1
|
Malogolovkin A, Gasanov N, Egorov A, Weener M, Ivanov R, Karabelsky A. Combinatorial Approaches for Cancer Treatment Using Oncolytic Viruses: Projecting the Perspectives through Clinical Trials Outcomes. Viruses 2021; 13:1271. [PMID: 34209981 PMCID: PMC8309967 DOI: 10.3390/v13071271] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Recent cancer immunotherapy breakthroughs have fundamentally changed oncology and revived the fading hope for a cancer cure. The immune checkpoint inhibitors (ICI) became an indispensable tool for the treatment of many malignant tumors. Alongside ICI, the application of oncolytic viruses in clinical trials is demonstrating encouraging outcomes. Dozens of combinations of oncolytic viruses with conventional radiotherapy and chemotherapy are widely used or studied, but it seems quite complicated to highlight the most effective combinations. Our review summarizes the results of clinical trials evaluating oncolytic viruses with or without genetic alterations in combination with immune checkpoint blockade, cytokines, antigens and other oncolytic viruses as well. This review is focused on the efficacy and safety of virotherapy and the most promising combinations based on the published clinical data, rather than presenting all oncolytic virus variations, which are discussed in comprehensive literature reviews. We briefly revise the research landscape of oncolytic viruses and discuss future perspectives in virus immunotherapy, in order to provide an insight for novel strategies of cancer treatment.
Collapse
Affiliation(s)
- Alexander Malogolovkin
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| | | | | | | | | | - Alexander Karabelsky
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (N.G.); (A.E.); (M.W.); (R.I.)
| |
Collapse
|
2
|
Clinically Explored Virus-Based Therapies for the Treatment of Recurrent High-Grade Glioma in Adults. Biomedicines 2021; 9:biomedicines9020138. [PMID: 33535555 PMCID: PMC7912718 DOI: 10.3390/biomedicines9020138] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
As new treatment modalities are being explored in neuro-oncology, viruses are emerging as a promising class of therapeutics. Virotherapy consists of the introduction of either wild-type or engineered viruses to the site of disease, where they exert an antitumor effect. These viruses can either be non-lytic, in which case they are used to deliver gene therapy, or lytic, which induces tumor cell lysis and subsequent host immunologic response. Replication-competent viruses can then go on to further infect and lyse neighboring glioma cells. This treatment paradigm is being explored extensively in both preclinical and clinical studies for a variety of indications. Virus-based therapies are advantageous due to the natural susceptibility of glioma cells to viral infection, which improves therapeutic selectivity. Furthermore, lytic viruses expose glioma antigens to the host immune system and subsequently stimulate an immune response that specifically targets tumor cells. This review surveys the current landscape of oncolytic virotherapy clinical trials in high-grade glioma, summarizes preclinical experiences, identifies challenges associated with this modality across multiple trials, and highlights the potential to integrate this therapeutic strategy into promising combinatory approaches.
