1
|
Kelson VC, Kiser JN, Davenport KM, Suarez EM, Murdoch BM, Neibergs HL. Identifying Regions of the Genome Associated with Conception Rate to the First Service in Holstein Heifers Bred by Artificial Insemination and as Embryo Transfer Recipients. Genes (Basel) 2024; 15:765. [PMID: 38927701 PMCID: PMC11202900 DOI: 10.3390/genes15060765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Heifer conception rate to the first service (HCR1) is defined as the number of heifers that become pregnant to the first breeding service compared to the heifers bred. This study aimed to identify loci associated and gene sets enriched for HCR1 for heifers that were bred by artificial insemination (AI, n = 2829) or were embryo transfer (ET, n = 2086) recipients, by completing a genome-wide association analysis and gene set enrichment analysis using SNP data (GSEA-SNP). Three unique loci, containing four positional candidate genes, were associated (p < 1 × 10-5) with HCR1 for ET recipients, while the GSEA-SNP identified four gene sets (NES ≥ 3) and sixty-two leading edge genes (LEGs) enriched for HCR1. While no loci were associated with HCR1 bred by AI, one gene set and twelve LEGs were enriched (NES ≥ 3) for HCR1 with the GSEA-SNP. This included one gene (PKD2) shared between HCR1 AI and ET services. Identifying loci associated or enriched for HCR1 provides an opportunity to use them as genomic selection tools to facilitate the selection of cattle with higher reproductive efficiency, and to better understand embryonic loss.
Collapse
Affiliation(s)
- Victoria C. Kelson
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; (V.C.K.); (K.M.D.); (E.M.S.)
| | - Jennifer N. Kiser
- Washington Animal Disease Diagnostics Laboratory, Pullman, WA 99164, USA;
| | - Kimberly M. Davenport
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; (V.C.K.); (K.M.D.); (E.M.S.)
| | - Emaly M. Suarez
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; (V.C.K.); (K.M.D.); (E.M.S.)
| | - Brenda M. Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA;
| | - Holly L. Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA; (V.C.K.); (K.M.D.); (E.M.S.)
| |
Collapse
|
2
|
Brown W, Oliveira M, Reis Silva R, Woodruff K, Bisha B, Demetrio D, Block J. Effects of mycobacterium cell wall fraction on embryo development following in vitro embryo production and pregnancy rates following embryo transfer in virgin dairy heifers. Theriogenology 2024; 215:334-342. [PMID: 38134681 DOI: 10.1016/j.theriogenology.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
An experiment was conducted to determine whether administration of mycobacterium cell wall fraction (MCWF; Amplimune, NovaVive) could enhance embryo developmental competence following in vitro embryo production (IVP) and pregnancy establishment after embryo transfer (ET). Nulliparous, Holstein heifers (n = 40; age 8-15 months) were submitted to two rounds of ovum pick-up (OPU) and IVP in a crossover design. Thirty-six h after follicle wave synchronization, treatments (saline or MCWF, 5 mL, im) were administered in conjunction with a single dose of follicle stimulating hormone (175 IU) and OPU was performed 48-52 h later. Recovered cumulus-oocyte complexes were used for IVP to assess embryo development. For ET, nulliparous, Holstein heifers (n = 225; age 12-18 months) were used as recipients. At 12-24 h after detection of spontaneous estrus, recipients were randomly treated with either saline or MCWF (5 mL, im). The effect of MCWF on pregnancy per ET (P/ET) was assessed in a 2 × 2 factorial design with recipients treated with or without MCWF receiving a fresh IVP embryo from a donor treated with or without MCWF at day 7 or 8 after detected estrus. Blood samples were collected from a subset of donors (n = 8) and recipients (n = 26 to 33 per treatment) prior to treatment and at 6 and 24 h post-treatment to determine serum concentration of interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and interferon-γ. Blood samples were also collected from a group of recipients (n = 31 to 39 per treatment) to assess serum concentration of progesterone at days 4, 7, and 16 post-treatment. Pregnancy status was determined at days 40 and 100 of gestation. Donor treatment with MCWF tended (P < 0.07) to increase the proportion of oocytes that developed into transferable embryos, but there was no effect of MCWF on other parameters of embryo development. The P/ET at days 40 and 100 of gestation and pregnancy loss were not affected by donor treatment or recipient treatment with MCWF and there was no interaction. Serum concentration of proinflammatory cytokines among donors and recipients and serum concentration of progesterone among recipients were not increased by treatment with MCWF. Results of the present study indicate that treatment of donors with MCWF has minimal impact on subsequent embryo development following IVP. Moreover, regardless of whether donors or recipients were treated with MCWF, there was no effect on P/ET following transfer of IVP embryos.
Collapse
Affiliation(s)
- W Brown
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | | | - R Reis Silva
- EVZ, Federal University of Goias, Goiania, GO, Brazil
| | - K Woodruff
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - B Bisha
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | | | - J Block
- Department of Animal Science, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
3
|
Yang X, Gao S, Luo W, Fu W, Xiong Y, Li J, Lan D, Yin S. Dynamic transcriptome analysis of Maiwa yak corpus luteum during the estrous cycle. Anim Biotechnol 2023; 34:4569-4579. [PMID: 36752221 DOI: 10.1080/10495398.2023.2174130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Maiwa yak is a special breed of animal living on the Qinghai-Tibet Plateau, which has great economic value, but its fertility rate is low. The corpus luteum (CL) is a temporary tissue that plays a crucial role in maintaining the physiological cycle. However, little is known about the transcriptome profile in Maiwa yak CL. In the present study, the transcriptome of Maiwa yak CL at early (EYCL), middle (MYCL) and late-stages (LYCL) was studied employing high-throughput sequencing. A total of 25,922 transcripts were identified, including 22,277 known as well as 3,645 novel ones. Furthermore, 690 and 212 differentially expressed (DE) mRNAs were detected in the EYCL vs. MYCL and MYCL vs. LYCL groups, respectively. KEGG pathway enrichment analysis of DEGs illustrated that the most enriched pathway was PI3K-Akt pathway. Furthermore, twenty-six DEGs were totally found to be associated with different biological processes of CL development. One of these genes, PGRMC1, displayed a dynamical expression trend during the lifespan of yak CL. The knockdown of PGRMC1 in luteinized yak granulosa cells resulted in defective steroidogenesis. In conclusion, this study analyzed the transcriptome profiles in yak CL of different stages, and provided a novel database for analyzing the gene network in yak CL.HIGHLIGHTSThe manuscript analyzed the transcriptome profiles in yak CL during the estrous cycle.Twenty-six DEGs were found to be associated with the development or function of CL.One of the DEGs, PGRMC1, was found to be responsible for steroidogenesis in luteinized yak granulosa cells.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shaoshuai Gao
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Wen Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Chengdu, Sichuan, China
- College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
- Key Laboratory of Modem Technology (Southwest Minzu University), State Ethnic Affairs Commission, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Thaqi G, Berisha B, Pfaffl MW. Local Expression Dynamics of Various Adipokines during Induced Luteal Regression (Luteolysis) in the Bovine Corpus Luteum. Animals (Basel) 2023; 13:3221. [PMID: 37893945 PMCID: PMC10603666 DOI: 10.3390/ani13203221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The study aimed to evaluate the mRNA expression levels of various local novel adipokines, including vaspin, adiponectin, visfatin, and resistin, along with their associated receptors, heat shock 70 protein 5, adiponectin receptor 1, and adiponectin receptor 2, in the corpus luteum (CL) during luteal regression, also known as luteolysis, in dairy cows. We selected Fleckvieh cows in the mid-luteal phase (days 8-12, control group) and administered cloprostenol (PGF analog) to experimentally induce luteolysis. We collected CL samples at different time points following PGF application: before treatment (days 8-12, control group) and at 0.5, 2, 4, 12, 24, 48, and 64 h post-treatment (n = 5) per group. The mRNA expression was measured via real-time reverse transcription polymerase chain reaction (RT-qPCR). Vaspin was characterized by high mRNA levels at the beginning of the regression stage, followed by a significant decrease 48 h and 64 h after PGF treatment. Adiponectin mRNA levels were elevated 48 h after PGF. Resistin showed upregulation 4 h post PGF application. In summary, the alterations observed in the adipokine family within experimentally induced regressing CL tissue potentially play an integral role in the local regulatory processes governing the sequence of events culminating in functional luteolysis and subsequent structural changes in the bovine ovary.
Collapse
Affiliation(s)
- Granit Thaqi
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephan, 85354 Munich, Germany; (B.B.); (M.W.P.)
| | - Bajram Berisha
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephan, 85354 Munich, Germany; (B.B.); (M.W.P.)
- Department of Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, 10000 Prishtina, Kosovo
| | - Michael W. Pfaffl
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephan, 85354 Munich, Germany; (B.B.); (M.W.P.)
| |
Collapse
|
5
|
Piau TB, de Queiroz Rodrigues A, Paulini F. Insulin-like growth factor (IGF) performance in ovarian function and applications in reproductive biotechnologies. Growth Horm IGF Res 2023; 72-73:101561. [PMID: 38070331 DOI: 10.1016/j.ghir.2023.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
The role of the insulin-like growth factor (IGF) system has attracted close attention. The activity of IGF binding proteins (IGFBPs) within the ovary has not been fully elucidated to date. These proteins bind to IGF with an equal, or greater, affinity than to the IGF1 receptor, thus being in the main position to regulate IGF signalling, in addition to extending the half-life of IGFs within the bloodstream and promoting IGF storage in specific tissue niches. IGF1 has an important part in cell proliferation, differentiation and apoptosis. Considering the importance of IGFs in oocyte maturation, this review sought to elucidate aspects including: IGF production mechanisms; constituent members of their family and their respective functions; the role that these factors play during folliculogenesis, together with their functions during oocyte maturation and apoptosis, and their performance during luteal development. This review also explores the role of IGFs in biotechnological applications, focusing specifically on animal genetic gain.
