1
|
Khalifa HO, Oreiby A, Abdelhamid MAA, Ki MR, Pack SP. Biomimetic Antifungal Materials: Countering the Challenge of Multidrug-Resistant Fungi. Biomimetics (Basel) 2024; 9:425. [PMID: 39056866 PMCID: PMC11274442 DOI: 10.3390/biomimetics9070425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In light of rising public health threats like antifungal and antimicrobial resistance, alongside the slowdown in new antimicrobial development, biomimetics have shown promise as therapeutic agents. Multidrug-resistant fungi pose significant challenges as they quickly develop resistance, making traditional antifungals less effective. Developing new antifungals is also complicated by the need to target eukaryotic cells without harming the host. This review examines biomimetic antifungal materials that mimic natural biological mechanisms for targeted and efficient action. It covers a range of agents, including antifungal peptides, alginate-based antifungals, chitosan derivatives, nanoparticles, plant-derived polyphenols, and probiotic bacteria. These agents work through mechanisms such as disrupting cell membranes, generating reactive oxygen species, and inhibiting essential fungal processes. Despite their potential, challenges remain in terms of ensuring biocompatibility, optimizing delivery, and overcoming potential resistance. Production scalability and economic viability are also concerns. Future research should enhance the stability and efficacy of these materials, integrate multifunctional approaches, and develop sophisticated delivery systems. Interdisciplinary efforts are needed to understand interactions between these materials, fungal cells, and the host environment. Long-term health and environmental impacts, fungal resistance mechanisms, and standardized testing protocols require further study. In conclusion, while biomimetic antifungal materials represent a revolutionary approach to combating multidrug-resistant fungi, extensive research and development are needed to fully realize their potential.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Atef Oreiby
- Department of Animal Medicine, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
2
|
Mandal MK, Domb AJ. Antimicrobial Activities of Natural Bioactive Polyphenols. Pharmaceutics 2024; 16:718. [PMID: 38931842 PMCID: PMC11206801 DOI: 10.3390/pharmaceutics16060718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Secondary metabolites, polyphenols, are widespread in the entire kingdom of plants. They contain one or more hydroxyl groups that have a variety of biological functions in the natural environment. These uses include polyphenols in food, beauty products, dietary supplements, and medicinal products and have grown rapidly during the past 20 years. Antimicrobial polyphenols are described together with their sources, classes, and subclasses. Polyphenols are found in different sources, such as dark chocolate, olive oil, red wine, almonds, cashews, walnuts, berries, green tea, apples, artichokes, mushrooms, etc. Examples of benefits are antiallergic, antioxidant, anticancer agents, anti-inflammatory, antihypertensive, and antimicrobe properties. From these sources, different classes of polyphenols are helpful for the growth of internal functional systems of the human body, providing healthy fats, vitamins, and minerals, lowering the risk of cardiovascular diseases, improving brain health, and rebooting our cellular microbiome health by mitochondrial uncoupling. Among the various health benefits of polyphenols (curcumin, naringenin, quercetin, catechin, etc.) primarily different antimicrobial activities are discussed along with possible future applications. For polyphenols and antimicrobial agents to be proven safe, adverse health impacts must be substantiated by reliable scientific research as well as in vitro and in vivo clinical data. Future research may be influenced by this evaluation.
Collapse
Affiliation(s)
| | - Abraham J. Domb
- The Alex Grass Center for Drug Design & Synthesis and the Center for Cannabis Research, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| |
Collapse
|
3
|
Radeva L, Yordanov Y, Spassova I, Kovacheva D, Tibi IPE, Zaharieva MM, Kaleva M, Najdenski H, Petrov PD, Tzankova V, Yoncheva K. Incorporation of Resveratrol-Hydroxypropyl-β-Cyclodextrin Complexes into Hydrogel Formulation for Wound Treatment. Gels 2024; 10:346. [PMID: 38786263 PMCID: PMC11121020 DOI: 10.3390/gels10050346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
Resveratrol could be applied in wound healing therapies because of its antioxidant, anti-inflammatory and antibacterial effects. However, the main limitation of resveratrol is its low aqueous solubility. In this study, resveratrol was included in hydroxypropyl-β-cyclodextrin complexes and further formulated in Pluronic F-127 hydrogels for wound treatment therapy. IR-spectroscopy and XRD analysis confirmed the successful incorporation of resveratrol into complexes. The wound-healing ability of these complexes was estimated by a scratch assay on fibroblasts, which showed a tendency for improvement of the effect of resveratrol after complexation. The antimicrobial activity of resveratrol in aqueous dispersion and in the complexes was evaluated on methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Candida albicans strains. The results revealed a twofold decrease in the MIC and stronger inhibition of the metabolic activity of MRSA after treatment with resveratrol in the complexes compared to the suspended drug. Furthermore, the complexes were included in Pluronic hydrogel, which provided efficient drug release and appropriate viscoelastic properties. The formulated hydrogel showed excellent biocompatibility which was confirmed via skin irritation test on rabbits. In conclusion, Pluronic hydrogel containing resveratrol included in hydroxypropyl-β-cyclodextrin complexes is a promising topical formulation for further studies directed at wound therapy.
Collapse
Affiliation(s)
- Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Yordan Yordanov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Maya M. Zaharieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Mila Kaleva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Virginia Tzankova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | | |
Collapse
|
4
|
Salla M, Karaki N, El Kaderi B, Ayoub AJ, Younes S, Abou Chahla MN, Baksh S, El Khatib S. Enhancing the Bioavailability of Resveratrol: Combine It, Derivatize It, or Encapsulate It? Pharmaceutics 2024; 16:569. [PMID: 38675230 PMCID: PMC11053528 DOI: 10.3390/pharmaceutics16040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Overcoming the limited bioavailability and extensive metabolism of effective in vitro drugs remains a challenge that limits the translation of promising drugs into clinical trials. Resveratrol, despite its well-reported therapeutic benefits, is not metabolically stable and thus has not been utilized as an effective clinical drug. This is because it needs to be consumed in large amounts to overcome the burdens of bioavailability and conversion into less effective metabolites. Herein, we summarize the more relevant approaches to modify resveratrol, aiming to increase its biological and therapeutic efficacy. We discuss combination therapies, derivatization, and the use of resveratrol nanoparticles. Interestingly, the combination of resveratrol with established chemotherapeutic drugs has shown promising therapeutic effects on colon cancer (with oxaliplatin), liver cancer (with cisplatin, 5-FU), and gastric cancer (with doxorubicin). On the other hand, derivatizing resveratrol, including hydroxylation, amination, amidation, imidation, methoxylation, prenylation, halogenation, glycosylation, and oligomerization, differentially modifies its bioavailability and could be used for preferential therapeutic outcomes. Moreover, the encapsulation of resveratrol allows its trapping within different forms of shells for targeted therapy. Depending on the nanoparticle used, it can enhance its solubility and absorption, increasing its bioavailability and efficacy. These include polymers, metals, solid lipids, and other nanoparticles that have shown promising preclinical results, adding more "hype" to the research on resveratrol. This review provides a platform to compare the different approaches to allow directed research into better treatment options with resveratrol.