Collapse
|
3
|
Ge K, Huang J, Wang W, Gu M, Dai X, Xu Y, Wu H, Li G, Lu H, Zhong J, Huang Q. Serine protease inhibitor kazal-type 6 inhibits tumorigenesis of human hepatocellular carcinoma cells via its extracellular action. Oncotarget 2018; 8:5965-5975. [PMID: 27999203 PMCID: PMC5351605 DOI: 10.18632/oncotarget.13983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/12/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) causes significant medical burdens worldwide. Diagnosis, especially in the early stages, is still challenging. Therapeutic options are limited and often ineffective. Although several risk factors have been known important for development of HCC, the molecular basis of the process is rather complex and has not been fully understood. We have found that a subpopulation of HCC cells which are resistant to oncolytic parvovirus H1 superinfection highly express serine protease inhibitor Kazal-type 6 (SPINK6). This protein is specifically reduced in all HCC cell lines and tissues we analyzed. When upregulated, SPINK6 could suppress the malignant phenotypes of the HCC cells in several in vitro models. The putative tumor suppression role of SPINK6 is, however, independent of its protease inhibitory activity. To suppress the malignancy of HCC cells, SPINK6 has to be secreted to trigger signals which regulate an intracellular signaling molecule, ERK1/2, as well as a series of downstream factors involved in cell cycle progression, apoptosis and migration. Our study supports that SPINK6 is an important tumor suppressor in liver, and further investigations may help develop more effective diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Kuikui Ge
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jinjiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Wei Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Meigang Gu
- Laboratory of Virology and Infectious Disease Center for the Study of Hepatitis C, Rockefeller University, New York, NY 10065, USA
| | - Xinchuan Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yuqiang Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hongyu Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.,Shanghai High-Tech United Bio-Technological R&D Co., Ltd, Shanghai 201206, China
| | - Guodong Li
- Shanghai High-Tech United Bio-Technological R&D Co., Ltd, Shanghai 201206, China
| | - Hairong Lu
- Shanghai High-Tech United Bio-Technological R&D Co., Ltd, Shanghai 201206, China
| | - Jiang Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qingshan Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Hajda J, Lehmann M, Krebs O, Kieser M, Geletneky K, Jäger D, Dahm M, Huber B, Schöning T, Sedlaczek O, Stenzinger A, Halama N, Daniel V, Leuchs B, Angelova A, Rommelaere J, Engeland CE, Springfeld C, Ungerechts G. A non-controlled, single arm, open label, phase II study of intravenous and intratumoral administration of ParvOryx in patients with metastatic, inoperable pancreatic cancer: ParvOryx02 protocol. BMC Cancer 2017; 17:576. [PMID: 28851316 PMCID: PMC5574242 DOI: 10.1186/s12885-017-3604-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/24/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Metastatic pancreatic cancer has a dismal prognosis, with a mean six-month progression-free survival of approximately 50% and a median survival of about 11 months. Despite intensive research, only slight improvements of clinical outcome could be achieved over the last decades. Hence, new and innovative therapeutic strategies are urgently required. ParvOryx is a drug product containing native parvovirus H-1 (H-1PV). Since H-1PV was shown to exert pronounced anti-neoplastic effects in pre-clinical models of pancreatic cancer, the drug appears to be a promising candidate for treatment of this malignancy. METHODS ParvOryx02 is a non-controlled, single arm, open label, dose-escalating, single center trial. In total seven patients with pancreatic cancer showing at least one hepatic metastasis are to be treated with escalating doses of ParvOryx according to the following schedule: i) 40% of the total dose infused intravenously in equal fractions on four consecutive days, ii) 60% of the total dose injected on a single occasion directly into the hepatic metastasis at varying intervals after intravenous infusions. The main eligibility criteria are: age ≥ 18 years, disease progression despite first-line chemotherapy, and at least one hepatic metastasis. Since it is the second trial within the drug development program, the study primarily explores safety and tolerability after further dose escalation of ParvOryx. The secondary objectives are related to the evaluation of certain aspects of anti-tumor activity and clinical efficacy of the drug. DISCUSSION This trial strongly contributes to the clinical development program of ParvOryx. The individual hazards for patients included in the current study and the environmental risks are addressed and counteracted adequately. Besides information on safety and tolerability of the treatment after further dose escalation, thorough evaluations of pharmacokinetics and intratumoral spread as well as proof-of-concept (PoC) in pancreatic cancer will be gained in the course of the trial. TRIAL REGISTRATION ClinicalTrials.gov-ID: NCT02653313 , Registration date: Dec. 4th, 2015.