Collapse
Affiliation(s)
- Tathyana Benetis Piau
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil
| | - Aline de Queiroz Rodrigues
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil
| | - Fernanda Paulini
- University of Brasília, Institute of Biological Sciences, Department of Physiological Sciences, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
6
|
Monaco CF, Davis JS. Mechanisms of angioregression of the corpus luteum. Front Physiol 2023; 14:1254943. [PMID: 37841308 PMCID: PMC10568036 DOI: 10.3389/fphys.2023.1254943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
The corpus luteum is a transient ovarian endocrine gland that produces the progesterone necessary for the establishment and maintenance of pregnancy. The formation and function of this gland involves angiogenesis, establishing the tissue with a robust blood flow and vast microvasculature required to support production of progesterone. Every steroidogenic cell within the corpus luteum is in direct contact with a capillary, and disruption of angiogenesis impairs luteal development and function. At the end of a reproductive cycle, the corpus luteum ceases progesterone production and undergoes rapid structural regression into a nonfunctional corpus albicans in a process initiated and exacerbated by the luteolysin prostaglandin F2α (PGF2α). Structural regression is accompanied by complete regression of the luteal microvasculature in which endothelial cells die and are sloughed off into capillaries and lymphatic vessels. During luteal regression, changes in nitric oxide transiently increase blood flow, followed by a reduction in blood flow and progesterone secretion. Early luteal regression is marked by an increased production of cytokines and chemokines and influx of immune cells. Microvascular endothelial cells are sensitive to released factors during luteolysis, including thrombospondin, endothelin, and cytokines like tumor necrosis factor alpha (TNF) and transforming growth factor β 1 (TGFB1). Although PGF2α is known to be a vasoconstrictor, endothelial cells do not express receptors for PGF2α, therefore it is believed that the angioregression occurring during luteolysis is mediated by factors downstream of PGF2α signaling. Yet, the exact mechanisms responsible for angioregression in the corpus luteum remain unknown. This review describes the current knowledge on angioregression of the corpus luteum and the roles of vasoactive factors released during luteolysis on luteal vasculature and endothelial cells of the microvasculature.
Collapse
Affiliation(s)
- Corrine F. Monaco
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
| | - John S. Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
- US Department of Veterans Affairs Nebraska-Western Iowa Healthcare System, Omaha, NE, United States
| |
Collapse
|
7
|
Thaqi G, Berisha B, Pfaffl MW. Expression of Locally Produced Adipokines and Their Receptors during Different Physiological and Reproductive Stages in the Bovine Corpus Luteum. Animals (Basel) 2023; 13:1782. [PMID: 37889693 PMCID: PMC10251875 DOI: 10.3390/ani13111782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 10/05/2023] Open
Abstract
This study aimed to determine the gene expression of different local novel adipokines, such as vaspin, adiponectin, visfatin, and resistin, and their known receptors, namely, heat shock 70 protein 5, adiponectin receptor 1, and adiponectin receptor 2, in the bovine corpus luteum (CL) during different phases of the estrous cycle (on days 1-2, 3-4, 5-7, 8-12, 13-18, >18) and pregnancy (at months 1-2, 3-4, 5-7, >7). The mRNA expression was measured by reverse transcription polymerase chain reaction (RT-qPCR). The mRNA expression levels were normalized to the geometric mean of all three constantly expressed reference genes (cyclophilin A, ubiquitin, ubiquitin C). Our findings suggest that adipokines are expressed and present in all investigated groups, and are specifically up- or downregulated during the estrus cycle and during pregnancy. Vaspin and adiponectin levels were upregulated in the middle and late cycle stages. Resistin was abundant during the CL regression stage and in the first months of pregnancy. The specific expression of adipokine receptors indicates their involvement in the local mechanisms that regulate CL function. Further investigations are required to elucidate the regulative mechanisms underlying the different local effects of adipokines on the ovarian physiology of cows.
Collapse
Affiliation(s)
- Granit Thaqi
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Weihenstephan, Germany; (B.B.); (M.W.P.)
| | - Bajram Berisha
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Weihenstephan, Germany; (B.B.); (M.W.P.)
- Department of Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, 10000 Prishtina, Kosovo
| | - Michael W. Pfaffl
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Weihenstephan, Germany; (B.B.); (M.W.P.)
| |
Collapse
|
8
|
Daghash SM, Yasin NAE, Abdelnaby EA, Emam IA, Tolba A, Abouelela YS. Histological and hemodynamic characterization of corpus luteum throughout the luteal phase in pregnant and non-pregnant buffalos in relation to nitric oxide levels based on its anatomical determination. Front Vet Sci 2022; 9:896581. [PMID: 35982929 PMCID: PMC9380647 DOI: 10.3389/fvets.2022.896581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
This study aims to compare the complete growth and development of corpus luteum (CL) in domestic buffalos from day 5 until day 40 after ovulation either in pregnant or non-pregnant animals and whether luteal vascularity (LV) with progesterone (P4) and nitric oxide (NO) could determine luteal functionality or not. Pluriparous buffalos (Bubalus bubalis) were categorized as pregnant (n = 6) or non-pregnant (n = 9) after pregnancy check at day 25. Animals were subjected to ultrasound analysis to determine the CL area (cm2) and LV. Blood sampling was performed following the Doppler examination. Ovarian tissue samples from non-pregnant buffalo genitalia (n = 18) and early pregnant buffalo genitalia (n = 3) were collected from great abattoirs. Luteal Doppler indices were lower in the pregnant group, while peak systolic velocity (PSV) was increased (p < 0.05) in the same pregnant females. Both P4 and NOMs were elevated (p < 0.05) in the pregnant group. There was a positive correlation (p < 0.01) between P4 and CL PSV. Based on our macroscopical examination, the CL of non-pregnant buffalos was classified into four stages. Histologically, stage I showed that CL was covered by a highly vascularized connective tissue (CT) capsule. It consisted of small and large lutein cells, whereas stage II was similar to stage I except for the presence of numerous fibroblast cells and vacuolated cells. Stage III was characterized by increasing the number of collagen fibers and the thickness of the blood vessels. Stage IV revealed thickening of the CT capsule and septae, regressed capillaries and arterioles, in addition to shrunken degenerated lutein cells. CL of pregnant buffalos revealed the same structure as CL at stage II. CL area was increased in the pregnant group. The collective data suggested that evaluation of the luteal artery could be extremely helpful to determine the potential benefits of colored and pulsed Doppler in CL vascularization assessment in both luteal and early pregnancy phases.
Collapse
Affiliation(s)
- Samer M. Daghash
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Noha A. E. Yasin
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Elshymaa A. Abdelnaby
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- *Correspondence: Elshymaa A. Abdelnaby ;
| | - Ibrahim A. Emam
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ayman Tolba
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yara S. Abouelela
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Spatiotemporal expression pattern of miR-205, miR-26a-5p, miR-17-5p, let-7b-5p, and their target genes during different stages of corpus luteum in Egyptian buffaloes. J Genet Eng Biotechnol 2022; 20:37. [PMID: 35212793 PMCID: PMC8881532 DOI: 10.1186/s43141-022-00320-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/17/2022] [Indexed: 12/22/2022]
Abstract
Background No doubt that the corpus luteum (CL) plays a vital role in the regulation of female cyclicity in mammals. The scenarios among microRNAs (miRNAs) and their target genes and steroid hormones {estradiol (E2) and progesterone (P4)} are required for better understanding the molecular regulation of CL during its formation, maturation, and regression. We aimed to (I) study the changes in the relative abundance of miR-205, miR-26a-5p, miR-17-5p, and let-7b-5p and their target genes: LHCGR, CASP3, PCNA, AMH, and PLA2G3, during different stages of corpus luteum in Egyptian buffaloes, and (II) and to address different scenarios between steroid concentrations in the serum and the expression pattern of selected miRNAs and their targets. Methods The paired ovaries and blood samples were collected from apparently healthy 50 buffalo cows at a private abattoir. The ovaries bearing CL were macroscopically divided according to their morphological structure and color into hemorrhagic (CLH), developing (CLD), mature (CLM), regressed (CLR), and albicans (CLA). Small pieces from different stages of CL (CLH, CLD, CLM, CLR, and CLA) were cut and immediately kept at − 80 °C for total RNA isolation and qRT-PCR. The serum was separated for steroid level estimation. Results The LHCGR was expressed during different stages of CL, and the peak of expression was at the mid-luteal stage. The CASP3 revealed a stage-specific response at different stages of CL. The PCNA has an essential role in cellular proliferation in buffaloes CL. Both expression patterns of PLA2G3 and AMH were found over the various developmental and regression stages. It was noticed that miR-205 is conserved to target LHCGR and CASP3 transcripts. Moreover, CASP3 and AMH were targeted via miR-26a-5p. Additionally, the CASP3 and PLA2G3 were targeted via let-7b-5p. The P4 level reached its peak during CLM. There were positive and negative strong correlations between miRNAs (miR-26a-5p and miR-205), target genes (LHCGR and CASP3) during different stages of CL, and steroid hormones in the serum. Conclusions Taken together, the orchestrated pattern among miRNAs, target genes, and steroid hormones is essential for maintaining the proper development and function of CL in buffalo cows. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00320-9.