Collapse
Affiliation(s)
- Mohamed Salla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada
| | - Nadine Karaki
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
- Department of Chemistry and Biochemistry, Faculty of Arts and Sciences, Lebanese University, Zahlé 1801, Lebanon
| | - Belal El Kaderi
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
| | - Abeer J. Ayoub
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
| | - Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon;
- INSPECT-LB (National Institute of Public Health, Clinical Epidemiology and Toxicology-Lebanon (INSPECT-LB)), Beirut 1103, Lebanon
| | - Maya N. Abou Chahla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
| | - Shairaz Baksh
- BioImmuno Designs, 4747 154 Avenue, Edmonton, AB T5Y 0C2, Canada;
- Bio-Stream Diagnostics, 2011 94 Street, Edmonton, AB T6H 1N1, Canada
| | - Sami El Khatib
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
- Department of Biomedical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| |
Collapse
|
5
|
Chen ZH, Guan M, Zhao WJ. Effects of resveratrol on macrophages after phagocytosis of Candida glabrata. Int J Med Microbiol 2023; 313:151589. [PMID: 37952279 DOI: 10.1016/j.ijmm.2023.151589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023] Open
Abstract
Candida glabrata is believed to be the underlying cause of many human ailments, including oral, gastrointestinal, and vaginal disorders. C. glabrata-caused deep-seated infections, coupled with its resistance to antifungal drugs, may contribute to a high mortality rate. Resveratrol is a polyphenol and can achieve better therapeutic effects when administered in combination with micafungin, but the underlying molecular mechanisms remain unknown. Here, we investigate the effects of varying doses of resveratrol on the proliferation, apoptosis, and activity of macrophages, which were co-cultured with micafungin-pretreated C. glabrata. Resveratrol can restore the decreased proliferative activity of macrophages caused by the phagocytosis of C. glabrata. Further investigations demonstrated that this restoration ability exhibited a dose-dependent manner, reaching the highest level at 200 µM of resveratrol. Resveratrol tended to be more effective in inhibiting macrophage apoptosis and reducing reactive oxygen species (ROS) levels with concentration increases. In addition, at medium concentrations, resveratrol may down-regulate the expression of most inflammatory cytokines, whereas at high concentrations, it started to exert pro-inflammatory functions by up-regulating their expressions. Macrophages may shift from an anti-inflammatory (M2) phenotype to an inflammatory (M1) phenotype by resveratrol at 200 µM, and from M1 to M2 at 400 µM. Our research shows that resveratrol with micafungin are effective in treating C. glabrata infections. The resveratrol-micafungin combination can reduce the production of ROS, and promote the proliferation, inhibit the apoptosis, and activate the polarization of macrophages in a dose-dependent manner. This study offers insights into how this combination works and may provide possible direction for further clinical application of the combination.
Collapse
Affiliation(s)
- Zong-Han Chen
- Yunnan University of Chinese Medicine, Kunming 650500, Yunnan, China
| | - Meng Guan
- Ophthalmology Department, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Wei-Jia Zhao
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China.
| |
Collapse
|
6
|
Kluska M, Jabłońska J, Prukała W. Analytics, Properties and Applications of Biologically Active Stilbene Derivatives. Molecules 2023; 28:molecules28114482. [PMID: 37298957 DOI: 10.3390/molecules28114482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Stilbene and its derivatives belong to the group of biologically active compounds. Some derivatives occur naturally in various plant species, while others are obtained by synthesis. Resveratrol is one of the best-known stilbene derivatives. Many stilbene derivatives exhibit antimicrobial, antifungal or anticancer properties. A thorough understanding of the properties of this group of biologically active compounds, and the development of their analytics from various matrices, will allow for a wider range of applications. This information is particularly important in the era of increasing incidence of various diseases hitherto unknown, including COVID-19, which is still present in our population. The purpose of this study was to summarize information on the qualitative and quantitative analysis of stilbene derivatives, their biological activity, potential applications as preservatives, antiseptics and disinfectants, and stability analysis in various matrices. Optimal conditions for the analysis of the stilbene derivatives in question were developed using the isotachophoresis technique.
Collapse
Affiliation(s)
- Mariusz Kluska
- Faculty of Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Joanna Jabłońska
- Faculty of Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Wiesław Prukała
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
7
|
Raschig M, Ramírez-Zavala B, Wiest J, Saedtler M, Gutmann M, Holzgrabe U, Morschhäuser J, Meinel L. Azobenzene derivatives with activity against drug-resistant Candida albicans and Candida auris. Arch Pharm (Weinheim) 2023; 356:e2200463. [PMID: 36403201 DOI: 10.1002/ardp.202200463] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022]
Abstract
Increasing resistance against antimycotic drugs challenges anti-infective therapies today and contributes to the mortality of infections by drug-resistant Candida species and strains. Therefore, novel antifungal agents are needed. A promising approach in developing new drugs is using naturally occurring molecules as lead structures. In this work, 4,4'-dihydroxyazobenzene, a compound structurally related to antifungal stilbene derivatives and present in Agaricus xanthodermus (yellow stainer), served as a starting point for the synthesis of five azobenzene derivatives. These compounds prevented the growth of both fluconazole-susceptible and fluconazole-resistant Candida albicans and Candida auris strains. Further in vivo studies are required to confirm the potential therapeutic value of these compounds.
Collapse
Affiliation(s)
- Martina Raschig
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Bernardo Ramírez-Zavala
- Institute for Molecular Infection Biology (IMIB), University of Wuerzburg, Wuerzburg, Germany
| | - Johannes Wiest
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Marco Saedtler
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Marcus Gutmann
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology (IMIB), University of Wuerzburg, Wuerzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Wuerzburg, Germany.,Helmholtz Institute for RNA-Based Infection Biology (HIRI), Wuerzburg, Germany
| |
Collapse
|
8
|
Wang Y, Hong C, Wu Z, Li S, Xia Y, Liang Y, He X, Xiao X, Tang W. Resveratrol in Intestinal Health and Disease: Focusing on Intestinal Barrier. Front Nutr 2022; 9:848400. [PMID: 35369090 PMCID: PMC8966610 DOI: 10.3389/fnut.2022.848400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
The integrity of intestinal barrier determines intestinal homeostasis, which could be affected by various factors, like physical, chemical, and biological stimuli. Therefore, it is of considerable interest and importance to maintain intestinal barrier function. Fortunately, many plant polyphenols, including resveratrol, could affect the health of intestinal barrier. Resveratrol has many biological functions, such as antioxidant, anti-inflammation, anti-tumor, and anti-cardiovascular diseases. Accumulating studies have shown that resveratrol affects intestinal tight junction, microbial composition, and inflammation. In this review, we summarize the effects of resveratrol on intestinal barriers as well as the potential mechanisms (e.g., inhibiting the growth of pathogenic bacteria and fungi, regulating the expression of tight junction proteins, and increasing anti-inflammatory T cells while reducing pro-inflammatory T cells), and highlight the applications of resveratrol in ameliorating various intestinal diseases.