Collapse
Affiliation(s)
- Jacek Hajda
- Coordination Centre for Clinical Trials, University Hospital Heidelberg, Marsilius-Arkaden, Tower West, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.
| | - Monika Lehmann
- Coordination Centre for Clinical Trials, University Hospital Heidelberg, Marsilius-Arkaden, Tower West, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Ottheinz Krebs
- Oryx GmbH & Co KG, Marktplatz 1, 85598, Baldham, Germany
| | - Meinhard Kieser
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Marsilius-Arkaden, Tower West, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Karsten Geletneky
- Department of Neurosurgery, Klinikum Darmstadt, Grafenstraße 9, 64283, Darmstadt, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Michael Dahm
- Oryx GmbH & Co KG, Marktplatz 1, 85598, Baldham, Germany
| | - Bernard Huber
- Oryx GmbH & Co KG, Marktplatz 1, 85598, Baldham, Germany
| | - Tilman Schöning
- Central Pharmacy, University Hospital Heidelberg, Im Neuenheimer Feld 670, 69120, Heidelberg, Germany
| | - Oliver Sedlaczek
- Department of Radiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Albrecht Stenzinger
- Department of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Niels Halama
- Tissue Imaging & Analysis Center (TIGA), University Heidelberg - BioQuant, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Volker Daniel
- Institute of Immunology, Transplantation Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Barbara Leuchs
- Department of Applied Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Assia Angelova
- Department of Applied Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Jean Rommelaere
- Department of Applied Tumor Virology, German Cancer Research Center, Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Christine E Engeland
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Guy Ungerechts
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Foreman PM, Friedman GK, Cassady KA, Markert JM. Oncolytic Virotherapy for the Treatment of Malignant Glioma. Neurotherapeutics 2017; 14:333-344. [PMID: 28265902 PMCID: PMC5398989 DOI: 10.1007/s13311-017-0516-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma is the most common primary brain tumor and carries a grim prognosis, with a median survival of just over 14 months. Given the poor outcomes with standard-of-care treatments, novel treatment strategies are needed. The concept of virotherapy for the treatment of malignant tumors dates back more than a century and can be divided into replication-competent oncolytic viruses and replication-deficient viral vectors. Oncolytic viruses are designed to selectively target, infect, and replicate in tumor cells, while sparing surrounding normal brain. A host of oncolytic viruses has been evaluated in early phase human trials with promising safety results, but none has progressed to phase III trials. Despite the 25 years that has passed since the initial publication of genetically engineered oncolytic viruses for the treatment of glioma, much remains to be learned about the use of this therapy, including its mechanism of action, optimal treatment paradigm, appropriate targets, and integration with adjuvant agents. Oncolytic viral therapy for glioma remains promising and will undoubtedly impact the future of patient care.
Collapse
Affiliation(s)
- Paul M Foreman
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory K Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Marchini A, Bonifati S, Scott EM, Angelova AL, Rommelaere J. Oncolytic parvoviruses: from basic virology to clinical applications. Virol J 2015; 12:6. [PMID: 25630937 PMCID: PMC4323056 DOI: 10.1186/s12985-014-0223-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/03/2014] [Indexed: 12/28/2022] Open
Abstract
Accumulated evidence gathered over recent decades demonstrated that some members of the Parvoviridae family, in particular the rodent protoparvoviruses H-1PV, the minute virus of mice and LuIII have natural anticancer activity while being nonpathogenic to humans. These studies have laid the foundations for the launch of a first phase I/IIa clinical trial, in which the rat H-1 parvovirus is presently undergoing evaluation for its safety and first signs of efficacy in patients with glioblastoma multiforme. After a brief overview of the biology of parvoviruses, this review focuses on the studies which unraveled the antineoplastic properties of these agents and supported their clinical use as anticancer therapeutics. Furthermore, the development of novel parvovirus-based anticancer strategies with enhanced specificity and efficacy is discussed, in particular the development of second and third generation vectors and the combination of parvoviruses with other anticancer agents. Lastly, we address the key challenges that remain towards a more rational and efficient use of oncolytic parvoviruses in clinical settings, and discuss how a better understanding of the virus life-cycle and of the cellular factors involved in virus infection, replication and cytotoxicity may promote the further development of parvovirus-based anticancer therapies, open new prospects for treatment and hopefully improve clinical outcome.