Collapse
|
10
|
Shrestha HK. Loss of luteal sensitivity to luteinizing hormone underlies luteolysis in cattle: A hypothesis. Reprod Biol 2021; 21:100570. [PMID: 34736159 DOI: 10.1016/j.repbio.2021.100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/13/2021] [Accepted: 10/09/2021] [Indexed: 11/26/2022]
Abstract
By virtue of the secretion of progesterone (P4), corpus luteum (CL) is important not only for normal cyclicity but also for conception and continuation of pregnancy in female mammals. Luteolysis (also called luteal regression) is defined as loss of the capacity to synthesize and secrete P4 followed by the demise of the CL. There is strong evidence that sequential pulses of prostaglandin F2α (PGF) secreted from the uterus near the end of luteal phase induces luteolysis in farm animals. Loss of luteal sensitivity to luteinizing hormone (LH) at the end of menstrual cycle has been reported to be critical for initiation of luteolysis in primates, however this has not been investigated in farm animals. A closer observation of the published real-time profiles of circulating hormones (P4, LH, and PGF) and their inter-relationships around the time of the beginning of spontaneous luteolysis in cattle revealed- 1) A natural pulse of PGF causes a transient P4 suppression lasting a couple of hours followed by a rebound in P4 concentration, 2) The P4 secretions that occur in response to LH pulses before the beginning of luteolysis (i.e., preluteolysis) either fail or do so to a lesser extent during luteolysis indicating a loss of sensitivity to LH, and 3) The loss of sensitivity coincides with the beginning of luteolysis (i.e., transition), and apparently luteolysis does not initiate until there is loss of sensitivity to LH. The CL is sensitive to LH during preluteolysis, and the LH-stimulated P4-dependent and/or independent local survival mechanisms maintain the steroidogenic capability and viability of the CL until the very end of preluteolysis. Luteolysis does not appear to initiate with the PGF pulse(s) that occur during this period. With the loss of sensitivity to LH at the transition, however, a progressive decline in P4 begins initiating luteolysis. Also, the survival mechanisms become compromised making the CL less viable. The uterine PGF pulses that occur after the beginning of luteolysis induces increase in the local luteolytic factors, which contribute to further luteolysis, more importantly, structural luteolysis with ultimate demise of the CL. Therefore, I hypothesize that the loss of luteal sensitivity to LH underlies luteolysis in cattle. The hypothesis not only unifies the basic mechanism of luteolysis in a farm animal and primates but also provides a perspective to view luteolysis as a process rather than a factor-mediated event. A novel unified working model for luteolysis in a farm animal and primates is described. A better understanding of the luteal physiology including how responsiveness to LH diminishes in aging CL would help in the development of novel strategies in modulating CL structure-function to improve and/or control fertility in humans as well as in animals.
Collapse
Affiliation(s)
- Hemanta Kumar Shrestha
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 1220 Capitol Court, Madison, WI 53715, USA.
| |
Collapse
|
11
|
Yin S, Zhou J, Yang L, Yuan Y, Xiong X, Lan D, Li J. Identification of microRNA transcriptome throughout the lifespan of yak ( Bos grunniens) corpus luteum. Anim Biotechnol 2021; 34:143-155. [PMID: 34310260 DOI: 10.1080/10495398.2021.1946552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The corpus luteum (CL) is a temporary organ that plays a critical role for female fertility by maintaining the estrous cycle. MicroRNA (miRNA) is a class of non-coding RNAs involved in various biological processes. However, there exists limited knowledge of the role of miRNA in yak CL. In this study, we used high-throughput sequencing to study the transcriptome dynamics of miRNA in yak early (eCL), middle (mCL) and late-stage CL (lCL). A total of 6,730 miRNAs were identified, including 5,766 known and 964 novels miRNAs. Three miRNAs, including bta-miR-126-3p, bta-miR-143 and bta-miR-148a, exhibited the highest expressions in yak CLs of all the three stages. Most of the miRNAs were 20-24 nt in length and the peak was at 22 nt. Besides, most miRNAs with different lengths displayed significant uracil preference at the 5'-end. Furthermore, 1,067, 280 and 112 differentially expressed (DE) miRNAs were found in eCL vs. mCL, mCL vs. lCL, and eCL vs. lCL, respectively. Most of the DE miRNAs were down-regulated in the eCL vs. mCL and eCL vs. lCL groups, and up-regulated in the mCL vs. lCL group. A total of 18,904 target genes were identified, with 18,843 annotated. Pathway enrichment analysis of the DE miRNAs target genes illustrated that the most enriched cellular process in each group included pathways in cancer, PI3K-Akt pathway, endocytosis, and focal adhesion. A total of 20 putative target genes in 47 DE miRNAs were identified to be closely associated with the formation, function or regression of CL. Three DE miRNAs, including bta-miR-11972, novel-miR-619 and novel-miR-153, were proved to directly bind to the 3'-UTR of their predicated target mRNAs, including CDK4, HSD17B1 and MAP1LC3C, respectively. Both of these DE miRNAs and their target mRNAs exhibited dynamic expression profiles across the lifespan of yak CL. This study presents a general basis for understanding of the regulation of miRNA on yak CL and also provides a novel genetic resource for future analysis of the gene network during the estrous cycle in the yak.
Collapse
Affiliation(s)
- Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.,College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China.,Key Laboratory of Modern Biotechnology, State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jingwen Zhou
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Liuqing Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.,College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yujie Yuan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.,College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Daoliang Lan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.,College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.,College of Animal & Veterinary, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Billhaq DH, Lee S. The Role of the Guanosine Nucleotide-Binding Protein in the Corpus Luteum. Animals (Basel) 2021; 11:1524. [PMID: 34073800 PMCID: PMC8225084 DOI: 10.3390/ani11061524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/22/2022] Open
Abstract
The corpus luteum is a temporary endocrine gland in the ovary. In the ovarian cycle, repeated patterns of specific cellular proliferation, differentiation, and transformation occur that accompany the formation and regression of the corpus luteum. Molecular mechanism events in the ovarian microenvironment, such as angiogenesis and apoptosis, are complex. Recently, we focused on the role of RAS protein in the ovarian corpus luteum. RAS protein plays a vital role in the modulation of cell survival, proliferation, and differentiation by molecular pathway signaling. Additionally, reproductive hormones regulate RAS activity in the cellular physiological function of ovarian follicles during pre-ovulatory maturation and ovulation. Thus, we have reviewed the role of RAS protein related to the biological events of the corpus luteum in the ovary.
Collapse
Affiliation(s)
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea;
| |
Collapse
|
13
|
Hye N, Klein-Jöbstl D, Blessing A, Burmeister J, Hamann N, Aurich C, Drillich M. Effect of two postpartum intramuscular treatments with β-carotene (Carofertin®) on the blood concentration of β-carotene and on the reproductive performance parameters of dairy cows. Theriogenology 2020; 148:1-7. [PMID: 32126391 DOI: 10.1016/j.theriogenology.2020.02.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/26/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
The aim of the study was to determine whether two postpartum intramuscular treatments with 200 mg of beta-(β-)carotene (Carofertin; Alvetra u. Werfft, Vienna, Austria) in a 14-day interval increases β-carotene concentrations in blood, particularly around the time of the first artificial insemination (AI), and to test the effect of the treatment on fertility parameters, luteal size, and progesterone blood levels of dairy cows. A total of 297 Holstein dairy cows were enrolled in the study. Between 28 and 34 days postpartum (dpp) β-carotene concentrations were measured in blood samples using an on-site test (iCheck carotene; BioAnalyt, Teltow, Germany). Cows with a β-carotene concentration <3.5 mg/L, indicating a deficiency of β-carotene, were allocated either to the β-carotene treatment group BCT (n = 123) or to the control group CON (n = 121). Cows with concentrations ≥3.5 mg/L were assigned to an optimally supplied reference group (REF; n = 53). Cows in the BCT group received 200 mg of β-carotene intramuscularly at 28-34 dpp and at 42-48 dpp. Further blood samples were collected at 35-41 dpp, 42-48 dpp, 49-55 dpp, and in the week after the first AI and their β-carotene concentrations were analyzed. Between day 10 and 14 after the first AI, the blood progesterone concentration was measured and the size of the corpus luteum (CL) was determined by ultrasound. Blood β-carotene concentrations increased in the BCT cows in the week after the treatment with a peak at 49-55 dpp and were significantly higher than in the CON group at each time point after the first treatment. Logistic regression models, however, revealed that the treatment with β-carotene had no effect on first service conception rate, days to first service, time to pregnancy, or percentage of pregnant cows within 150 dpp. Furthermore, there was no effect on progesterone concentration or the size of the CL between the groups. In conclusion, two treatments with Carofertin postpartum increased β-carotene blood concentrations but had no effect on the fertility parameters in this study.
Collapse
Affiliation(s)
- N Hye
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - D Klein-Jöbstl
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - A Blessing
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - J Burmeister
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - N Hamann
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - C Aurich
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - M Drillich
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
14
|
Sirotkin AV, Tarko A, Kotwica J, Alrezaki A, Harrath AH. Interrelationships between metabolic hormones, leptin and ghrelin, and oil-related contaminants in control of oxytocin and prostaglandin F release by feline ovaries. Reprod Biol 2020; 20:254-258. [PMID: 32089503 DOI: 10.1016/j.repbio.2020.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
We examined the effects of metabolic hormones leptin and ghrelin, and the oil-related environmental contaminants toluene and xylene on the release of ovarian hormones by gravid and non-gravid cats, as well as the functional interrelationships between metabolic hormones and contaminants. Ovarian fragments of non-gravid cats were cultured with and without leptin and toluene. Next, ovarian fragments of either non-gravid or gravid animals were cultured with and without ghrelin and xylene. Oxytocin (OT) and prostaglandin F (PGF) release was measured using ELISA. We confirm ovarian OT and PGF production by feline ovary, demonstrate the involvement of leptin and ghrelin in controlling OT and PGF release, show the direct influence of toluene and xylene on feline ovarian secretory activity, indicate the ability of leptin and ghrelin to mimic and promote the main contaminant effects, demonstrate that oil-related contaminants can prevent and even invert the effects of leptin and ghrelin on the ovary, and suggest the gravidity-associated changes in ability of ghrelin to promote xylene action on PGF (but not to OT), but not in basic ovarian OT and PGF release and their response to ghrelin or xylene.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University, Nitra, Slovakia.