Collapse
Affiliation(s)
- Youxia Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Changming Hong
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zebiao Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuwei Li
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd., Chengdu, China
| | - Yaoyao Xia
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yuying Liang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaohua He
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xinyu Xiao
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtech Feed Co., Ltd., Chengdu, China
- *Correspondence: Wenjie Tang
| |
Collapse
|
9
|
Kodeš Z, Vrublevskaya M, Kulišová M, Jaroš P, Paldrychová M, Pádrová K, Lokočová K, Palyzová A, Maťátková O, Kolouchová I. Composition and Biological Activity of Vitis vinifera Winter Cane Extract on Candida Biofilm. Microorganisms 2021; 9:microorganisms9112391. [PMID: 34835515 PMCID: PMC8622486 DOI: 10.3390/microorganisms9112391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 01/30/2023] Open
Abstract
Vitis vinifera canes are waste material of grapevine pruning and thus represent cheap source of high-value polyphenols. In view of the fact that resistance of many pathogenic microorganisms to antibiotics is a growing problem, the antimicrobial activity of plant polyphenols is studied as one of the possible approaches. We have investigated the total phenolic content, composition, antioxidant activity, and antifungal activity against Candida biofilm of an extract from winter canes and a commercially available extract from blue grapes. Light microscopy and confocal microscopy imaging as well as crystal violet staining were used to quantify and visualize the biofilm. We found a decrease in cell adhesion to the surface depending on the concentration of resveratrol in the cane extract. The biofilm formation was observed as metabolic activity of Candida albicans, Candida parapsilosis and Candida krusei biofilm cells and the minimum biofilm inhibitory concentrations were determined. The highest inhibition of metabolic activity was observed in Candida albicans biofilm after treatment with the cane extract (30 mg/L) and blue grape extract (50 mg/L). The composition of cane extract was analyzed and found to be comparatively different from blue grape extract. In addition, the content of total phenolic groups in cane extract was three-times higher (12.75 gGA/L). The results showed that cane extract was more effective in preventing biofilm formation than blue grape extract and winter canes have proven to be a potential source of polyphenols for antimicrobial and antibiofilm treatment.
Collapse
Affiliation(s)
- Zdeněk Kodeš
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Maria Vrublevskaya
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Markéta Kulišová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Petr Jaroš
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic;
| | - Martina Paldrychová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Karolína Pádrová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Kristýna Lokočová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
- Correspondence:
| | - Andrea Palyzová
- Institute of Microbiology, Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Olga Maťátková
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Irena Kolouchová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| |
Collapse
|
10
|
Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF, Amir RM, Dai DF, Naveed M, Li QY, Saeed M, Shen JQ, Rajput SA, Li JH. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143:112164. [PMID: 34649335 DOI: 10.1016/j.biopha.2021.112164] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022] Open
Abstract
Resveratrol (RV) is a well-known polyphenolic compound in various plants, including grape, peanut, and berry fruits, which is quite famous for its association with several health benefits such as anti-obesity, cardioprotective neuroprotective, antitumor, antidiabetic, antioxidants, anti-age effects, and glucose metabolism. Significantly, promising therapeutic properties have been reported in various cancer, neurodegeneration, and atherosclerosis and are regulated by several synergistic pathways that control oxidative stress, cell death, and inflammation. Similarly, RV possesses a strong anti-adipogenic effect by inhibiting fat accumulation processes and activating oxidative and lipolytic pathways, exhibiting their cardioprotective effects by inhibiting platelet aggregation. The RV also shows significant antibacterial effects against various food-borne pathogens (Listeria, Campylobacter, Staphylococcus aureus, and E. coli) by inhibiting an electron transport chain (ETC) and F0F1-ATPase, which decreases the production of cellular energy that leads to the spread of pathogens. After collecting and analyzing scientific literature, it may be concluded that RV is well tolerated and favorably affects cardiovascular, neurological, and diabetic disorders. As such, it is possible that RV can be considered the best nutritional additive and a complementary drug, especially a therapeutic candidate. Therefore, this review would increase knowledge about the blend of RV as well as inspire researchers around the world to consider RV as a pharmaceutical drug to combat future health crises against various inhumane diseases. In the future, this article will be aware of discoveries about the potential of this promising natural compound as the best nutraceuticals and therapeutic drugs in medicine.
Collapse
Affiliation(s)
- Li-Xue Zhang
- School of Medicine, Northwest Minzu University, Lanzhou 730030, China
| | - Chang-Xing Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences, Uthal 90150, Balochistan, Pakistan
| | - Muhammad Sajjad Khan
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan.
| | - Pei-Feng Wu
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Rai Muhammad Amir
- Institute of Food and Nutritional Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Dong-Fang Dai
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qin-Yuan Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Muhammad Saeed
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur 6300, Pakistan
| | - Ji-Qiang Shen
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Li
- Department of Human Anatomy, Medical College of Qinghai University, 810000 Xining, China.
| |
Collapse
|
11
|
Sun FJ, Li M, Gu L, Wang ML, Yang MH. Recent progress on anti-Candida natural products. Chin J Nat Med 2021; 19:561-579. [PMID: 34419257 DOI: 10.1016/s1875-5364(21)60057-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 12/18/2022]
Abstract
Candida is an intractable life-threatening pathogen. Candida infection is extremely difficult to eradicate, and thus is the major cause of morbidity and mortality in immunocompromised individuals. Morevover, the rapid spread of drug-resistant fungi has led to significant decreases in the therapeutic effects of clinical drugs. New anti-Candida agents are urgently needed to solve the complicated medical problem. Natural products with intricate structures have attracted great attention of researchers who make every endeavor to discover leading compounds for antifungal agents. Their novel mechanisms and diverse modes of action expand the variety of fungistatic agents and reduce the emergence of drug resistance. In recent decades, considerable effort has been devoted to finding unique antifungal agents from nature and revealing their unusual mechanisms, which results in important progress on the development of new antifungals, such as the novel cell wall inhibitors YW3548 and SCY-078 which are being tested in clinical trials. This review will present a brief summary on the landscape of anti-Candida natural products within the last decade. We will also discuss in-depth the research progress on diverse natural fungistatic agents along with their novel mechanisms.
Collapse
Affiliation(s)
- Fu-Juan Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Min Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Gu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ming-Ling Wang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ming-Hua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Kaur A, Tiwari R, Tiwari G, Ramachandran V. Resveratrol: A Vital Therapeutic Agent with Multiple Health Benefits. Drug Res (Stuttg) 2021; 72:5-17. [PMID: 34412126 DOI: 10.1055/a-1555-2919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Resveratrol (RSV), the most effective stilbene phytoalexin synthesized naturally or induced in plants as part of their defense mechanism, is a key component of natural phenolic compounds and is being considered as a treatment option for a variety of diseases. RSV was discovered in the skin of red grapes, mulberries, peanuts, pines, and Polygonum cuspidatum weed root extracts. It was first extracted from white hellebore (Veratrum grandiflorum O. Loes) roots in 1940, then from Polygonum cuspidatum roots in 1963. However, RSV's use as a drug is limited due to its initial conformational strength and poor stability. The research focused on a set of RSV biological activity data. RSV has been the subject of growing concern, despite its wide range of biological and therapeutic applications. According to the literature, RSV has antioxidant, anti-cancer, cardioprotective, neuroprotective, anti- inflammatory, anti-microbial, immunomodulatory, and radioprotective properties. The current analysis summarized biological applications of RSV, their mechanisms of action, and recent scientific development in the area of their delivery. It is possible to infer that RSV has many effects on infected cells' cellular functions.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh, India
| | - Ruchi Tiwari
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh, India
| | - Gaurav Tiwari
- Institute of Pharmacy, Pranveer Singh Institute of Technology, Bhauti, Kanpur, Uttar Pradesh, India
| | - Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
13
|
Mattio L, Catinella G, Iriti M, Vallone L. Inhibitory activity of stilbenes against filamentous fungi. Ital J Food Saf 2021; 10:8461. [PMID: 33907682 PMCID: PMC8056452 DOI: 10.4081/ijfs.2021.8461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Stilbenoids (resveratrol and its derivatives) are secondary metabolites produced by plants as defence mechanism to microbial infection. These compounds are known for their anti-inflammatory action and health benefits in preventing a wide range of disorders (e.g. cancer and cardiovascular diseases). However, their antimicrobial properties are less investigated. A series of 8 stilbenoid compounds were synthesized and their antifungal activity against 19 wild strains of filamentous fungi and yeasts (isolated from the environment and food) was tested in vitro. Using an agar diffusion assay, compounds were tested at the concentration of 100 μg/ml on filamentous fungi and yeasts at 104 CFU/ml. The results showed that tested derivatives possess moderate antifungal activity: in particular, monomeric stilbenoids 3'-hydroxy-pterostilbene and piceatannol, and dimeric stilbenoids (±)-trans-δ-viniferin and pallidol were active against mycotoxigenic fungi.