Collapse
Affiliation(s)
- Antonio Marchini
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Serena Bonifati
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Eleanor M Scott
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Assia L Angelova
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Jean Rommelaere
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
7
|
Sieben M, Schäfer P, Dinsart C, Galle PR, Moehler M. Activation of the human immune system via toll-like receptors by the oncolytic parvovirus H-1. Int J Cancer 2012; 132:2548-56. [PMID: 23151948 DOI: 10.1002/ijc.27938] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/05/2012] [Indexed: 01/09/2023]
Abstract
This study aimed to investigate the function of toll-like receptors (TLRs) during oncolytic parvovirus H-1 (H-1PV)-induced human immune responses. First, the role of TLRs in the activation of the NFκB transcription factor was characterized; second, the immunologic effects of H-1PV-induced tumor cell lysates (TCL) on human antitumor immune responses were evaluated. A human ex vivo model was used to study immune responses with dendritic cells (DCs). Human embryonic kidney cells (HEK293) transfected to stably express TLRs were used as potential human DC equivalents to further investigate the role of specific TLRs during immune activation. TLR3 and TLR9 were activated by H-1PV infection, which correlated with NFκB translocation to the nucleus and a reduced cytoplasmic IκB expression. Using a TLR-signaling reporter plasmid (pNiFty-Luc), NFκB activity was increased following H-1PV infection. In addition, human DCs coincubated with H-1PV-induced TCL demonstrated increased TLR3 and TLR9 expression. These data suggest that H-1PV-induced TCL stimulate human DCs at least in part through TLR-dependent signaling pathways. Thus, DC maturation occurred through exposure to H-1PV-induced TCL through TLR-signaling leading to NFκB-dependent activation of the adaptive immune system as indicated by the increased expression of CD86, TLR3 and TLR9. Furthermore, the transcription of various cytokines indicates the activation of immune response, therefore the production of the proinflammatory cytokine TNF-α was determined. Here, H-1PV-induced TCL significantly enhanced the TNF-α level by DCs after coculture. H-1PV oncolytic virotherapy enhances immune priming by different effects on DCs and generates antitumor immunity. These findings potentially offer a new approach to tumor therapy.
Collapse
Affiliation(s)
- Maike Sieben
- First Department of Internal Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | | | | | | |
Collapse
|
8
|
LuIII parvovirus selectively and efficiently targets, replicates in, and kills human glioma cells. J Virol 2012; 86:7280-91. [PMID: 22553327 DOI: 10.1128/jvi.00227-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Because productive infection by parvoviruses requires cell division and is enhanced by oncogenic transformation, some parvoviruses may have potential utility in killing cancer cells. To identify the parvovirus(es) with the optimal oncolytic effect against human glioblastomas, we screened 12 parvoviruses at a high multiplicity of infection (MOI). MVMi, MVMc, MVM-G17, tumor virus X (TVX), canine parvovirus (CPV), porcine parvovirus (PPV), rat parvovirus 1A (RPV1A), and H-3 were relatively ineffective. The four viruses with the greatest oncolytic activity, LuIII, H-1, MVMp, and MVM-G52, were tested for the ability, at a low MOI, to progressively infect the culture over time, causing cell death at a rate higher than that of cell proliferation. LuIII alone was effective in all five human glioblastomas tested. H-1 progressively infected only two of five; MVMp and MVM-G52 were ineffective in all five. To investigate the underlying mechanism of LuIII's phenotype, we used recombinant parvoviruses with the LuIII capsid replacing the MVMp capsid or with molecular alteration of the P4 promoter. The LuIII capsid enhanced efficient replication and oncolysis in MO59J gliomas cells; other gliomas tested required the entire LuIII genome to exhibit enhanced infection. LuIII selectively infected glioma cells over normal glial cells in vitro. In mouse models, human glioblastoma xenografts were selectively infected by LuIII when administered intratumorally; LuIII reduced tumor growth by 75%. LuIII also had the capacity to selectively infect subcutaneous or intracranial gliomas after intravenous inoculation. Intravenous or intracranial LuIII caused no adverse effects. Intracranial LuIII caused no infection of mature mouse neurons or glia in vivo but showed a modest infection of developing neurons.