| | - Adam Tarko
- Department of Zoology and Anthropology, Constantine the Philosopher University, Nitra, Slovakia
| | - Jan Kotwica
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Abdulkarem Alrezaki
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Uslu BA, Kocyigit A, Sendag S, Gülyüz F, Wehrend A. The effect of GnRH on the pregnancy ratio in low-yielding local race cows: comparison of different injection times. Trop Anim Health Prod 2019; 52:497-502. [PMID: 31388876 DOI: 10.1007/s11250-019-02034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/29/2019] [Indexed: 11/28/2022]
Abstract
The objective of this article was to investigate the efficiency of GnRH administrations at different time points after induced luteolysis on pregnancy rates in low-yielding subfertile cows. One thousand six hundred and ten healthy and subfertile dairy cows of different ages and races were used in this study. Cows were randomly divided into 4 groups. Estrus cycles were synchronized by two, with 11-day intervals, injections of the prostaglandin F2α-analogue (PG). The artificial inseminations (AIs) of all animals were achieved at the 72nd and 96th hours following the last PG injection. The animals in groups I (n 257), II (n 337), and III (n 675) were used for the administration of a single dose of GnRH at different time points. Accordingly, GnRH was applied at 48th, 64th, and 72nd hours following the last PG injection in groups I, II, and III, respectively. Group IV was accepted as a control without GnRH injection (n 341). The pregnancy rates in groups I, II, III, and IV after transrectal pregnancy examinations were found to be 89.88%, 91.09%, 83.25%, and 77.12%, respectively. In our study, maximal pregnancy rates could be obtained with GnRH injections performed at 48th and 64th hours following luteolysis induction (P < 0.001). There was a 6-8% decrease in pregnancy rates due to the injection of GnRH in the 72nd hour (P < 0.001). These dramatic losses and gains in pregnancy rates in our study emphasized the necessity of taking the time of injection into account when using GnRH to stimulate ovulation. It can be said that the success of GnRH stimulation of ovulation is directly related to the follicle wave dynamics at the time of injection point and the character of a dominant follicle.
Collapse
Affiliation(s)
- Barış Atalay Uslu
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Mehmet Akif Ersoy University, Burdur, Turkey.
| | - Alper Kocyigit
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Cumhuriyet University, 58140, Sivas, Turkey
| | - Sait Sendag
- Faculty of Veterinary Medicine, Clinic for Obstetrics and Gynecology, VanYYÜ, 65100, Van, Turkey
| | - Fetih Gülyüz
- Faculty of Agriculture, Department of Animal Science, Akdeniz University, Antalya, Turkey
| | - Axel Wehrend
- Faculty of Veterinary Medicine, Clinic for Obstetrics, Gynecology and Andrology, University of Justus-Liebig, Giessen, Germany
| |
Collapse
|
16
|
Comparison between in vitro embryo production using Y-sorted sperm and timed artificial insemination with non-sorted sperm to produce crossbred calves. Anim Reprod Sci 2019; 208:106101. [PMID: 31405466 DOI: 10.1016/j.anireprosci.2019.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/17/2019] [Accepted: 06/18/2019] [Indexed: 11/21/2022]
Abstract
Due to the increasing use of in vitro embryo production (IVEP) and the importance of crossbreeding for beef production, pregnancy rates of Nelore recipients were evaluated following Fixed Time Embryo Transfer with fresh or vitrified IVEP embryos produced with Y-sorted sperm of Angus bulls (B. taurus) or Fixed Time Artificial Insemination using non-sorted sperm. For IVEP in Experiment 1, oocytes were obtained using Ovum Pick Up (OPU) (n = 84 embryos) or from ovaries from a slaughterhouse (SLAUGHTER, n = 66 embryos). In Experiment 2, with oocytes obtained by OPU, IVEP embryos were fresh (FRESH, n = 271) or after vitrification/warming (VITRIFIED, n = 79) and PR was compared with FTAI (n = 239). In Experiment 1, cleavage rates were 63.8% and 39.1% for OPU and SLAUGHTER groups, respectively (P = 0.02), and blastocyst rates were 30.5% and 14.7%, respectively (P = 0.09). The PR was similar when considering the source of oocytes (OPU = 35.7%; SLAUGHTER = 25.8%; P = 0.17). In Experiment 2, there was no difference in PR for FRESH or VITRIFIED embryos (34.3% and 30.4%, respectively, P = 0.72), but lesser than FTAI (47.7, P = 0.002). It is concluded that the IVEP with Y-sorted sperm associated with vitrification or embryos produced with oocytes from different sources did not affect PR when there was transfer of crossbred embryos into recipients, and can optimize large-scale application of IVEP technology; however, FTAI pregnancy rates with non-sex sorted sperm were greater.
Collapse
|
17
|
Tarko A, Štochmal'ová A, Jedličková K, Hrabovszká S, Vachanová A, Harrath AH, Alwasel S, Alrezaki A, Kotwica J, Baláži A, Sirotkin AV. Effects of benzene, quercetin, and their combination on porcine ovarian cell proliferation, apoptosis, and hormone release. Arch Anim Breed 2019; 62:345-351. [PMID: 31807645 PMCID: PMC6852862 DOI: 10.5194/aab-62-345-2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/09/2019] [Indexed: 11/11/2022] Open
Abstract
We hypothesized that the environmental contaminant benzene and the plant antioxidant quercetin may affect ovarian cell functions and that quercetin could offer protection against the adverse effects of benzene. This study aimed to examine the action of benzene, quercetin, and their combination on porcine ovarian granulosa cell functions. We elucidated the effects of benzene (20 µ g mL - 1 ), quercetin (at the doses 0, 1, 10, 100 µ g mL - 1 ), and their combination on ovarian granulosa cell functions (proliferation, apoptosis, and hormone release) in vitro using immunocytochemistry and enzyme immunoassay respectively. Benzene alone stimulated proliferation, apoptosis, and oxytocin release and inhibited progesterone and prostaglandin F release. Quercetin alone inhibited proliferation, apoptosis, and stimulated oxytocin release but did not affect progesterone and prostaglandin F release. When used in combination with benzene, quercetin promoted the inhibitory effect of benzene on progesterone release. Overall, these data suggest that benzene and quercetin have direct stimulatory and inhibitory effects, respectively, on basic ovarian functions. Moreover, no protective action of quercetin against the effects of benzene was found. Rather, it was found to enhance the effect of benzene on progesterone release. Therefore, quercetin cannot be considered for preventing or mitigating the effects of benzene on reproductive processes.
Collapse
Affiliation(s)
- Adam Tarko
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
| | - Aneta Štochmal'ová
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
| | - Katarína Jedličková
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
| | - Sandra Hrabovszká
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
| | - Adriana Vachanová
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
| | - Abdel Halim Harrath
- Dept. of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Alwasel
- Dept. of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulkarem Alrezaki
- Dept. of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jan Kotwica
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Andrej Baláži
- Institute for Genetics and Reproduction of Farm Animals, Animal Production Research Centre Nitra, Hlohovecka 2, 951 41 Lužianky, Slovakia
| | - Alexander V Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia.,Institute for Genetics and Reproduction of Farm Animals, Animal Production Research Centre Nitra, Hlohovecka 2, 951 41 Lužianky, Slovakia
| |
Collapse
|
18
|
Do arachidonic acid metabolites affect apoptosis in bovine endometrial cells with silenced PPAR genes? Prostaglandins Other Lipid Mediat 2019; 143:106336. [PMID: 31112752 DOI: 10.1016/j.prostaglandins.2019.106336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 03/29/2019] [Accepted: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are expressed in bovine uterus, and their agonists are arachidonic acid (AA) metabolites. We hypothesised that silencing of PPAR genes in bovine endometrial stromal cells (ESC) would change the intracellular signalling through PPAR and affect apoptosis after cell treatment with different AA metabolites. The study's aims are detection of apoptosis and examining the influence of prostaglandins and leukotrienes on apoptosis occurring in physiological ESC and cells with silenced PPAR (α, δ, and γ) genes. Silencing the PPARα and PPARδ genes in cells resulted in increased DNA fragmentation and mRNA and protein expression of caspase (CASP) -3 and -8 (P < 0.05). Neither DNA fragmentation nor the mRNA and protein expression of CASP3 and -8 in cells with silenced PPARγ gene were changed compared to physiological cells (P > 0.05). Among PPARs, PPARα and PPARδ appear to inhibit apoptosis, and AA metabolites, as PPAR agonists, modify this process in bovine ESC.
Collapse
|
19
|
Galvão AM, Skarzynski D, Ferreira-Dias G. Luteolysis and the Auto-, Paracrine Role of Cytokines From Tumor Necrosis Factor α and Transforming Growth Factor β Superfamilies. VITAMINS AND HORMONES 2018; 107:287-315. [PMID: 29544635 DOI: 10.1016/bs.vh.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Successful pregnancy establishment demands optimal luteal function in mammals. Nonetheless, regression of the corpus luteum (CL) is absolutely necessary for normal female cyclicity. This dichotomy relies on intricate molecular signals and rapidly activated biological responses, such as angiogenesis, extracellular matrix (ECM) remodeling, or programmed cell death. The CL establishment and growth after ovulation depend not only on the luteinizing hormone-mediated endocrine signal but also on a number of auto-, paracrine interactions promoted by cytokines and growth factors like fibroblast growth factor 2, vascular endothelial growth factor A, and tumor necrosis factor α (TNF), which coordinate vascularigenesis and ECM reorganization as well as steroidogenesis. With the organ fully developed, the release of the uterine prostaglandin F2α activates luteolysis, an intricate process supported by intraluteal interactions that ensure the loss of steroidogenic function (functional luteolysis) and the involution of the organ (structural luteolysis). This chapter provides an overview of the local action of cytokines during luteal function, with particular emphasis on the role of TNF and transforming growth factor β superfamilies during luteolysis.
