2
|
Bogomolni A, Frasca S, Levin M, Matassa K, Nielsen O, Waring G, De Guise S. In Vitro Exposure of Harbor Seal Immune Cells to Aroclor 1260 Alters Phocine Distemper Virus Replication. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:121-132. [PMID: 26142119 DOI: 10.1007/s00244-015-0178-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/06/2015] [Indexed: 06/04/2023]
Abstract
In the last 30 years, several large-scale marine mammal mortality events have occurred, often in close association with highly polluted regions, leading to suspicions that contaminant-induced immunosuppression contributed to these epizootics. Some of these recent events also identified morbillivirus as a cause of or contributor to death. The role of contaminant exposures regarding morbillivirus mortality is still unclear. The results of this study aimed to address the potential for a mixture of polychlorinated biphenyls (PCBs), specifically Aroclor 1260, to alter harbor seal T-lymphocyte proliferation and to assess if exposure resulted in increased likelihood of phocine distemper virus (PDV USA 2006) to infect susceptible seals in an in vitro system. Exposure of peripheral blood mononuclear cells to Aroclor 1260 did not significantly alter lymphocyte proliferation (1, 5, 10, and 20 ppm). However, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), lymphocytes exposed to 20 ppm Aroclor 1260 exhibited a significant decrease in PDV replication at day 7 and a significant increase at day 11 compared with unexposed control cells. Similar and significant differences were apparent on exposure to Aroclor 1260 in monocytes and supernatant. The results here indicate that in harbor seals, Aroclor 1260 exposure results in a decrease in virus early during infection and an increase during late infection. The consequences of this contaminant-induced infection pattern in a highly susceptible host could result in a greater potential for systemic infection with greater viral load, which could explain the correlative findings seen in wild populations exposed to a range of persistent contaminants that suffer from morbillivirus epizootics.
Collapse
Affiliation(s)
- Andrea Bogomolni
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Rd., Storrs, CT, 06268, USA.
- Woods Hole Oceanographic Institution, 266 Woods Hole, Rd. #MS 50, Woods Hole, MA, 02543, USA.
| | - Salvatore Frasca
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Rd., Storrs, CT, 06268, USA
| | - Milton Levin
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Rd., Storrs, CT, 06268, USA
| | - Keith Matassa
- Pacific Marine Mammal Center, 20612 Laguna Canyon Rd, Laguna Beach, CA, 92651, USA
| | - Ole Nielsen
- Department of Fisheries and Oceans Canada, Central and Arctic Region, 501 University Crescent, Winnipeg, MB, R3T 2N6, Canada
| | - Gordon Waring
- National Marine Fisheries Service, Northeast Fisheries Science Center, 166 Woods Hole Rd., Woods Hole, MA, USA
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary Science, University of Connecticut, 61 North Eagleville Rd., Storrs, CT, 06268, USA
- Connecticut Sea Grant College Program, 1080 Shennecossett Road, Groton, CT, 06340, USA
| |
Collapse
|
3
|
Duignan PJ, Van Bressem MF, Baker JD, Barbieri M, Colegrove KM, De Guise S, de Swart RL, Di Guardo G, Dobson A, Duprex WP, Early G, Fauquier D, Goldstein T, Goodman SJ, Grenfell B, Groch KR, Gulland F, Hall A, Jensen BA, Lamy K, Matassa K, Mazzariol S, Morris SE, Nielsen O, Rotstein D, Rowles TK, Saliki JT, Siebert U, Waltzek T, Wellehan JF. Phocine distemper virus: current knowledge and future directions. Viruses 2014; 6:5093-134. [PMID: 25533658 PMCID: PMC4276944 DOI: 10.3390/v6125093] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 11/16/2022] Open
Abstract
Phocine distemper virus (PDV) was first recognized in 1988 following a massive epidemic in harbor and grey seals in north-western Europe. Since then, the epidemiology of infection in North Atlantic and Arctic pinnipeds has been investigated. In the western North Atlantic endemic infection in harp and grey seals predates the European epidemic, with relatively small, localized mortality events occurring primarily in harbor seals. By contrast, PDV seems not to have become established in European harbor seals following the 1988 epidemic and a second event of similar magnitude and extent occurred in 2002. PDV is a distinct species within the Morbillivirus genus with minor sequence variation between outbreaks over time. There is now mounting evidence of PDV-like viruses in the North Pacific/Western Arctic with serological and molecular evidence of infection in pinnipeds and sea otters. However, despite the absence of associated mortality in the region, there is concern that the virus may infect the large Pacific harbor seal and northern elephant seal populations or the endangered Hawaiian monk seals. Here, we review the current state of knowledge on PDV with particular focus on developments in diagnostics, pathogenesis, immune response, vaccine development, phylogenetics and modeling over the past 20 years.