Collapse
|
9
|
Geletneky K, Huesing J, Rommelaere J, Schlehofer JR, Leuchs B, Dahm M, Krebs O, von Knebel Doeberitz M, Huber B, Hajda J. Phase I/IIa study of intratumoral/intracerebral or intravenous/intracerebral administration of Parvovirus H-1 (ParvOryx) in patients with progressive primary or recurrent glioblastoma multiforme: ParvOryx01 protocol. BMC Cancer 2012; 12:99. [PMID: 22436661 PMCID: PMC3425127 DOI: 10.1186/1471-2407-12-99] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 03/21/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The treatment of patients with malignant brain tumors remains a major oncological problem. The median survival of patients with glioblastoma multiforme (GBM), the most malignant type, is only 15 months after initial diagnosis and even less after tumor recurrence. Improvements of standard treatment including surgery and radio-chemotherapy have not lead to major improvements. Therefore, alternative therapeutics such as oncolytic viruses that specifically target and destroy cancer cells are under investigation. Preclinical data of oncolytic parvovirus H-1 (H-1PV) infection of glioma cells demonstrated strong cytotoxic and oncosuppressing effects, leading to a phase I/IIa trial of H-1PV in patients with recurrent GBM (ParvOryx01). ParvOryx01 is the first trial with a replication competent oncolytic virus in Germany. METHODS ParvOryx01 is an open, non-controlled, two groups, intra-group dose escalation, single center, phase I/IIa trial. 18 patients with recurrent GBM will be treated in 2 groups of 9 patients each. Treatment group 1 will first receive H-1PV by intratumoral injection and second by administration into the walls of the tumor cavity during tumor resection. In treatment group 2 the virus will initially be injected intravenously and afterwards, identical to group 1, into the surrounding brain tissue during tumor removal. Main eligibility criteria are: age of 18 years, unifocal recurrent GBM, amenable to complete or subtotal resection. Dose escalation will be based on the Continual Reassessment Method. The primary objective of the trial is local and systemic safety and tolerability and to determine the maximum tolerated dose (MTD). Secondary objectives are proof of concept (PoC) and Progression-free Survival (PFS) up to 6 months. DISCUSSION This is the first trial with H-1PV in patients with recurrent GBM. The risks for the participants appear well predictable and justified. Furthermore, ParvOryx01 will be the first assessment of combined intratumoral and intravenous application of an oncolytic virus. Due to its study design the trial will not only generate data on the local effect of H-1PV but it will also investigate the penetration of H-1PV into the tumor after systemic delivery and obtain safety data from systemic delivery possibly supporting clinical trials with H-1PV in other, non-CNS malignancies. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01301430.
Collapse
|
10
|
Lacroix J, Leuchs B, Li J, Hristov G, Deubzer HE, Kulozik AE, Rommelaere J, Schlehofer JR, Witt O. Parvovirus H1 selectively induces cytotoxic effects on human neuroblastoma cells. Int J Cancer 2010; 127:1230-9. [DOI: 10.1002/ijc.25168] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Oncolytic rat parvovirus H-1PV, a candidate for the treatment of human lymphoma: In vitro and in vivo studies. Mol Ther 2009; 17:1164-72. [PMID: 19367260 DOI: 10.1038/mt.2009.78] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The incidence of lymphomas developing in both immunocompetent and immunosuppressed patients continues to steadily increase worldwide. Current chemotherapy and immunotherapy approaches have several limitations, such as severe side toxicity and selection of resistant cell variants. Autonomous parvoviruses (PVs), in particular the rat parvovirus H-1PV, have emerged as promising anticancer agents. Although it is apathogenic in humans, H-1PV has been shown to infect and suppress various rat and human tumors in animal models. In this study, we demonstrate the capacity of H-1PV for efficiently killing, through necrosis, cell cultures originating from Burkitt's lymphoma (BL), while sparing normal B lymphocytes. The cytotoxic effect was generally accompanied by a productive H-1PV infection. Remarkably, parvovirus-based monotherapy efficiently suppressed established BL at an advanced stage in a severe combined immunodeficient (SCID) mouse model of the disease. The data show for the first time that an oncolytic parvovirus deserves further consideration as a potential tool for the treatment of some non-Hodgkin B-cell lymphomas, including those resistant to apoptosis induction by rituximab.