Collapse
Affiliation(s)
- António M Galvão
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland.
| | - Dariusz Skarzynski
- Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland
| | - Graça Ferreira-Dias
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
20
|
Gadsby JE, Tyson Nipper AM, Faircloth HA, D'Annibale-Tolhurst M, Chang J, Farin PW, Sheldon IM, Poole DH. Toll-like receptor and related cytokine mRNA expression in bovine corpora lutea during the oestrous cycle and pregnancy. Reprod Domest Anim 2017; 52:495-504. [DOI: 10.1111/rda.12940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/10/2017] [Indexed: 12/01/2022]
Affiliation(s)
- JE Gadsby
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh NC USA
| | - AM Tyson Nipper
- Department of Animal Science; North Carolina State University; Raleigh NC USA
| | - HA Faircloth
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh NC USA
| | - M D'Annibale-Tolhurst
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh NC USA
| | - J Chang
- Department of Molecular Biomedical Sciences; College of Veterinary Medicine; North Carolina State University; Raleigh NC USA
| | - PW Farin
- Department of Population Health and Pathobiology and Center for Comparative Medicine and Translational Research; College of Veterinary Medicine; North Carolina State University; Raleigh NC USA
| | - IM Sheldon
- Institute of Life Science; College of Medicine; Swansea University; Swansea UK
| | - DH Poole
- Department of Animal Science; North Carolina State University; Raleigh NC USA
| |
Collapse
|
21
|
Talukder S, Kerrisk KL, Gabai G, Celi P. Role of oxidant–antioxidant balance in reproduction of domestic animals. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reproductive process leads to dynamic changes in metabolism and energy consumption, which may be responsible for the excessive production of free radicals (oxidants) that are generated during the physiological process of oxygen consumption. As the ovary is a metabolically active organ, it produces oxidants. Growing follicles, granulose cells of Graffian follicles and ovulated follicles all produce both enzymatic and non-enzymatic antioxidants to preserve themselves from the oxidative damage of oxidants. Oxidants and antioxidants are involved in several reproductive functions such as the regulation of follicular fluid environment, folliculogenesis, steroidogenesis, corpus luteum function, and luteolysis. In this article, the currently available literature is reviewed in relation to the roles of oxidants and oxidative stress in both normal and abnormal reproductive physiological processes.
Collapse
|
22
|
Yang YL, Ren LR, Sun LF, Huang C, Xiao TX, Wang BB, Chen J, Zabel BA, Ren P, Zhang JV. The role of GPR1 signaling in mice corpus luteum. J Endocrinol 2016; 230:55-65. [PMID: 27149986 PMCID: PMC5064765 DOI: 10.1530/joe-15-0521] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/04/2016] [Indexed: 01/17/2023]
Abstract
Chemerin, a chemokine, plays important roles in immune responses, inflammation, adipogenesis, and carbohydrate metabolism. Our recent research has shown that chemerin has an inhibitory effect on hormone secretion from the testis and ovary. However, whether G protein-coupled receptor 1 (GPR1), the active receptor for chemerin, regulates steroidogenesis and luteolysis in the corpus luteum is still unknown. In this study, we established a pregnant mare serum gonadotropin-human chorionic gonadotropin (PMSG-hCG) superovulation model, a prostaglandin F2α (PGF2α) luteolysis model, and follicle and corpus luteum culture models to analyze the role of chemerin signaling through GPR1 in the synthesis and secretion of gonadal hormones during follicular/luteal development and luteolysis. Our results, for the first time, show that chemerin and GPR1 are both differentially expressed in the ovary over the course of the estrous cycle, with highest levels in estrus and metestrus. GPR1 has been localized to granulosa cells, cumulus cells, and the corpus luteum by immunohistochemistry (IHC). In vitro, we found that chemerin suppresses hCG-induced progesterone production in cultured follicle and corpus luteum and that this effect is attenuated significantly by anti-GPR1 MAB treatment. Furthermore, when the phosphoinositide 3-kinase (PI3K) pathway was blocked, the attenuating effect of GPR1 MAB was abrogated. Interestingly, PGF2α induces luteolysis through activation of caspase-3, leading to a reduction in progesterone secretion. Treatment with GPR1 MAB blocked the PGF2α effect on caspase-3 expression and progesterone secretion. This study indicates that chemerin/GPR1 signaling directly or indirectly regulates progesterone synthesis and secretion during the processes of follicular development, corpus luteum formation, and PGF2α-induced luteolysis.
Collapse
Affiliation(s)
- Ya-Li Yang
- Research Laboratory for Reproductive HealthShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Li-Rong Ren
- Shenzhen Key Laboratory of Birth DefectsShenzhen Baoan Maternal and Child Health Hospital, Shenzhen, Guangdong, China
| | - Li-Feng Sun
- Research Laboratory for Reproductive HealthShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chen Huang
- Research Laboratory for Reproductive HealthShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China University of Chinese Academy of SciencesShenzhen, China
| | - Tian-Xia Xiao
- Research Laboratory for Reproductive HealthShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bao-Bei Wang
- Research Laboratory for Reproductive HealthShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Chen
- Research Laboratory for Reproductive HealthShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Brian A Zabel
- Laboratory of Immunology and Vascular BiologyDepartment of Pathology, Stanford University School of Medicine, Stanford, California, USA, and Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Peigen Ren
- Research Laboratory for Reproductive HealthShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian V Zhang
- Research Laboratory for Reproductive HealthShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
23
|
Killeen AP, Diskin MG, Morris DG, Kenny DA, Waters SM. Endometrial gene expression in high- and low-fertility heifers in the late luteal phase of the estrous cycle and a comparison with midluteal gene expression. Physiol Genomics 2016; 48:306-19. [PMID: 26850042 DOI: 10.1152/physiolgenomics.00042.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 02/02/2016] [Indexed: 12/27/2022] Open
Abstract
Embryonic mortality is a major constraint to improving reproductive efficiency and profitability in livestock enterprises. We previously reported differential expression of genes with identified roles in cellular growth and proliferation, lipid metabolism, endometrial remodeling, inflammation, angiogenesis, and metabolic exchange in endometrial tissue on day 7 of the estrous cycle (D7), between heifers ranked as either high (HF) or low (LF) for fertility. The aim of the current study was to further elucidate the underlying molecular mechanisms contributing to early embryo loss by examining differential endometrial gene expression in HF or LF heifers at a later stage of the estrous cycle;day 14(D14). A second objective was to compare these expression profiles with those from midluteal HF and LF endometrium. Using the same animal model as employed in the previous study, we slaughtered HF and LF animals on D14, harvested endometrial tissue, and carried out global gene expression analysis using the Affymetrix Bovine GeneChip. Microarray analysis detected 430 differentially expressed genes (DEG) between HF and LF animals. Ingenuity Pathway Analysis revealed enrichment for a host of biological pathways including lipid metabolism, molecular transport, immune response, cell morphology and development, and cell growth and proliferation. Important DEG includedALB, BMPR2, CCL28, COL4A3/4, FADS1, ITGA6, LDLR, PLCB3, PPARG, PTGS2, and SLC27A4 Furthermore, DEG expressed on both D7 and D14 included:PCCB,SLC25A24,DAP, and COL4A4 This study highlights some of the pathways and mechanisms underpinning late luteal bovine endometrial physiology and endometrial-related conception rate variance.
Collapse
Affiliation(s)
- Aideen P Killeen
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, County Meath, Ireland; School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland; and
| | - Michael G Diskin
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Mellows Campus, Athenry, County Galway, Ireland
| | - Dermot G Morris
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Mellows Campus, Athenry, County Galway, Ireland
| | - David A Kenny
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, County Meath, Ireland
| | - Sinéad M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, County Meath, Ireland;
| |
Collapse
|
24
|
Lüttgenau J, Möller B, Kradolfer D, Wellnitz O, Bruckmaier RM, Miyamoto A, Ulbrich SE, Bollwein H. Lipopolysaccharide enhances apoptosis of corpus luteum in isolated perfused bovine ovaries in vitro. Reproduction 2016; 151:17-28. [DOI: 10.1530/rep-15-0281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/19/2015] [Indexed: 01/04/2023]
Abstract
Lipopolysaccharide (LPS), the endotoxin of Gram-negative bacteria, has detrimental effects on the structure and function of bovine corpus luteum (CL)in vivo. The objective was to investigate whether these effects were mediated directly by LPS orviaLPS-induced release of PGF2α. Bovine ovaries with a mid-cycle CL were collected immediately after slaughter and isolated perfused for 240 min. After 60 min of equilibration, LPS (0.5 μg/ml) was added to the medium of five ovaries, whereas an additional six ovaries were not treated with LPS (control). After 210 min of perfusion, all ovaries were treated with 500 iu of hCG. In the effluent perfusate, concentrations of progesterone (P4) and PGF2αwere measured every 10 and 30 min, respectively. Punch biopsies of the CL were collected every 60 min and used for RT-qPCR to evaluate mRNA expression of receptors for LPS (TLR2,-4) and LH (LHCGR); the cytokineTNFA; steroidogenic (STAR,HSD3B), angiogenic (VEGFA121,FGF2), and vasoactive (EDN1) factors; and factors of prostaglandin synthesis (PGES,PGFS,PTGFR) and apoptosis (CASP3,-8,-9). Treatment with LPS abolished the hCG-induced increase in P4(P≤0.05); however, there was a tendency (P=0.10) for increased release of PGF2αat 70 min after LPS challenge. Furthermore, mRNA abundance ofTLR2,TNFA,CASP3,CASP8,PGES,PGFS, andVEGFA121increased (P≤0.05) after LPS treatment, whereas all other factors remained unchanged (P>0.05). In conclusion, reduced P4responsiveness to hCG in LPS-treated ovariesin vitrowas not due to reduced steroidogenesis, but was attributed to enhanced apoptosis. However, an impact of luteal PGF2αcould not be excluded.