Collapse
Affiliation(s)
- Luce Mattio
- Department of Food, Environmental and Nutritional Sciences, University of Milan
| | - Giorgia Catinella
- Department of Food, Environmental and Nutritional Sciences, University of Milan
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, University of Milan
| | - Lisa Vallone
- Department of Health, Animal Science and Food Safety "Carlo Cantoni", University of Milan (VESPA), Italy
| |
Collapse
|
14
|
Abedini E, Khodadadi E, Zeinalzadeh E, Moaddab SR, Asgharzadeh M, Mehramouz B, Dao S, Samadi Kafil H. A Comprehensive Study on the Antimicrobial Properties of Resveratrol as an Alternative Therapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8866311. [PMID: 33815561 PMCID: PMC7987421 DOI: 10.1155/2021/8866311] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/16/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Resveratrol is a polyphenolic antioxidant whose possible health benefits include anticarcinogenic, antiaging, and antimicrobial properties that have gained significant attention. The compound is well accepted by individuals and has been commonly used as a nutraceutical in recent decades. Its widespread usage makes it essential to study as a single agent as well as in combination with traditional prescription antibiotics as regards to antimicrobial properties. Resveratrol demonstrates the action of antimicrobials against a remarkable bacterial diversity, viruses, and fungus. This report explains resveratrol as an all-natural antimicrobial representative. It may modify the bacterial virulence qualities resulting in decreased toxic substance production, biofilm inhibition, motility reduction, and quorum sensing disturbance. Moreover, in conjunction with standard antibiotics, resveratrol improves aminoglycoside efficacy versus Staphylococcus aureus, while it antagonizes the deadly function of fluoroquinolones against S. aureus and also Escherichia coli. The present study aimed to thoroughly review and study the antimicrobial potency of resveratrol, expected to help researchers pave the way for solving antimicrobial resistance.
Collapse
Affiliation(s)
- Ehsan Abedini
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Zeinalzadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Pharmaceutical Nanotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramouz
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sounkalo Dao
- Faculté de Médecine, de Pharmacie et d'Odonto-Stomatologie (FMPOS), University of Bamako, Bamako, Mali
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Gharibpour F, Shirban F, Bagherniya M, Nosouhian M, Sathyapalan T, Sahebkar A. The Effects of Nutraceuticals and Herbal Medicine on Candida albicans in Oral Candidiasis: A Comprehensive Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:225-248. [PMID: 33861447 DOI: 10.1007/978-3-030-64872-5_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Candida albicans is part of the healthy flora in the oral cavity. It can also cause opportunistic infection, which can be deleterious. The most typical type of chronic oral candidiasis is denture stomatitis, and C. albicans is identified as the most crucial organism in this situation. Due to the development of the resistant form of candida, using conventional drugs can sometimes be ineffective. Herbs and naturally imitative bioactive compounds could become a new source for antimycotic therapy. Several review studies suggest that herbal medicine and natural bioactive compounds have antibacterial, antiviral and antifungal effects. Thus, it is hypothesized that these natural products might have beneficial effects on pathogenic oral fungal flora such as C. albicans. Although the effects of herbs have been investigated as antifungal agents in several studies, to the best of our knowledge, the effects of these natural products on C. albicans have not yet been reviewed. Thus, the aim of this study was to review the anti-candida activity (especially C. albicans in oral candidiasis) of herbal medicines and natural bioactive compounds. It is concluded that, in general, medicinal plants and nutraceuticals such as garlic, green tea, propolis, curcumin, licorice root, cinnamon, resveratrol, ginger, and berberine are useful in the treatment of C. albicans in oral candidiasis and could be considered as a safe, accessible, and inexpensive management option in an attempt to prevent and treat oral diseases. However, most of the evidence is based on the in vitro and animal studies, so more clinical trials are needed.
Collapse
Affiliation(s)
- Fateme Gharibpour
- Post graduate, Dental students, Research Committee, Department of Orthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farinaz Shirban
- Dental Research Center, Department of Orthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Nosouhian
- Post graduate, Dental students, Research Committee, Department of Orthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
16
|
Wongshaya P, Chayjarung P, Tothong C, Pilaisangsuree V, Somboon T, Kongbangkerd A, Limmongkon A. Effect of light and mechanical stress in combination with chemical elicitors on the production of stilbene compounds and defensive responses in peanut hairy root culture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:93-104. [PMID: 33096514 DOI: 10.1016/j.plaphy.2020.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Plants encounter diverse stressors simultaneously with changing environmental factors. The combined effect of different types of stresses can have a wide range of effects on plants. The present study demonstrated that various stress factors such as the combination of chemical elicitors, namely paraquat (PQ), methyl jasmonate (MeJA) and methyl-β-cyclodextrin (CD), light exposure versus darkness, and mechanical shearing stress affected the defence response in peanut hairy root culture. The antioxidant activities were dramatically increased at all time points after hairy roots were subjected to elicitation with PQ + MeJA + CD under root cutting in both light and dark conditions. The stilbene compounds were highly increased in the culture medium after elicitor treatment of uncut hairy roots under dark conditions. In contrast to the high stilbene contents detected in culture medium under dark conditions, the transcription of the stilbene biosynthesis genes PAL, RS and RS3 was enhanced by the effect of light in uncut hairy root tissues. The antioxidant enzyme genes APX, GPX and CuZn-SOD of uncut and cut hairy roots were more highly expressed in light conditions than in dark conditions. The pathogenesis-related protein (PR)-encoding genes chitinase, PR4A, PR5 and PR10 of uncut hairy roots were highly expressed in response to light conditions compared to dark conditions at all time points. Recent evidence of the production of antioxidant stilbene compounds and defence response genes has implicated plant protective functions through defence responses under different stress challenges. Plant responses might therefore be regulated by the coordination of different signal responses through dynamic pathways.
