of Public Health Sciences, Division of Biostatistics , University of California Davis , CA , USA
| | - Angela Canovas
- d Department of Animal Science , University of California Davis , CA , USA
| | - Juan F Medrano
- d Department of Animal Science , University of California Davis , CA , USA
| | - Alma D Islas-Trejo
- d Department of Animal Science , University of California Davis , CA , USA
| | - Kusum K Kharbanda
- e Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System , Omaha , NE , USA
| | - Kristin Olson
- f Department of Pathology , University of California Davis , CA , USA
| | - Ruijun J Su
- f Department of Pathology , University of California Davis , CA , USA
| | - Mohammad S Islam
- g Department of Medical Microbiology and Immunology , Genome Center, and MIND Institute, University of California Davis , CA , USA
| | - Raisa Syed
- a Department of Internal Medicine, Division of Gastroenterology and Hepatology , University of California Davis , CA , USA
| | - Carl L Keen
- b Department of Nutrition , University of California Davis , CA , USA
| | - Amy Y Miller
- h Department of Internal Medicine, Division of Cardiovascular Medicine , University of California Davis , CA , USA
| | - John C Rutledge
- h Department of Internal Medicine, Division of Cardiovascular Medicine , University of California Davis , CA , USA
| | - Charles H Halsted
- a Department of Internal Medicine, Division of Gastroenterology and Hepatology , University of California Davis , CA , USA
| | - Janine M LaSalle
- g Department of Medical Microbiology and Immunology , Genome Center, and MIND Institute, University of California Davis , CA , USA
| |
Collapse
|
14
|
|
15
|
Lipids and bariatric procedures Part 2 of 2: scientific statement from the American Society for Metabolic and Bariatric Surgery (ASMBS), the National Lipid Association (NLA), and Obesity Medicine Association (OMA) 1. Surg Obes Relat Dis 2016; 12:468-495. [DOI: 10.1016/j.soard.2016.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/17/2022]
|
16
|
Sharma AK, Kumar A, Taneja G, Nagaich U, Deep A, Rajput SK. Synthesis and preliminary therapeutic evaluation of copper nanoparticles against diabetes mellitus and -induced micro- (renal) and macro-vascular (vascular endothelial and cardiovascular) abnormalities in rats. RSC Adv 2016. [DOI: 10.1039/c6ra03890e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Current study synthesized and investigated the effect of low-dose copper nanoparticles (CuNPs) against diabetes mellitus and -induced experimental micro- (nephropathy) and macro-vascular (cardio and endothelium) complications.
Collapse
Affiliation(s)
- Arun K. Sharma
- Cardiovascular Pharmacology Division
- Department of Pharmacology
- Amity Institute of Pharmacy
- Amity University
- Noida
| | - Ashish Kumar
- Department of Nanomedicine and Pharmaceutics
- Amity University
- Noida
- India
| | - Gaurav Taneja
- Cardiovascular Pharmacology Division
- Department of Pharmacology
- Amity Institute of Pharmacy
- Amity University
- Noida
| | - Upendra Nagaich
- Department of Nanomedicine and Pharmaceutics
- Amity University
- Noida
- India
| | - Aakash Deep
- Department of Pharmaceutical Chemistry
- Chaudhary Bansi Lal University
- Bhiwani 127021
- India
| | - Satyendra K. Rajput
- Cardiovascular Pharmacology Division
- Department of Pharmacology
- Amity Institute of Pharmacy
- Amity University
- Noida
| |
Collapse
|
17
|
Nash MS, Cowan RE, Kressler J. Evidence-based and heuristic approaches for customization of care in cardiometabolic syndrome after spinal cord injury. J Spinal Cord Med 2012; 35:278-92. [PMID: 23031165 PMCID: PMC3459557 DOI: 10.1179/2045772312y.0000000034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Component and coalesced health risks of the cardiometabolic syndrome (CMS) are commonly reported in persons with spinal cord injuries (SCIs). These CMS hazards are also co-morbid with physical deconditioning and elevated pro-atherogenic inflammatory cytokines, both of which are common after SCI and worsen the prognosis for all-cause cardiovascular disease. This article describes a systematic procedure for individualized CMS risk assessment after SCI, and emphasizes evidence-based and intuition-centered countermeasures to disease. A unified approach will propose therapeutic lifestyle intervention as a routine plan for aggressive primary prevention in this risk-susceptible population. Customization of dietary and exercise plans then follow, identifying shortfalls in diet and activity patterns, and ways in which these healthy lifestyles can be more substantially embraced by both stakeholders with SCI and their health care providers. In cases where lifestyle intervention utilizing diet and exercise is unsuccessful in countering risks, available pharmacotherapies and a preferred therapeutic agent are proposed according to authoritative standards. The over-arching purpose of the monograph is to create an operational framework in which existing evidence-based approaches or heuristic modeling becomes best practice. In this way persons with SCI can lead more active and healthy lives.
Collapse
Affiliation(s)
- Mark S. Nash
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA; and Department of Rehabilitation Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA,Correspondence to: Mark S. Nash, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, R-48, Miami, FL 33136, USA.
| | - Rachel E. Cowan
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; and The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jochen Kressler
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA; and The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
18
|
Effect of dietary supplementation of trace elements on blood chemistry and selected immunological indices depending on the age of broiler chickens. ACTA VET BRNO 2011. [DOI: 10.2754/avb201180010057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study was performed to determine the effects of dietary supplementation of Cu, Zn, Fe, Mn and Se on some haematological, immunological and enzymatic indices in blood of broilers at the age of 21, 35 and 42 days. The basal diets (BDs) for Groups 1 and 2 were supplemented with the equivalent amounts of trace elements in an inorganic form (Cu sulphate 5 mg·kg-1 DM, Fe sulphate, Zn oxide, Mn oxide 50 mg·kg-1 DM), however sodium selenite or selenized yeast (Sel-Plex) were given at a dose of Se 0.3 mg·kg-1 DM, respectively. Groups 3 and 4 received the same BD´s but with the substantially reduced amount of supplemented nutrients in the organic “proteinated” form (Bioplex Cu 2.5 mg·kg-1 DM, Bioplex Fe, Bioplex Zn, Bioplex Mn 10 mg·kg-1 DM), except for selenium that was given at a dose of Se 0.3 mg·kg-1 DM as sodium selenite or Sel-Plex, respectively. The supplementation of restricted doses of trace elements in the organic forms into the diet did not affect studied haematological, immunological, enzymatic indices. At the age of 21 days, the activity of GSH-Px was significantly higher in the groups supplemented with sodium selenite later no differences due to the administered form of Se were found. This indicates that the GSH-Px activity reached a plateau in all groups of broilers at the 21, 35 and 42 day, except for GSH-Px activity in the groups of birds supplemented with selenized yeast on day 21. In Addition, significant age dependent changes were observed in blood chemistry, but the different treatments did not influence these changes. Base on our results, the doses of organic forms of trace elements supplemented into the diets for poultry can be restricted to 50% (Bioplex Cu) and 20% (Bioplex Fe, Bioplex Zn and Bioplex Mn) without influencing the blood chemistry of broilers.
Collapse
|
19
|
Measuring acute phase proteins (haptoglobin, ceruloplasmin, serum amyloid A, and fibrinogen) in healthy and infectious bursal disease virus-infected chicks. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s00580-009-0858-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|