Collapse
|
25
|
Sano M, Hashiba K, Nio-Kobayashi J, Okuda K. The luteotrophic function of galectin-1 by binding to the glycans on vascular endothelial growth factor receptor-2 in bovine luteal cells. J Reprod Dev 2015; 61:439-48. [PMID: 26155753 PMCID: PMC4623150 DOI: 10.1262/jrd.2015-056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The corpus luteum (CL) is a temporary endocrine gland producing a large amount of progesterone, which is essential for the establishment and maintenance of pregnancy. Galectin-1 is a β-galactose-binding protein that can modify functions of membrane glycoproteins and is expressed in the CL of mice and women. However, the physiological role of galectin-1 in the CL is unclear. In the present study, we investigated the expression and localization of galectin-1 in the bovine CL and the effect of galectin-1 on cultured luteal steroidogenic cells (LSCs) with special reference to its binding to the glycans on vascular endothelial growth factor receptor-2 (VEGFR-2). Galectin-1 protein was highly expressed at the mid and late luteal stages in the membrane fraction of bovine CL tissue and was localized to the surface of LSCs in a carbohydrate-dependent manner. Galectin-1 increased the viability in cultured LSCs. However, the viability of LSCs was decreased by addition of β-lactose, a
competitive carbohydrate inhibitor of galectin-1 binding activity. VEGFR-2 protein, like galectin-1, is also highly expressed in the mid CL, and it was modified by multi-antennary glycans, which can be recognized by galectin-1. An overlay assay using biotinylated galectin-1 revealed that galectin-1 directly binds to asparagine-linked glycans (N-glycans) on VEGFR-2. Enhancement of LSC viability by galectin-1 was suppressed by a selective inhibitor of VEGFR-2. The overall findings suggest that galectin-1 plays a role as a survival factor in the bovine CL, possibly by binding to N-glycans on VEGFR-2.
Collapse
Affiliation(s)
- Masahiro Sano
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
26
|
Miró J, Vilés K, Anglada O, Marín H, Jordana J, Crisci A. Color Doppler provides a reliable and rapid means of monitoring luteolysis in female donkeys. Theriogenology 2015; 83:485-90. [DOI: 10.1016/j.theriogenology.2014.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 11/26/2022]
|
27
|
Stimulatory effect of vascular endothelial growth factor on progesterone production and survivability of cultured bubaline luteal cells. Anim Reprod Sci 2014; 148:251-9. [DOI: 10.1016/j.anireprosci.2014.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/14/2014] [Accepted: 06/19/2014] [Indexed: 11/17/2022]
|
28
|
Talbott H, Delaney A, Zhang P, Yu Y, Cushman RA, Cupp AS, Hou X, Davis JS. Effects of IL8 and immune cells on the regulation of luteal progesterone secretion. Reproduction 2014; 148:21-31. [PMID: 24686456 DOI: 10.1530/rep-13-0602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies have suggested that chemokines may mediate the luteolytic action of prostaglandin F2α (PGF). Our objective was to identify chemokines induced by PGF in vivo and to determine the effects of interleukin 8 (IL8) on specific luteal cell types in vitro. Mid-cycle cows were injected with saline or PGF, ovaries were removed after 0.5-4 h, and expression of chemokine was analyzed by qPCR. In vitro expression of IL8 was analyzed after PGF administration and with cell signaling inhibitors to determine the mechanism of PGF-induced chemokine expression. Purified neutrophils were analyzed for migration and activation in response to IL8 and PGF. Purified luteal cell types (steroidogenic, endothelial, and fibroblast cells) were used to identify which cells respond to chemokines. Neutrophils and peripheral blood mononuclear cells (PBMCs) were cocultured with steroidogenic cells to determine their effect on progesterone production. IL8, CXCL2, CCL2, and CCL8 transcripts were rapidly increased following PGF treatment in vivo. The stimulatory action of PGF on IL8 mRNA expression in vitro was prevented by inhibition of p38 and JNK signaling. IL8, but not PGF, TNF, or TGFB1, stimulated neutrophil migration. IL8 had no apparent action in purified luteal steroidogenic, endothelial, or fibroblast cells, but stimulated ERK phosphorylation in neutrophils. In coculture experiments neither IL8 nor activated neutrophils altered basal or LH-stimulated luteal cell progesterone synthesis. In contrast, activated PBMCs inhibited LH-stimulated progesterone synthesis from cultured luteal cells. These data implicate a complex cascade of events during luteolysis, involving chemokine signaling, neutrophil recruitment, and immune cell action within the corpus luteum.
Collapse
Affiliation(s)
- Heather Talbott
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| | - Abigail Delaney
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| | - Pan Zhang
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| | - Yangsheng Yu
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| | - Robert A Cushman
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| | - Andrea S Cupp
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| | - Xiaoying Hou
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| | - John S Davis
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USADepartment of Obstetrics and GynecologyOlson Center for Women's Health, University of Nebraska Medical Center, Omaha, Nebraska 68198-3255, USADepartment of Pathology and MicrobiologyUniversity of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USAUnited States Department of Agriculture-U.S. Meat Animal Research CenterClay Center, Nebraska 68933-0166, USADepartment of Animal ScienceUniversity of Nebraska-Lincoln, Lincoln, Nebraska 68583-0908, USAVA Nebraska Western Iowa Health Care System and Olson Center for Women's HealthDepartment of Obstetrics and Gynecology, University of Nebraska Medical Center, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| |
Collapse
|
29
|
Iwazawa M, Acosta TJ. Effect of elevated temperatures on bovine corpus luteum function: expression of heat-shock protein 70, cell viability and production of progesterone and prostaglandins by cultured luteal cells. ANIMAL PRODUCTION SCIENCE 2014. [DOI: 10.1071/an13027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Summer heat stress lowers fertility in cattle in hot environments by influencing oocyte quality, follicular activity and progesterone (P4) level in blood plasma. However, the mechanisms by which elevated temperature influences corpus luteum function remain unclear. Elevated temperature has generally been known to upregulate the gene expression of heat-shock protein (HSP) 70 in a variety of cell types. To clarify the direct effects of elevated temperature on bovine corpus luteum function, we examined the expressions of HSP70, cell viability and the production of P4 and prostaglandins (PGs) in luteal cells cultured at 37.5°C (normal temperature in our culture system), 39.0°C (moderately elevated temperature) or 41.0°C (severely elevated temperature) for 12 or 24 h. HSP70 mRNA expression was increased by incubation at 39.0°C for 12 h and at 41.0°C for 12 and 24 h, whereas HSP70 protein expression was not significantly affected. The viability of luteal cells cultured for 24 h, measured by flow cytometry with propidium iodide staining, was not significantly affected by temperature. Interestingly, the production of P4 by cultured luteal cells was higher at 39.0°C than at 37.5°C after 12 and 24 h of incubation. The production of PGF2α was higher at 39.0°C and 41.0°C than at 37.5°C after 12 and 24 h of incubation. The production of PGE2 was higher at 41.0°C than at 37.5°C after 24 h of incubation. The overall results suggested that elevated temperature does not negatively affect luteal function, and that the low fertility observed during summer is not due to a direct effect of elevated temperature on luteal cells.
Collapse
|
30
|
Balazi A, Sirotkin AV, Pivko J, Chrenek P. Effect of oxytocin, IBMX and dbcAMP on rabbit ovarian follicles. Anat Histol Embryol 2013; 43:379-85. [PMID: 24118185 DOI: 10.1111/ahe.12088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
Oxytocin (OT) and protein kinase A (PKA), a possible intracellular mediator of hormone action in the ovary, can be potent activators of ovarian functions and fertility. Nevertheless, action of OT on ovarian follicle atresia has not been studied yet. Only single administration of PKA activators [3-isobutyl-1-methyl-xanthine (IBMX) and dibutyryl cyclic adenosine monophosphate (dbcAMP)] on ovarian follicle atresia was studied previously. The aim of this study was to examine the effect of OT (single treatment per one reproductive cycle, multiple treatments for three cycles), IBMX and dbcAMP (multiple treatments) on folliculogenesis and follicular atresia in rabbit. The ovarian cycle in control females was induced only by gonadotropins. Experimental females received co-administration of gonadotropins with OT, IBMX or dbcAMP (at 50 μg/female). All females were artificially inseminated. Single-treated females were euthanized after 18-19 h. Multiple-treated females were euthanized after the third reproductive cycle. Histological sections of the ovaries were prepared and evaluated by a light microscopy. The follicles were divided into four classes according to the structure of granulosa and theca cells as follows: none or small atresia, cystic atresia, obliterative atresia and atresia associated with luteinization. The ovaries from the control and experimental females, treated during one reproductive cycle or three cycles, were compared. Single OT co-administration increased proportion of follicles with atresia associated with luteinization, but not other types of atresia. No influence of multiple OT co-administration on follicular atresia was recorded. Multiple IBMX and dbcAMP co-administration decreased the proportion of atretic follicles and increased the proportion of healthy follicles without atresia.
Collapse
Affiliation(s)
- A Balazi
- Institute of Animal Genetics and Reproduction, Animal Production Research Centre Nitra, Hlohovecká 2, 951 41, Lužianky, Slovak Republic; Department of Biochemistry and Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | | | | | | |
Collapse
|
31
|
Korzekwa AJ, Lukasik K, Pilawski W, Piotrowska-Tomala KK, Jaroszewski JJ, Yoshioka S, Okuda K, Skarzynski DJ. Influence of prostaglandin F₂α analogues on the secretory function of bovine luteal cells and ovarian arterial contractility in vitro. Vet J 2013; 199:131-7. [PMID: 24268486 DOI: 10.1016/j.tvjl.2013.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 09/15/2013] [Accepted: 09/17/2013] [Indexed: 11/25/2022]
Abstract
Although prostaglandin (PG) F2α analogues are routinely used for oestrus synchronisation in cattle, their effects on the function of the bovine corpus luteum (CL), and on ovarian arterial contractility, may not reflect the physiological effects of endogenous PGF2α. In the first of two related experiments, the effects of different analogues of PGF2α (aPGF2α) on the secretory function and apoptosis of cultured bovine cells of the CL were assessed. Enzymatically-isolated bovine luteal cells (from between days 8 and 12 of the oestrous cycle), were stimulated for 24h with naturally-occurring PGF2α or aPGF2α (dinoprost, cloprostenol or luprostiol). Secretion of progesterone (P4) was determined and cellular [Ca(2+)]i mobilisation, as well as cell viability and apoptosis were measured. Naturally-occurring PGF2α and dinoprost stimulated P4 secretion (P<0.05), whereas cloprostenol and luprostiol did not influence P4 synthesis. The greatest cytotoxic and pro-apoptotic effects were observed in the luprostiol-treated cells, at 37.3% and 202%, respectively (P<0.001). The greatest effect on [Ca(2+)]i mobilisation in luteal cells was observed post-luprostiol treatment (200%; P<0.001). In a second experiment, the influence of naturally-occurring PGF2α and aPGF2α on ovarian arterial contraction in vitro, were examined. No differences in the effects of dinoprost or naturally-occurring PGF2α were found across the studied parameters. The effects of cloprostenol and luprostiol on luteal cell death, in addition to their effects on ovarian arterial contractility, were much greater than those produced by treatment with naturally-occurring PGF2α.