Collapse
Affiliation(s)
- Pakwuan Wongshaya
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Phadtraphorn Chayjarung
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Chonnikan Tothong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Vijakhana Pilaisangsuree
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Thapakorn Somboon
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Anupan Kongbangkerd
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Apinun Limmongkon
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
17
|
Simonetti G, Brasili E, Pasqua G. Antifungal Activity of Phenolic and Polyphenolic Compounds from Different Matrices of Vitis vinifera L. against Human Pathogens. Molecules 2020; 25:E3748. [PMID: 32824589 PMCID: PMC7464220 DOI: 10.3390/molecules25163748] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Phenolic compounds, the most widely distributed class of natural products in the plants, show several biological properties including antifungal activity. Phenolics contained in grapes can be classified in two main groups, flavonoids and non-flavonoids compounds. Variability and yield extraction of phenolic and polyphenolic compounds from different matrices of Vitis vinifera depends of cultivar, climate, soil condition and process technology. Unripe grapes, berry skins and seeds, leaves, canes and stems and not-fermented and fermented pomaces represent large reusable and valuable wastes from agricultural and agro-industrial processes. This review summarizes studies that examine the extraction method, chemical characterization, and antifungal activity of phenolic and polyphenolic compounds from edible and non-edible V. vinifera matrices against human fungal pathogens. In the world, around one billion people have fungal diseases related to skin, nail or hair and around 150 million have systemic diseases caused by fungi. Few studies on antifungal activity of plant extracts have been performed. This review provides useful information for the application of V. vinifera phenolics in the field of antifungals for human use.
Collapse
Affiliation(s)
| | | | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, P. Aldo Moro 5, 00185 Rome, Italy; (G.S.); (E.B.)
| |
Collapse
|
18
|
Malaguarnera M, Khan H, Cauli O. Resveratrol in Autism Spectrum Disorders: Behavioral and Molecular Effects. Antioxidants (Basel) 2020; 9:E188. [PMID: 32106489 PMCID: PMC7139867 DOI: 10.3390/antiox9030188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (RSV) is a polyphenolic stillbenoid with significant anti-oxidative and anti-inflammatory properties recently tested in animal models of several neurological diseases. Altered immune alteration and oxidative stress have also been found in patients with autism spectrum disorders (ASD), and these alterations could add to the pathophysiology associated with ASD. We reviewed the current evidence about the effects of RSV administration in animal models and in patients with ASD. RSV administration improves the core-symptoms (social impairment and stereotyped activity) in animal models and it also displays beneficial effects in other behavioral abnormalities such as hyperactivity, anxiety and cognitive function. The molecular mechanisms by which RSV restores or improves behavioral abnormalities in animal models encompass both normalization of central and peripheral immune alteration and oxidative stress markers and new molecular mechanisms such as expression of cortical gamma-amino butyric acid neurons, certain type of miRNAs that regulate spine growth. One randomized, placebo-controlled clinical trial (RCT) suggested that RSV add-on risperidone therapy improves comorbid hyperactivity/non-compliance, whereas no effects where seen in core symptoms of ASD No RCTs about the effect of RSV as monotherapy have been performed and the results from preclinical studies encourage its feasibility. Further clinical trials should also identify those ASD patients with immune alterations and/or with increased oxidative stress markers that would likely benefit from RSV administration.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Research Center “The Great Senescence”, University of Catania, 95100 Catania, Italy;
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Marden 23200, Pakistan;
| | - Omar Cauli
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
- Frailty and Cognitive Impairment Group (FROG), University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
19
|
DAŞ T, DAŞ G, KAPMAZ M. Resveratrolün Staphylococcus Aereus, Escherichia Coli, Pseudomonas Aeruginosa ve Candida Albicans Üzerindeki Antibakteryel ve Antifungal Etkilerinin in Vitro olarak Değerlendirilmesi. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2019. [DOI: 10.38079/igusabder.536195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
20
|
Vestergaard M, Ingmer H. Antibacterial and antifungal properties of resveratrol. Int J Antimicrob Agents 2019; 53:716-723. [PMID: 30825504 DOI: 10.1016/j.ijantimicag.2019.02.015] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 12/30/2022]
Abstract
Resveratrol is a naturally occurring polyphenolic antioxidant that has received massive attention for its potential health benefits, including anticarcinogenesis, anti-aging and antimicrobial properties. The compound is well tolerated by humans and in recent years has been widely used as a nutraceutical. Its common use makes it interesting to investigate with respect to antimicrobial properties both as a single agent and in combination with conventional antibiotics. Resveratrol displays antimicrobial activity against a surprisingly wide range of bacterial, viral and fungal species. At subinhibitory concentrations, resveratrol can alter bacterial expression of virulence traits leading to reduced toxin production, inhibition of biofilm formation, reduced motility and interference with quorum sensing. In combination with conventional antibiotics, resveratrol enhances the activity of aminoglycosides against Staphylococcus aureus, whereas it antagonises the lethal activity of fluoroquinolones against S. aureus and Escherichia coli. Whilst the antimicrobial properties of the compound have been extensively studied in vitro, little is known about its efficacy in vivo. Nonetheless, following topical application resveratrol has alleviated acne lesions caused by the bacterium Propionibacterium acnes. There are currently no in vivo studies addressing its effect in combination with antibiotics, but recent research suggests that there may be a potential for enhancing the antimicrobial efficacy of certain existing antibiotic classes in combination with resveratrol. Given the difficulties associated with introducing new antimicrobial agents to the market, nutraceuticals such as resveratrol may prove to be interesting candidates when searching for solutions for the growing problem of antimicrobial resistance.
Collapse
Affiliation(s)
- Martin Vestergaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
21
|
De Filippis B, Ammazzalorso A, Amoroso R, Giampietro L. Stilbene derivatives as new perspective in antifungal medicinal chemistry. Drug Dev Res 2019; 80:285-293. [PMID: 30790326 DOI: 10.1002/ddr.21525] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/01/2023]
Abstract
The high incidence and mortality of invasive fungal infections and serious drug resistance have become a global public health issue. There is an urgent need for alternative antimicrobials to control fungal infections and targeting it by antifungal substances from the natural sources represents a promising new strategy for the development of novel antifungal agents. Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a phytoalexin produced by plant species in response to environmental stress or pathogenic attacks. It has many known and potential therapeutic applications in human general homeostasis; it mediates a great number of biological responses relevant for human health such as anticancer, cardio and neuroprotective, antioxidant, and antimicrobial activities. Resveratrol is a natural antifungal agent, therefore it can be considered as a scaffold for designing structural relatives potentially capable of mediating more intense responses in a more specific way. Also, stilbenes produced by several plants may be useful lead structure for the chemical synthesis of antifungal. Their antifungal potential represents a useful solution to the drug resistance and side effect complications that occur after pharmacological treatment of infectious diseases. The purpose of this review is to present an overview on resveratrol derivatives, both natural and synthetic, with antifungal activity and summarize the chemical structure and the therapeutic versatility of stilbene-containing compounds.
Collapse
Affiliation(s)
| | | | - Rosa Amoroso
- Dipartimento di Farmacia, Università "G. d'Annunzio", Chieti, Italy
| | | |
Collapse
|
22
|
Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou PVT, Martins N, Sharifi-Rad J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018; 6:E91. [PMID: 30205595 PMCID: PMC6164842 DOI: 10.3390/biomedicines6030091] [Citation(s) in RCA: 526] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) belongs to polyphenols' stilbenoids group, possessing two phenol rings linked to each other by an ethylene bridge. This natural polyphenol has been detected in more than 70 plant species, especially in grapes' skin and seeds, and was found in discrete amounts in red wines and various human foods. It is a phytoalexin that acts against pathogens, including bacteria and fungi. As a natural food ingredient, numerous studies have demonstrated that resveratrol possesses a very high antioxidant potential. Resveratrol also exhibit antitumor activity, and is considered a potential candidate for prevention and treatment of several types of cancer. Indeed, resveratrol anticancer properties have been confirmed by many in vitro and in vivo studies, which shows that resveratrol is able to inhibit all carcinogenesis stages (e.g., initiation, promotion and progression). Even more, other bioactive effects, namely as anti-inflammatory, anticarcinogenic, cardioprotective, vasorelaxant, phytoestrogenic and neuroprotective have also been reported. Nonetheless, resveratrol application is still being a major challenge for pharmaceutical industry, due to its poor solubility and bioavailability, as well as adverse effects. In this sense, this review summarized current data on resveratrol pharmacological effects.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran 88777539, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 22439789, Iran.