Collapse
Affiliation(s)
- Pádraig J. Duignan
- Department of Ecosystem and Public Health, University of Calgary, Calgary, AB T2N 4Z6, Canada; E-Mails: (P.D.); (K.L.)
| | - Marie-Françoise Van Bressem
- Cetacean Conservation Medicine Group (CMED), Peruvian Centre for Cetacean Research (CEPEC), Pucusana, Lima 20, Peru; E-Mail:
| | - Jason D. Baker
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, NOAA, 1845 WASP Blvd., Building 176, Honolulu, Hawaii 96818, USA; E-Mails: (J.D.B.); (M.B.)
| | - Michelle Barbieri
- Pacific Islands Fisheries Science Center, National Marine Fisheries Service, NOAA, 1845 WASP Blvd., Building 176, Honolulu, Hawaii 96818, USA; E-Mails: (J.D.B.); (M.B.)
- The Marine Mammal Centre, Sausalito, CA 94965, USA; E-Mail:
| | - Kathleen M. Colegrove
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Maywood, IL 60153, USA; E-Mail:
| | - Sylvain De Guise
- Department of Pathobiology and Veterinary Science, and Connecticut Sea Grant College Program, University of Connecticut, Storrs, CT 06269, USA; E-Mail:
| | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, 3015 CN Rotterdam, The Netherlands; E-Mail:
| | - Giovanni Di Guardo
- Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; E-Mail:
| | - Andrew Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-2016, USA; E-Mails: (A.D.); (B.G.); (S.E.M.)
| | - W. Paul Duprex
- Department of Microbiology, Boston University School of Medicine, Boston University, 620 Albany Street, Boston, MA 02118, USA; E-Mail:
| | - Greg Early
- Greg Early, Integrated Statistics, 87 Water St, Woods Hole, MA 02543, USA; E-Mail:
| | - Deborah Fauquier
- National Marine Fisheries Service/National Oceanographic and Atmospheric Administration, Marine Mammal Health and Stranding Response Program, Silver Spring, MD 20910, USA; E-Mails: (D.F.); (T.K.R.)
| | - Tracey Goldstein
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; E-Mail:
| | - Simon J. Goodman
- School of Biology, University of Leeds, Leeds LS2 9JT, UK; E-Mail:
| | - Bryan Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-2016, USA; E-Mails: (A.D.); (B.G.); (S.E.M.)
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892-2220, USA
| | - Kátia R. Groch
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; E-Mail:
| | - Frances Gulland
- The Marine Mammal Centre, Sausalito, CA 94965, USA; E-Mail:
- Marine Mammal Commission, 4340 East-West Highway, Bethesda, MD 20814, USA
| | - Ailsa Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St. Andrews, St. Andrews, Fife KY16 8LB, UK; E-Mail:
| | - Brenda A. Jensen
- Department of Natural Sciences, Hawai’i Pacific University, Kaneohe, HI 96744, USA; E-Mail:
| | - Karina Lamy
- Department of Ecosystem and Public Health, University of Calgary, Calgary, AB T2N 4Z6, Canada; E-Mails: (P.D.); (K.L.)
| | - Keith Matassa
- Keith Matassa, Pacific Marine Mammal Center, 20612 Laguna Canyon Road, Laguna Beach, CA 92651, USA; E-Mail:
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro Padua, Italy; E-Mail:
| | - Sinead E. Morris
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-2016, USA; E-Mails: (A.D.); (B.G.); (S.E.M.)
| | - Ole Nielsen
- Department of Fisheries and Oceans Canada, Central and Arctic Region, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada; E-Mail:
| | - David Rotstein
- David Rotstein, Marine Mammal Pathology Services, 19117 Bloomfield Road, Olney, MD 20832, USA; E-Mail:
| | - Teresa K. Rowles
- National Marine Fisheries Service/National Oceanographic and Atmospheric Administration, Marine Mammal Health and Stranding Response Program, Silver Spring, MD 20910, USA; E-Mails: (D.F.); (T.K.R.)
| | - Jeremy T. Saliki
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, GA 30602, USA; E-Mail:
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover 30173, Germany; E-Mail:
| | - Thomas Waltzek
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, FL 32611, USA; E-Mail:
| | - James F.X. Wellehan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, FL 32610, USA; E-Mail:
| |
Collapse
|