Collapse
Affiliation(s)
- A J Korzekwa
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - K Lukasik
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland; Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 1-1-1, Okayama 700-8530, Japan
| | - W Pilawski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - K K Piotrowska-Tomala
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - J J Jaroszewski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
| | - S Yoshioka
- Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 1-1-1, Okayama 700-8530, Japan
| | - K Okuda
- Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University, Tsushima Naka 1-1-1, Okayama 700-8530, Japan
| | - D J Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland.
| |
Collapse
|
32
|
Ginther O, Bashir S, Mir R, Santos V, Beg M. Interrelationships among progesterone, LH, and luteal blood flow during a pulse of a PGF2α metabolite and functional role of LH in the progesterone rebound in heifers. Theriogenology 2013; 79:1110-9. [DOI: 10.1016/j.theriogenology.2013.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
|
33
|
Pate JL, Johnson-Larson CJ, Ottobre JS. Life or death decisions in the corpus luteum. Reprod Domest Anim 2013; 47 Suppl 4:297-303. [PMID: 22827384 DOI: 10.1111/j.1439-0531.2012.02089.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The corpus luteum (CL) is an ephemeral endocrine organ. During its lifespan, it undergoes a period of extremely rapid growth that involves hypertrophy, proliferation and differentiation of the steroidogenic cells, as well as extensive angiogenesis. The growth phase is followed by a period in which remodelling of the tissue ceases, but it engages in unparalleled production of steroids, resulting in extraordinarily high metabolic activity within the tissue. It is during this stage that a critical juncture occurs. In the non-fertile cycle, uterine release of prostaglandin (PG)F(2α) initiates a cascade of events that result in rapid loss of steroidogenesis and destruction of the luteal tissue. Alternatively, if a viable embryo is present, signals are produced that result in rescue of the CL. This review article summarizes the major concepts related to the fate of the CL, with particular focus on recent insights into the mechanisms associated with the ability of PGF(2α) to bring about complete luteolysis. It has become clear that the achievement of luteolysis depends on repeated exposure to PGF(2α) and involves coordinated actions of heterogeneous cell types within the CL. Together, these components of the process bring about not only the loss in progesterone production, but also the rapid demise of the structure itself.
Collapse
Affiliation(s)
- J L Pate
- Department of Animal Science, Pennsylvania State University, University Park, PA, USA.
| | | | | |
Collapse
|
34
|
Marchesi G, Leonardi S, Tangorra FM, Calcante A, Beretta E, Pofcher E, Lazzari M. Evaluation of an electronic system for automatic calving detection on a dairy farm. ANIMAL PRODUCTION SCIENCE 2013. [DOI: 10.1071/an12335] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Precise calving monitoring is important for reducing the effects of dystocia in cows and calves. The C6 birth control system is an electronic device that detects the time of the expulsion phase during calving. Several 53 Holstein were fitted on Day 280 ± 5 of gestation with the C6 birth control system, which was left in place until confirmation of calving. Sensitivity and PPV of the system were calculated as 100 and 95%, respectively. The partum events occurring at the group fitted with the system where compared with the analogous occurred at 59 animals without device. When alarmed by the system farm staff were in the calving barn during the expulsion phase in 100% of cases. On the contrary the cows without the device were assisted only in 17% of cases (P < 0.001).
Collapse
|
35
|
Abstract
AbstractThe aim of this study was to examine the effect of activators of protein kinase A — 3-isobutyl-1-methyl-xanthine (IBMX) and dibutyryl cyclic adenosine monophosphate (dbcAMP) — and of oxytocin (OT) on rabbit female reproductive function. We used equine chorionic gonadotropin (eCG) to improve follicular development and rabbit estrous synchronization and human chorionic gonadotropin (hCG) to induce ovulation. In the experimental group, the females were stimulated using gonadotropins together with either IBMX, dbcAMP or OT. In the animals kept until parturition, the conception rate, parturition rate, and numbers of stillborn and weaned pups were recorded. In the animals euthanized 18–19 hours after insemination, the eggs were flushed from the oviducts and cultured up to the blastocyst cell stage. Numbers of corpora lutea, zygotes, morulas and blastocysts were determined. Both dbcAMP and OT, but not IBMX, decreased conception and parturition rate. Both IBMX and OT, but not dbcAMP, decreased pup mortality rate. All three tested substances increased the weaning rate. Both IBMX and dbcAMP, but not OT, increased the numbers of corpora lutea, zygotes, and embryos at morula and hatching blastocyst stages. These observations confirm the stimulatory role of the protein kinase A-dependent signaling pathway activated by IBMX and dbcAMP in rabbit reproduction. OT may decrease pups mortality.
Collapse
|
36
|
Stötzel C, Plöntzke J, Heuwieser W, Röblitz S. Advances in modeling of the bovine estrous cycle: synchronization with PGF2α. Theriogenology 2012; 78:1415-28. [PMID: 22980082 DOI: 10.1016/j.theriogenology.2012.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 10/27/2022]
Abstract
Our model of the bovine estrous cycle is a set of ordinary differential equations which generates hormone profiles of successive estrous cycles with several follicular waves per cycle. It describes the growth and decay of the follicles and the corpus luteum, as well as the change of the key reproductive hormones, enzymes and processes over time. In this work we describe recent developments of this model towards the administration of prostaglandin F2α. We validate our model by showing that the simulations agree with observations from synchronization studies and with measured progesterone data after single dose administrations of synthetic prostaglandin F2α.
Collapse
Affiliation(s)
- C Stötzel
- Computational Systems Biology Group, Numerical Analysis and Modeling, Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
37
|
Shenavai S, Preissing S, Hoffmann B, Dilly M, Pfarrer C, Özalp GR, Caliskan C, Seyrek-Intas K, Schuler G. Investigations into the mechanisms controlling parturition in cattle. Reproduction 2012; 144:279-92. [DOI: 10.1530/rep-11-0471] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A pronounced increase in fetal cortisol concentrations stimulating an increase in estrogen production at the expense of progesterone precursors in the placenta, luteolysis, and progesterone withdrawal is considered as a key event during the complex signal cascade leading to the initiation of parturition in cattle. However, there are many questions concerning the exact functional and/or temporal relationships between these individual processes which finally result in the expulsion of the calf and the timely release of the placenta. Thus, parturition was induced in 270-day pregnant cows using the progesterone receptor blocker aglepristone (group AG,n=3), the prostaglandin F2αanalog cloprostenol (group PG,n=4), and the glucocorticoid dexamethasone (group GC,n=4) to characterize the effect on maternal steroid and prostaglandin levels and to identify immediate subsequent changes in placental morphology and gene expression as compared with untreated controls sampled on day 272 (group D272,n=3) and cows during normal parturition (group NT,n=4). All calves of the treatment groups were born on days 271–272, whereas gestational length in NT cows was 280.5±1.3 days. However, none of the treatments significantly induced the prepartal remodeling of placentomes characterized by a decline in trophoblast giant cells and reduction of the caruncular epithelium. Data on placental CYP17 and COX2 expression confirm that these key enzymes are upregulated by GC, whereas placental aromatase expression was not affected by any treatment. Maternal progesterone and prostaglandin profiles suggest differential effects of the treatments on luteal function and placental or uterine prostaglandin production. The results provide new information on the initiation of parturition in cattle but raise many new questions.
Collapse
|
38
|
Boer H, Apri M, Molenaar J, Stötzel C, Veerkamp R, Woelders H. Candidate mechanisms underlying atypical progesterone profiles as deduced from parameter perturbations in a mathematical model of the bovine estrous cycle. J Dairy Sci 2012; 95:3837-51. [DOI: 10.3168/jds.2011-5241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/08/2012] [Indexed: 11/19/2022]
|
39
|
Pugliesi G, Khan FA, Hannan MA, Beg MA, Carvalho GR, Ginther OJ. Inhibition of prostaglandin biosynthesis during postluteolysis and effects on CL regression, prolactin, and ovulation in heifers. Theriogenology 2012; 78:443-54. [PMID: 22578618 DOI: 10.1016/j.theriogenology.2012.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 11/18/2022]
Abstract
The beginning of postluteolysis (progesterone, <1 ng mL(-1)) in heifers was targeted by using 8 h after ultrasonic detection of a 25% decrease in CL area (cm2) and was designated Hour 0. Flunixin meglumine (FM; n=10) to inhibit PGF2α secretion or vehicle (n=9) were given intramuscularly at Hours 0, 4, 8, 16, 24, 32, and 40. The dose of FM was 2.5 mg/kg at each treatment. Blood sampling and measurement of the CL and dominant follicle were done every 8 h beginning 14 days postovulation in each group. Blood samples for detection of pulses of PRL and pulses of a metabolite of PGF2α (PGFM) were obtained every hour for 24 h beginning at Hour 0. Pulse concentrations of both PGFM and PRL were lower in the FM group than in the vehicle group. Concentration of PRL was greatest at the peak of a PGFM pulse. Neither CL area (cm2) nor progesterone concentration differed between groups during Hours 0 to 48 (postluteolysis). Ovulation occurred in nine of nine heifers in the vehicle group and in three of 10 heifers in the FM group. The anovulatory follicles in the FM group grew to 36.2±2.9 mm, and the wall became thickened from apparent luteinization. The hypothesis that PGF2α was involved in the continued P4 decrease and structural CL regression during postluteolysis was not supported. However, the hypotheses that pulses of PGFM and PRL were temporally related and that systemic FM treatment induced an anovulatory follicle were supported.