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal 246174, Uttarakhand, India.
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal 246174, Uttarakhand, India.
| | - Bilge Sener
- Gazi University Faculty of Pharmacy Department of Pharmacognosy, Ankara 06330, Turkey.
| | - Mehtap Kilic
- Gazi University Faculty of Pharmacy Department of Pharmacognosy, Ankara 06330, Turkey.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663335, Iran.
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Annex Fac. Sci, P.O. Box. 812, Yaounde-Cameroon.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada.
| |
Collapse
|
23
|
Effect of resveratrol and Regrapex-R-forte on Trichosporon cutaneum biofilm. Folia Microbiol (Praha) 2018; 64:73-81. [PMID: 30062620 DOI: 10.1007/s12223-018-0633-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 07/12/2018] [Indexed: 01/21/2023]
Abstract
Microorganisms that cause chronic infections exist predominantly as surface-attached stable communities known as biofilms. Microbial cells in biofilms are highly resistant to conventional antibiotics and other forms of antimicrobial treatment; therefore, modern medicine tries to develop new drugs that exhibit anti-biofilm activity. We investigated the influence of a plant polyphenolic compound resveratrol (representative of the stilbene family) on the opportunistic pathogen Trichosporon cutaneum. Besides the influence on the planktonic cells of T. cutaneum, the ability to inhibit biofilm formation and to eradicate mature biofilm was studied. We have tested resveratrol as pure compound, as well as resveratrol in complex plant extract-the commercially available dietary supplement Regrapex-R-forte, which contains the extract of Vitis vinifera grape and extract of Polygonum cuspidatum root. Regrapex-R-forte is rich in stilbenes and other biologically active substances. Light microscopy imaging, confocal microscopy, and crystal violet staining were used to quantify and visualize the biofilm. The metabolic activity of biofilm-forming cells was studied by the tetrazolium salt assay. Amphotericin B had higher activity against planktonic cells; however, resveratrol and Regrapex-R-forte showed anti-biofilm effects, both in inhibition of biofilm formation and in the eradication of mature biofilm. The minimum biofilm eradicating concentration (MBEC80) for Regrapex-R-forte was found to be 2222 mg/L (in which resveratrol concentration is 200 mg/L). These methods demonstrated that Regrapex-R-forte can be employed as an anti-biofilm agent, as it has similar effect as amphotericin B (MBEC80 = 700 mg/L), which is routinely used in clinical practice.
Collapse
|
24
|
Hong EH, Heo EY, Song JH, Kwon BE, Lee JY, Park Y, Kim J, Chang SY, Chin YW, Jeon SM, Ko HJ. Trans-scirpusin A showed antitumor effects via autophagy activation and apoptosis induction of colorectal cancer cells. Oncotarget 2018; 8:41401-41411. [PMID: 28489607 PMCID: PMC5522333 DOI: 10.18632/oncotarget.17388] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Trans-Scirpusin A (TSA) is a resveratrol oligomer found in Borassus flabellifer L. We found that TSA inhibited the growth of colorectal cancer Her2/CT26 cells in vivo in mice. Although some cytotoxic T lymphocytes (CTLs) were induced against the tumor-associated antigen Her2, TSA treatment did not significantly increase the level of Her2-specific CTL response compared to that with vehicle treatment. However, there was a significant increase in the level of TNF-α mRNA in tumor tissue and Her2-specific Ab (antibody) production. More importantly, we found that TSA overcomes the tumor-associated immunosuppressive microenvironment by reducing the number of CD25+FoxP3+ regulatory T cells and myeloid-derived suppressor cells (MDSCs). We detected the induction of autophagy in TSA-treated Her2/CT26 cells, based on the increased level of the mammalian autophagy protein LC3 puncta, and increased conversion of LC3-I to LC3-II. Further, TSA induced 5' AMP-activated protein kinase (p-AMPK) (T172) and inhibited mammalian target of rapamycin complex 1 (mTORC1) activity as estimated by phosphorylated ribosomal protein S6 kinase beta-1 (p-p70S6K) levels, thereby suggesting that TSA-mediated AMPK activation and inhibition of mTORC1 pathway might be associated with autophagy induction. TSA also induced apoptosis of Her2/CT26 cells, as inferred by the increased sub-G1 mitotic phases in these cells, Annexin V/PI-double positive results, and TUNEL-positive cells. Finally, we found that the combined treatment of mice with docetaxel and TSA successfully inhibited tumor growth to a greater extent than docetaxel alone. Therefore, we propose the use of TSA for supplementary anticancer therapy to support anti-neoplastic drugs, such as docetaxel, by inducing apoptosis in cancer cells and resulting in the induction of neighborhood anti-cancer immunity.
Collapse
Affiliation(s)
- Eun-Hye Hong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Eun-Young Heo
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Bo-Eun Kwon
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Jae-Young Lee
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea
| | - Yaejeong Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do 16499, Korea
| | - Young-Won Chin
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Gyeonggi-do 10326, Korea
| | - Sang-Min Jeon
- Lab of Cancer Signaling and Metabolism Network, College of Pharmacy, and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do 16499, Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.,Convergence Research Center for Functional Plant Products, Advanced Institutes of Convergence Technology, Yeongtong-gu, Suwon, Gyeonggi-do 16229, Korea
| |
Collapse
|
25
|
Kolouchová I, Maťátková O, Paldrychová M, Kodeš Z, Kvasničková E, Sigler K, Čejková A, Šmidrkal J, Demnerová K, Masák J. Resveratrol, pterostilbene, and baicalein: plant-derived anti-biofilm agents. Folia Microbiol (Praha) 2017; 63:261-272. [DOI: 10.1007/s12223-017-0549-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/11/2017] [Indexed: 01/09/2023]
|
26
|
Vitonyte J, Manca ML, Caddeo C, Valenti D, Peris JE, Usach I, Nacher A, Matos M, Gutiérrez G, Orrù G, Fernàndez-Busquets X, Fadda AM, Manconi M. Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries. Eur J Pharm Biopharm 2017; 114:278-287. [PMID: 28192250 DOI: 10.1016/j.ejpb.2017.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/01/2017] [Accepted: 02/08/2017] [Indexed: 11/25/2022]
Abstract
Resveratrol and gallic acid were co-loaded in phospholipid vesicles aiming at protecting the skin from external injuries, such as oxidative stress and microbial infections. Liposomes were prepared using biocompatible phospholipids dispersed in water. To improve vesicle stability and applicability, the phospholipids and the phenols were dispersed in water/propylene glycol or water/glycerol, thus obtaining PEVs and glycerosomes, respectively. The vesicles were characterized by size, morphology, physical stability, and their therapeutic efficacy was investigated in vitro. The vesicles were spherical, unilamellar and small in size: liposomes and glycerosomes were around 70nm in diameter, while PEVs were larger (∼170nm). The presence of propylene glycol or glycerol increased the viscosity of the vesicle systems, positively affecting their stability. The ability of the vesicles to promote the accumulation of the phenols (especially gallic acid) in the skin was demonstrated, as well as their low toxicity and great ability to protect keratinocytes and fibroblasts from oxidative damage. Additionally, an improvement of the antimicrobial activity of the phenols was shown against different skin pathogens. The co-loading of resveratrol and gallic acid in modified phospholipid vesicles represents an innovative, bifunctional tool for preventing and treating skin affections.