Collapse
|
12
|
Abstract
Advances in genetics, proteomics and cellular and molecular biology are being integrated and translated to develop effective methods for the prevention and control of cancer. One such combined effort is to create multifunctional nanodevices that will specifically recognize tumors and thus enable early diagnosis and provide targeted treatment of this disease. Viral particles are being considered for this purpose since they are inherently nanostructures with well-defined geometry and uniformity, ideal for displaying molecules in a precise spatial distribution at the nanoscale level and subject to greater structural control. Viruses are presumably the most efficient nanocontainer for cellular delivery as they have naturally evolved mechanisms for binding to and entering cells. Virus-based systems typically require genetic or chemical modification of their surfaces to achieve tumor-specific interactions. Interestingly, canine parvovirus (CPV) has a natural affinity for transferrin receptors (TfRs) (both of canine and human origin) and this property could be harnessed as TfRs are overexpressed by a variety of human tumor cells. Since TfR recognition relies on the CPV capsid protein, we envisioned the use of virus or its shells as tumor targeting agents. We observed that derivatization of CPV virus-like particles (VLPs) with dye molecules did not impair particle binding to TfRs or internalization into human tumor cells. Thus CPV-based VLPs with a natural tropism for TfRs hold great promise in the development of novel nanomaterial for delivery of a therapeutic and/or genetic cargo.
Collapse
Affiliation(s)
- P Singh
- Division of Hematology and Oncology, Department of Medicine, Building 23, Room 436A, UCI Medical Center, 101 City Drive South, Orange, CA 92868, USA.
| |
Collapse
|
13
|
Besselsen DG, Franklin CL, Livingston RS, Riley LK. Lurking in the shadows: emerging rodent infectious diseases. ILAR J 2009; 49:277-90. [PMID: 18506061 DOI: 10.1093/ilar.49.3.277] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Rodent parvoviruses, Helicobacter spp., murine norovirus, and several other previously unknown infectious agents have emerged in laboratory rodents relatively recently. These agents have been discovered serendipitously or through active investigation of atypical serology results, cell culture contamination, unexpected histopathology, or previously unrecognized clinical disease syndromes. The potential research impact of these agents is not fully known. Infected rodents have demonstrated immunomodulation, tumor suppression, clinical disease (particularly in immunodeficient rodents), and histopathology. Perturbations of organismal and cellular physiology also likely occur. These agents posed unique challenges to laboratory animal resource programs once discovered; it was necessary to develop specific diagnostic assays and an understanding of their epidemiology and transmission routes before attempting eradication, and then evaluate eradication methods for efficacy. Even then management approaches varied significantly, from apathy to total exclusion, and such inconsistency has hindered the sharing and transfer of rodents among institutions, particularly for genetically modified rodent models that may not be readily available. As additional infectious agents are discovered in laboratory rodents in coming years, much of what researchers have learned from experiences with the recently identified pathogens will be applicable. This article provides an overview of the discovery, detection, and research impact of infectious agents recently identified in laboratory rodents. We also discuss emerging syndromes for which there is a suspected infectious etiology, and the unique challenges of managing newly emerging infectious agents.
Collapse
Affiliation(s)
- David G Besselsen
- University Animal Care, University of Arizona, Tucson, 1127 East Lowell Street, Tucson, AZ 85721-0101, USA.