Collapse
Affiliation(s)
- G Pugliesi
- Eutheria Foundation, Cross Plains, Wisconsin 53528, USA
| | | | | | | | | | | |
Collapse
|
40
|
Pate JL. It Takes Two to Tango but Four for the Finale. Biol Reprod 2012; 86:129. [DOI: 10.1095/biolreprod.112.099150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
41
|
Galvão A, Skarzynski D, Szóstek A, Silva E, Tramontano A, Mollo A, Mateus L, Ferreira-Dias G. Cytokines tumor necrosis factor-α and interferon-γ participate in modulation of the equine corpus luteum as autocrine and paracrine factors. J Reprod Immunol 2012; 93:28-37. [DOI: 10.1016/j.jri.2011.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/25/2011] [Accepted: 11/27/2011] [Indexed: 11/29/2022]
|
42
|
Pugliesi G, Beg MA, Carvalho GR, Ginther OJ. Induction of PGFM pulses and luteolysis by sequential estradiol-17β treatments in heifers. Theriogenology 2011; 77:492-506. [PMID: 22119513 DOI: 10.1016/j.theriogenology.2011.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 10/15/2022]
Abstract
The effects of sequential induction of PGFM pulses by estradiol-17β (E2) on prominence of PGFM pulses and progesterone (P4) concentration were studied in heifers. Three treatments of vehicle (n = 12) or E2 (n = 12) at doses of 0.05 or 0.1 mg were given at 12-h intervals beginning on Day 15 postovulation. Blood samples were collected every 12 h from Days 13-24 and hourly for 12 h after the first and third treatments. On Day 15, all heifers were in preluteolysis and on Day 16 were in preluteolysis in the vehicle-treated heifers (n = 11) and either preluteolysis (n = 4) or luteolysis (n = 8) in the E2-treated heifers. Peak concentration of induced PGFM pulses during preluteolysis on Day 15 was greater (P < 0.04) than for pulses during preluteolysis on Day 16. The interval from ovulation to the beginning of luteolysis was shorter (P < 0.04) in the E2-treated heifers than in the vehicle-treated heifers. An E2-induced PGFM pulse was less prominent (P < 0.008) in heifers in temporal association with a transient resurgence in P4 than in heifers with a progressive P4 decrease. The hypothesis that repeated E2 exposure stimulates increasing prominence of PGFM pulses was not supported. Instead, repeated exposure reduced the prominence of PGFM pulses, in contrast to the stimulation from the first E2 treatment. Reduced prominence of a PGF(2α) pulse during luteolysis can lead to a transient resurgence in P4 concentration.
Collapse
Affiliation(s)
- G Pugliesi
- Eutheria Foundation, Cross Plains, Wisconsin, USA
| | | | | | | |
Collapse
|
43
|
Effects of inhibition of prostaglandin F2α biosynthesis during preluteolysis and luteolysis in heifers. Theriogenology 2011; 76:640-51. [DOI: 10.1016/j.theriogenology.2011.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/17/2011] [Accepted: 03/18/2011] [Indexed: 01/22/2023]
|
44
|
|
45
|
Mondal M, Schilling B, Folger J, Steibel JP, Buchnick H, Zalman Y, Ireland JJ, Meidan R, Smith GW. Deciphering the luteal transcriptome: potential mechanisms mediating stage-specific luteolytic response of the corpus luteum to prostaglandin F2α. Physiol Genomics 2011; 43:447-56. [DOI: 10.1152/physiolgenomics.00155.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to identify prostaglandin F2α (PG)-induced changes in the transcriptome of bovine corpora lutea (CL) that are specific to mature, PG-responsive (day 11) CL vs. developing (day 4) CL, which do not undergo luteolysis in response to PG administration. CL were collected at 0, 4, and 24 h after PG injection on days 4 and 11 of the estrous cycle ( n = 5 per day and time point), and microarray analysis was performed with GeneChip Bovine Genome Arrays. Data normalization was performed with affy package and significance testing with maanova from Bioconductor. Significance (relative to 0 h time point) was declared at fold change >2.0 or <0.5 and false discovery rate of <5%. At 4 and 24 h after PG, 221 (day 4) and 661 (day 11) and 248 (day 4) and 1,421 (day 11) regulated genes, respectively, were identified. The accentuated gene expression response in day 11 CL was accompanied by specific enrichment of PG-regulated genes in distinctive gene ontology categories (immune related and other), particularly at 24 h after injection. Specificity in putative transcription factor binding sites was observed among PG-regulated genes on day 11 vs. day 4, including a potential association of ETS transcription factors with acute PG-induced gene expression specific to day 11 CL. Temporal and PG-induced regulation of abundance of mRNA for ETS transcription factor family members linked to the stage-specific response to PG was not observed. Increased abundance of protein and/or mRNA for six PG-regulated putative ETS-responsive genes was noted in day 11 but not day 4 CL. Results reveal insight into stage-specific gene expression in bovine CL in response to PG and potential transcriptional mediators of luteolysis.
Collapse
Affiliation(s)
- Mohan Mondal
- National Research Centre on Mithun, Indian Council of Agricultural Research, Jharnapani, Medziphema, Dimapur, Nagaland, India
- Laboratory of Mammalian Reproductive Biology and Genomics and
- Department of Animal Science, Michigan State University, East Lansing, Michigan; and
| | - Beau Schilling
- Laboratory of Mammalian Reproductive Biology and Genomics and
- Department of Animal Science, Michigan State University, East Lansing, Michigan; and
| | - Joe Folger
- Laboratory of Mammalian Reproductive Biology and Genomics and
- Department of Animal Science, Michigan State University, East Lansing, Michigan; and
| | - Juan Pedro Steibel
- Department of Animal Science, Michigan State University, East Lansing, Michigan; and
| | - Heli Buchnick
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Yulia Zalman
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - James J. Ireland
- Department of Animal Science, Michigan State University, East Lansing, Michigan; and
| | - Rina Meidan
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - George W. Smith
- Laboratory of Mammalian Reproductive Biology and Genomics and
- Department of Animal Science, Michigan State University, East Lansing, Michigan; and
| |
Collapse
|
46
|
Ginther OJ, Fuenzalida MJ, Shrestha HK, Beg MA. Concomitance of luteinizing hormone and progesterone oscillations during the transition from preluteolysis to luteolysis in cattle. Domest Anim Endocrinol 2011; 40:77-86. [PMID: 21093198 DOI: 10.1016/j.domaniend.2010.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/31/2010] [Accepted: 09/14/2010] [Indexed: 11/19/2022]
Abstract
The temporal relationships of episodes of luteinizing hormone (LH) oscillations, 13,14-dihydro-15-keto-PGF2α (PGFM) pulses, and progesterone (P4) fluctuations during the latter portion of preluteolysis and the early portion of luteolysis were characterized. In Experiment 1, the detection of LH episodes in blood samples collected every 15 min for 8 h was compared with detection in the samples collected every hour in 4 heifers. The number of independently detected episodes/heifer (total = 7) was the same for the 15-min and hourly collection intervals. In Experiment 2, blood samples were collected every hour (n = 7 heifers) and retrospectively assigned to 15 h before and 15 h after the transitional hour between preluteolysis and luteolysis. During preluteolysis, compared with luteolysis, the amplitude of LH oscillations was greater (0.28 ± 0.03 vs 0.18 ± 0.03 ng/mL; P < 0.02) and the interval between peaks of LH oscillations was shorter (3.3 ± 0.3 h vs 4.3 ± 0.6 h; P < 0.04). The LH peaks occurred at the same hour as the peak of a P4 fluctuation in 77% and 29% of LH oscillations (P < 0.0009) during preluteolysis and luteolysis, respectively. In preluteolysis, synchrony between LH and P4 episodes occurred consistently during the P4 rebound after the peak of a PGFM pulse. In luteolysis, the LH peak preceded the peak of the P4 rebound. On a temporal basis, the hypothesis was supported that episodic LH accounts, at least in part, for the reported P4 rebound that occurs after the P4 suppression at the peak of a PGFM pulse.
Collapse
|
47
|
The transition between preluteolysis and luteolysis in cattle. Theriogenology 2011; 75:164-71. [DOI: 10.1016/j.theriogenology.2010.07.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/30/2010] [Accepted: 07/31/2010] [Indexed: 11/24/2022]
|
48
|
Ginther O, Shrestha H, Beg M. Circulating hormone concentrations within a pulse of a metabolite of prostaglandin F2α during preluteolysis and early luteolysis in heifers. Anim Reprod Sci 2010; 122:253-8. [DOI: 10.1016/j.anireprosci.2010.08.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/04/2010] [Accepted: 08/23/2010] [Indexed: 11/26/2022]
|
49
|
Ginther O, Shrestha H, Fuenzalida M, Imam S, Beg M. Stimulation of pulses of 13,14-dihydro-15-keto-PGF2α (PGFM) with estradiol-17β and changes in circulating progesterone concentrations within a PGFM pulse in heifers. Theriogenology 2010; 74:384-92. [DOI: 10.1016/j.theriogenology.2010.02.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/19/2010] [Accepted: 02/24/2010] [Indexed: 11/16/2022]
|
50
|
Shrestha H, Beg M, Siddiqui M, Ginther O. Dynamic progesterone responses to simulation of a natural pulse of a metabolite of prostaglandin F2α in heifers. Anim Reprod Sci 2010; 118:118-23. [DOI: 10.1016/j.anireprosci.2009.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/18/2009] [Accepted: 06/29/2009] [Indexed: 10/20/2022]
|