Collapse
Affiliation(s)
- Justina Vitonyte
- Dept. of Clinical Pharmacy, Lithuanian University of Health Sciences, Sukileliu pr. 13, Kaunas, Lithuania
| | - Maria Letizia Manca
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Carla Caddeo
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy.
| | - Donatella Valenti
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Josè Esteban Peris
- Dept. of Pharmacy and Pharmaceutical Technology, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia, Spain
| | - Iris Usach
- Dept. of Pharmacy and Pharmaceutical Technology, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia, Spain
| | - Amparo Nacher
- Dept. of Pharmacy and Pharmaceutical Technology, University of Valencia, Avda Vicente Andrés Estellés s/n, 46100-Burjassot, Valencia, Spain; Instituto de Reconocimiento Molecular y Desarrollo Tecnológico, Centro Mixto Universidad Politécnica de Valencia-Universidad de Valencia, Spain
| | - Maria Matos
- Dept. Ingeniería Química y Tecnología del Medio Ambiente, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Dept. Ingeniería Química y Tecnología del Medio Ambiente, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Germano Orrù
- Dept. of Surgical Science, University of Cagliari, Molecular Biology Service Lab (MBS), via Ospedale 40, 09124 Cagliari, Italy
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, Barcelona E08028, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, Barcelona E08036, Spain
| | - Anna Maria Fadda
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Maria Manconi
- Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
27
|
Lu M, Li T, Wan J, Li X, Yuan L, Sun S. Antifungal effects of phytocompounds on Candida species alone and in combination with fluconazole. Int J Antimicrob Agents 2016; 49:125-136. [PMID: 28040409 DOI: 10.1016/j.ijantimicag.2016.10.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022]
Abstract
Invasive fungal infections caused by Candida spp. remain the most predominant nosocomial fungal infections. Owing to the increased use of antifungal agents, resistance of Candida spp. to antimycotics has emerged frequently, especially to fluconazole (FLC). To cope with this issue, new efforts have been dedicated to discovering novel antimycotics or new agents that can enhance the susceptibility of Candida spp. to existing antimycotics. The secondary metabolites of plants represent a large library of compounds that are important sources for new drugs or compounds suitable for further modification. Research on the anti-Candida activities of phytocompounds has been carried out in recent years and the results showed that a series of phytocompounds have anti-Candida properties, such as phenylpropanoids, flavonoids, terpenoids and alkaloids. Among these phytocompounds, some displayed potent antifungal activity, with minimum inhibitory concentrations (MICs) of ≤8 µg/mL, and several compounds were even more effective against drug-resistant Candida spp. than FLC or itraconazole (e.g. honokiol, magnolol and shikonin). Interestingly, quite a few phytocompounds not only displayed anti-Candida activity alone but also synergised with FLC against Candida spp., even leading to a reversal of FLC resistance. This review focuses on summarising the anti-Candida activities of phytocompounds as well as the interactions of phytocompounds with FLC. In addition, we briefly overview the synergistic mechanisms and present the structure of the antimycotic phytocompounds. Hopefully, this analysis will provide insight into antifungal agent discovery and new approaches against antifungal drug resistance.
Collapse
Affiliation(s)
- Mengjiao Lu
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, China
| | - Tao Li
- Intensive Care Unit, Qianfoshan Hospital affiliated to Shandong University, Jinan, Shandong Province 250014, China
| | - Jianjian Wan
- Department of Respiratory, Yucheng People's Hospital, Yucheng, Shandong Province 251200, China
| | - Xiuyun Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province 250012, China
| | - Lei Yuan
- Department of Pharmacy, Baodi District People's Hospital, Tianjin 301800, China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province 250014, China.
| |
Collapse
|
28
|
Lee J, Lee DG. Novel Antifungal Mechanism of Resveratrol: Apoptosis Inducer in Candida albicans. Curr Microbiol 2014; 70:383-9. [DOI: 10.1007/s00284-014-0734-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 10/13/2014] [Indexed: 11/29/2022]
|
29
|
Houillé B, Papon N, Boudesocque L, Bourdeaud E, Besseau S, Courdavault V, Enguehard-Gueiffier C, Delanoue G, Guérin L, Bouchara JP, Clastre M, Giglioli-Guivarc'h N, Guillard J, Lanoue A. Antifungal activity of resveratrol derivatives against Candida species. JOURNAL OF NATURAL PRODUCTS 2014; 77:1658-1662. [PMID: 25014026 DOI: 10.1021/np5002576] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
trans-Resveratrol (1a) is a phytoalexin produced by plants in response to infections by pathogens. Its potential activity against clinically relevant opportunistic fungal pathogens has previously been poorly investigated. Evaluated herein are the candidacidal activities of oligomers (2a, 3-5) of 1a purified from Vitis vinifera grape canes and several analogues (1b-1j) of 1a obtained through semisynthesis using methylation and acetylation. Moreover, trans-ε-viniferin (2a), a dimer of 1a, was also subjected to methylation (2b) and acetylation (2c) under nonselective conditions. Neither the natural oligomers of 1a (2a, 3-5) nor the derivatives of 2a were active against Candida albicans SC5314. However, the dimethoxy resveratrol derivatives 1d and 1e exhibited antifungal activity against C. albicans with minimum inhibitory concentration (MIC) values of 29-37 μg/mL and against 11 other Candida species. Compound 1e inhibited the yeast-to-hyphae morphogenetic transition of C. albicans at 14 μg/mL.
Collapse
Affiliation(s)
- Benjamin Houillé
- EA 2106 "Biomolécules et Biotechnologie Végétales", UFR des Sciences Pharmaceutiques, Université François Rabelais de Tours , F-37200 Tours, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
In vitro and in vivo activities of pterostilbene against Candida albicans biofilms. Antimicrob Agents Chemother 2014; 58:2344-55. [PMID: 24514088 DOI: 10.1128/aac.01583-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pterostilbene (PTE) is a stilbene-derived phytoalexin that originates from several natural plant sources. In this study, we evaluated the activity of PTE against Candida albicans biofilms and explored the underlying mechanisms. In 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assays, biofilm biomass measurement, confocal laser scanning microscopy, and scanning electron microscopy, we found that ≤16 μg/ml PTE had a significant effect against C. albicans biofilms in vitro, while it had no fungicidal effect on planktonic C. albicans cells, which suggested a unique antibiofilm effect of PTE. Then we found that PTE could inhibit biofilm formation and destroy the maintenance of mature biofilms. At 4 μg/ml, PTE decreased cellular surface hydrophobicity (CSH) and suppressed hyphal formation. Gene expression microarrays and real-time reverse transcription-PCR showed that exposure of C. albicans to 16 μg/ml PTE altered the expression of genes that function in morphological transition, ergosterol biosynthesis, oxidoreductase activity, and cell surface and protein unfolding processes (heat shock proteins). Filamentation-related genes, especially those regulated by the Ras/cyclic AMP (cAMP) pathway, including ECE1, ALS3, HWP1, HGC1, and RAS1 itself, were downregulated upon PTE treatment, indicating that the antibiofilm effect of PTE was related to the Ras/cAMP pathway. Then, we found that the addition of exogenous cAMP reverted the PTE-induced filamentous growth defect. Finally, with a rat central venous catheter infection model, we confirmed the in vivo activity of PTE against C. albicans biofilms. Collectively, PTE had strong activities against C. albicans biofilms both in vitro and in vivo, and these activities were associated with the Ras/cAMP pathway.