| | | | | | | |
Collapse
|
14
|
Abstract
Experimental therapies for glioma are mostly based on the insights into the cell biology of the tumors studied by modern methods including genomics and metabolomics. In surgery, intraoperative visualization of residual tumor by fluorescence has helped with the radicality of resection. Although temozolamide has become an important agent in the combined radiochemotherapy of newly diagnosed glioblastoma, understanding the underlying mechanisms of action and resistance has led to alterations in dosing schemes, which may be more beneficial than the introduction of new agents. Targeted therapies that have been highly promising in other solid tumors have been rather disappointing in gliomas, not for the lack of promising targets but most likely due to inefficacy of the reagents to reach their target. Direct delivery of reagents with interstitial infusion via convection-enhanced delivery has proven to be safe and effective, but the potential of that technology has not been exploited because many technicalities are still to be worked out, and better, more selective reagents are needed. Gene therapy has been reactivated with direct adeno-viral application to transfer HSV-Tk into tumor cells by adenoviral vectors, still awaiting final analysis. Oncolytic viruses are also under long-term refinement and await definitive pivotal clinical trials. Immunotherapy is currently focusing on vaccination strategies using either specifically pulsed dendritic cells or immunization with a specific peptide, which is unique to the vIII variant of the epidemal growth factor receptor. An area attracting immense attention for basic research as well as translation into clinical use is the characterization of neural stem cells and their theraputic potential when appropriately manipulated.In general, there is a wide spectrum of specific neuro-oncological therapy developments, which are not only extrapolated from general oncology but also based on translational research in the field of glioma biology.
Collapse
|
15
|
Nüesch JPF, Rommelaere J. A viral adaptor protein modulating casein kinase II activity induces cytopathic effects in permissive cells. Proc Natl Acad Sci U S A 2007; 104:12482-7. [PMID: 17636126 PMCID: PMC1920537 DOI: 10.1073/pnas.0705533104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autonomous parvoviruses induce severe morphological and physiological alterations in permissive host cells, eventually leading to cell lysis and release of progeny virions. Viral cytopathic effects (CPE) result from specific rearrangements and destruction of cytoskeletal micro- and intermediate filaments. We recently reported that inhibition of endogenous casein kinase II (CKII) protects target cells from parvovirus minute virus of mice (MVM)-induced CPE, pointing to this kinase as an effector of MVM toxicity. The present work shows that the parvoviral NS1 protein mediates CKII-dependent cytoskeletal alterations and cell death. NS1 can act as an adaptor molecule, linking the cellular protein kinase CKIIalpha to tropomyosin and thus modulating the substrate specificity of the kinase. This action results in an altered tropomyosin phosphorylation pattern both in vitro and in living cells. The capacity of NS1 to induce CPE was impaired by mutations abolishing binding with either CKIIalpha or tropomyosin. The cytotoxic adaptor function of NS1 was confirmed with fusion peptides, where the tropomyosin-binding domain of NS1 and CKIIalpha are physically linked. These adaptor peptides were able to mimic NS1 in its ability to induce death of transformed MVM-permissive cells.
Collapse
Affiliation(s)
- Jürg P F Nüesch
- Program "Infection and Cancer," Abteilung F010 and Institut National de la Santé et de la Recherche Médicale Unité 701, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
16
|
Russell SJ, Peng KW. Viruses as anticancer drugs. Trends Pharmacol Sci 2007; 28:326-33. [PMID: 17573126 PMCID: PMC3125087 DOI: 10.1016/j.tips.2007.05.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 04/11/2007] [Accepted: 05/25/2007] [Indexed: 01/14/2023]
Abstract
Oncolytic viruses are being developed as anticancer drugs. They propagate selectively in tumor tissue and destroy it without causing excessive damage to normal non-cancerous tissues. When used as drugs, they must meet stringent criteria for safety and efficacy and be amenable to pharmacological study in human subjects. Specificity for neoplastic tissue is the key to safety, and this goal can be achieved through a variety of ingenious virus-engineering strategies. Antiviral immunity remains a significant barrier to the clinical efficacy of oncolytic viruses but this is being addressed by using novel immune-evasive delivery strategies and immunosuppressive drugs. Noninvasive pharmacokinetic monitoring is facilitated by engineering marker genes into the viral genome. Clinical data on the pharmacokinetics of oncolytic viruses will be the key to accelerating their development and approval as effective anticancer drugs. This review introduces concepts relevant to the use of viruses as anticancer drugs, emphasizing targeting mechanisms as well as safety and efficacy issues that are currently limiting their clinical success.
Collapse
Affiliation(s)
- Stephen J Russell
- Molecular Medicine Program, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|