Collapse
|
31
|
Piotto S, Concilio S, Sessa L, Porta A, Calabrese EC, Zanfardino A, Varcamonti M, Iannelli P. Small azobenzene derivatives active against bacteria and fungi. Eur J Med Chem 2013; 68:178-84. [DOI: 10.1016/j.ejmech.2013.07.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 06/11/2013] [Accepted: 07/18/2013] [Indexed: 11/16/2022]
|
32
|
Estrela JM, Ortega A, Mena S, Rodriguez ML, Asensi M. Pterostilbene: Biomedical applications. Crit Rev Clin Lab Sci 2013; 50:65-78. [DOI: 10.3109/10408363.2013.805182] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Aryloxyacetamides Derived from Resveratroloside and Pinostilbenoside. MENDELEEV COMMUNICATIONS 2013. [DOI: 10.1016/j.mencom.2013.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Activity and synergistic interactions of stilbenes and antibiotic combinations against bacteria in vitro. World J Microbiol Biotechnol 2012; 28:3143-50. [DOI: 10.1007/s11274-012-1124-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/03/2012] [Indexed: 11/25/2022]
|
35
|
Kingsbury JM, Heitman J, Pinnell SR. Calcofluor white combination antifungal treatments for Trichophyton rubrum and Candida albicans. PLoS One 2012; 7:e39405. [PMID: 22792174 PMCID: PMC3391284 DOI: 10.1371/journal.pone.0039405] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/24/2012] [Indexed: 12/31/2022] Open
Abstract
Superficial mycoses caused by dermatophyte fungi are among the most common infections worldwide, yet treatment is restricted by limited effective drugs available, drug toxicity, and emergence of drug resistance. The stilbene fluorescent brightener calcofluor white (CFW) inhibits fungi by binding chitin in the cell wall, disrupting cell wall integrity, and thus entails a different mechanism of inhibition than currently available antifungal drugs. To identify novel therapeutic options for the treatment of skin infections, we compared the sensitivity of representative strains of the dermatophyte Trichophyton rubrum and Candida albicans to CFW and a panel of fluorescent brighteners and phytoalexin compounds. We identified the structurally related stilbene fluorescent brighteners 71, 85, 113 and 134 as fungicidal to both T. rubrum and C. albicans to a similar degree as CFW, and the stilbene phytoalexins pinosylvan monomethyl ether and pterostilbene inhibited to a lesser degree, allowing us to develop a structure-activity relationship for fungal inhibition. Given the abilities of CFW to absorb UV(365 nm) and bind specifically to fungal cell walls, we tested whether CFW combined with UV(365 nm) irradiation would be synergistic to fungi and provide a novel photodynamic treatment option. However, while both treatments individually were cytocidal, UV(365 nm) irradiation reduced sensitivity to CFW, which we attribute to CFW photoinactivation. We also tested combination treatments of CFW with other fungal inhibitors and identified synergistic interactions between CFW and some ergosterol biosynthesis inhibitors in C. albicans. Therefore, our studies identify novel fungal inhibitors and drug interactions, offering promise for combination topical treatment regimes for superficial mycoses.
Collapse
Affiliation(s)
- Joanne M Kingsbury
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | |
Collapse
|
36
|
Collado-González M, Guirao-Abad JP, Sánchez-Fresneda R, Belchí-Navarro S, Argüelles JC. Resveratrol lacks antifungal activity against Candida albicans. World J Microbiol Biotechnol 2012; 28:2441-6. [PMID: 22806119 DOI: 10.1007/s11274-012-1042-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/15/2012] [Indexed: 01/12/2023]
Abstract
The putative candicidal activity of resveratrol is currently a matter of controversy. Here, the antifungal activity as well as the antioxidant response of resveratrol against Candida albicans, have been tested in a set of strains with a well-established genetic background At the doses usually employed in antifungal tests (10-40 μg/ml), resveratrol has no effect on the exponential growth of the C. albicans CAI.4 strain, a tenfold increase (400 μg/ml) was required in order to record a certain degree of cell killing, which was negligible in comparison with the strong antifungal effect caused by the addition of amphotericin B (5 μg/ml). An identical pattern was recorded in the prototrophic strains of C. albicans SC5314 and RM-100, whereas the oxidative sensitive trehalose-deficient mutant (tps1/tps1 strain) was totally refractory to the presence of resveratrol. In turn, the serum-induced yeast-to-hypha transition remained unaffected upon addition of different concentrations of resveratrol. Determination of endogenous trehalose and catalase activity, two antioxidant markers in C. albicans; revealed no significant changes in their basal contents induced by resveratrol. Collectively, our results seem to dismiss a main antifungal role as well as the therapeutic application of resveratrol against the infections caused by C. albicans.
Collapse
Affiliation(s)
- Mar Collado-González
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, 30071, Murcia, Spain
| | | | | | | | | |
Collapse
|
37
|
Kumar S, Siji J, Rajasekharan K, Nambisan B, Mohandas C. Bioactive stilbenes from a Bacillus sp. N strain associated with a novel rhabditid entomopathogenic nematode. Lett Appl Microbiol 2012; 54:410-7. [DOI: 10.1111/j.1472-765x.2012.03223.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
38
|
Resveratrol as a kcat type inhibitor for tyrosinase: potentiated melanogenesis inhibitor. Bioorg Med Chem 2011; 20:1090-9. [PMID: 22189272 DOI: 10.1016/j.bmc.2011.11.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/09/2011] [Accepted: 11/16/2011] [Indexed: 12/18/2022]
Abstract
Resveratrol exhibited the inhibitory activity against mushroom tyrosinase (EC1.14.18.1) through a k(cat) inhibition. Resveratrol itself did not inhibit tyrosinase but rather was oxidized by tyrosinase. In the enzymatic assays, resveratrol did not inhibit the diphenolase activity of tyrosinase when l-3,4-dihydroxyphenylalanin (L-DOPA) was used as a substrate; however, L-tyrosine oxidation by tyrosinase was suppressed in presence of 100 μM resveratrol. Oxidation of resveratrol and inhibition of L-tyrosine oxidation suggested the inhibitory effects of metabolites of resveratrol on tyrosinase. After the 30 min of preincubation of tyrosinase and resveratrol, both monophenolase and diphenolase activities of tyrosinase were significantly suppressed. This preincubational effect was reduced with the addition of L-cysteine, which indicated k(cat) inhibition or suicide inhibition of resveratrol. Furthermore, investigation was extended to the cellular experiments by using B16-F10 murine melanoma cells. Cellular melanin production was significantly suppressed by resveratrol without any cytotoxicity up to 200 μM. trans-Pinosylvin, cis-pinosylvin, dihydropinosylvin were also tested for a comparison. These results suggest that possible usage of resveratrol as a tyrosinase inhibitor and a melanogenesis inhibitor.
Collapse
|