1
|
Alkan KK, Satilmis F, Sonmez G, Deniz YE, Culha MH, Ciftci MF, Yesilkaya OF, Alkan H. Putrescine supplementation improves the developmental competence of in vitro produced bovine embryos. Theriogenology 2024; 231:133-143. [PMID: 39447374 DOI: 10.1016/j.theriogenology.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
The aim of this study was to investigate the effect of putrescine, anti-apoptotic, antioxidant, and a cell proliferation stimulant, on embryo development and quality by supplementing it to in vitro culture medium. In this study, oocytes were obtained from the ovaries of Holstein cattle. Following maturation and fertilization, the presumptive zygotes were randomly assigned to two groups. The first group (Putrescine, n = 435) was supplemented with putrescine at a concentration of 0.5 mM to in vitro culture. The second group (n = 407) was maintained under standard culture conditions without any supplementations to the medium. Following the determination of the developmental stages of the embryos, only those in the blastocyst stage were subjected to differential staining and the cell numbers of the embryos were determined. Moreover, the TUNEL assay was employed to ascertain the extent of cell death and the apoptotic index in the embryos. Additionally, the levels of ROS were determined in the embryos. Furthermore, gene expression analyses were conducted on blastocyst-stage embryos to ascertain the potential of putrescine supplementation in embryo development along specific pathways. Following in vitro culture, the blastocyst formation rate was 44.37 % in the putrescine group and 32.97 % in the control group (P < 0.05). The counts of ICM (60.60 ± 15.79 vs 50.73 ± 16.74), TE (117.70 ± 23.67 vs 94.0 ± 22.46), and TCC (178.30 ± 26.15 vs 144.73 ± 26.86) were found to be statistically higher in blastocysts developing after putrescine supplementation compared to the control group. Furthermore, the number of apoptotic cells (7.69 ± 2.17 vs 9.96 ± 3.99) and the apoptotic index (5.07 % vs 8.01 %) were found to be lower in the putrescine group in comparison to the control group. Nevertheless, it was established that the ROS level in the control group was approximately two-fold higher than in the putrescine group (P < 0.05). The findings also revealed that putrescine up-regulated the gene expression of SOD, GPX4, CAT, BCL2, NANOG and GATA3 while simultaneously down-regulating the BAX expression level. In conclusion, the supplementation of putrescine to the culture medium during in vitro bovine embryo production was found to contribute to the improvement of embryo quality and early embryonic development.
Collapse
Affiliation(s)
- Kubra Karakas Alkan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye.
| | - Fatma Satilmis
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Gonca Sonmez
- Department of Genetics, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Yunus Emre Deniz
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Muhammed Hudai Culha
- Department of Genetics, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Muhammed Furkan Ciftci
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Omer Faruk Yesilkaya
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| | - Hasan Alkan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Türkiye
| |
Collapse
|
2
|
Anazawa M, Ashibe S, Nagao Y. Gene expression levels in cumulus cells are correlated with developmental competence of bovine oocytes. Theriogenology 2024; 231:11-20. [PMID: 39389001 DOI: 10.1016/j.theriogenology.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
The generation of mammalian embryos by in vitro culture is hampered by the failure of many of the embryos to develop to the blastocyst stage. This problem occurs even when cumulus-oocyte complexes (COCs) with good morphology are visually selected and used for culture. Because cumulus cells are important for oocyte maturation and subsequent embryo development, here we compared gene expression patterns in cumulus cells of COCs that developed in vitro to the blastocyst stage with those of COCs that failed to develop. Cumulus cells were aspirated from bovine COCs selected for in vitro culture. Oocyte developmental competence was evaluated by screening for cleavage and development to the blastocyst stage. The collected cumulus cells were used to quantify mRNA levels of FSH receptor (FSHR), insulin-like growth factor-1 receptor (IGF-1R), anti-Müllerian hormone (AMH), AMH receptor II (AMHRII), epidermal growth factor receptor (EGFR), estrogen receptor β (ERβ), B cell lymphoma/leukemia-2 associated X (Bax), and cysteine-aspartic acid protease-3 (Caspase-3). We found that the expression levels of FSHR, IGF-1R, AMH, and EGFR were higher in cumulus cells from COCs that developed to blastocysts as compared with those that failed to develop, whereas expression levels of Bax and Caspase-3 were lower in cumulus cells of COCs that matured to the blastocyst stage. Positive correlations were found between FSHR and IGF-1R expression (r = 0.59) and between ERβ and EGFR expression (r = 0.43) in cumulus cells from COCs that developed to the blastocyst stage. Our findings indicate that gene expression levels in cumulus cells are correlated with the developmental competence of bovine oocytes. Measurement of gene expression in cumulus cells therefore offers a non-invasive means of predicting oocyte developmental competence.
Collapse
Affiliation(s)
- Mayuko Anazawa
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi, 321-4415, Japan; Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Shiori Ashibe
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi, 321-4415, Japan
| | - Yoshikazu Nagao
- University Farm, Faculty of Agriculture, Utsunomiya University, Tochigi, 321-4415, Japan; Department of Animal Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
3
|
Stephens KK, Finnerty RM, Grant DG, Winuthayanon S, Martin-DeLeon PA, Winuthayanon W. Proteomic analysis and in vivo visualization of extracellular vesicles from mouse oviducts during pre-implantation embryo development. FASEB J 2024; 38:e70035. [PMID: 39239798 PMCID: PMC11384279 DOI: 10.1096/fj.202400041rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Pre-implantation embryonic development occurs in the oviduct during the first few days of pregnancy. The presence of oviductal extracellular vesicles (oEVs, also called oviductosomes) is crucial for pre-implantation embryonic development in vivo as oEVs often contain molecular transmitters such as proteins. Therefore, evaluating oEV cargo during early pregnancy could provide insights into factors required for proper early embryonic development that are missing in the current in vitro embryo culture setting. In this study, we isolated oEVs from the oviductal fluid at estrus and different stages of early embryonic development. The 2306-3066 proteins in oEVs identified at the different time points revealed 58-60 common EV markers identified in exosome databases. Oviductal extracellular vesicle proteins from pregnant samples significantly differed from those in non-pregnant samples. In addition, superovulation changes the protein contents in oEVs compared to natural ovulation at estrus. Importantly, we have identified that embryo-protectant proteins such as high-mobility protein group B1 and serine (or cysteine) peptidase inhibitor were only enriched in the presence of embryos. We also visualized the physical interaction of EVs and the zona pellucida of 4- to 8-cell stage embryos using transmission electron microscopy as well as in vivo live imaging of epithelial cell-derived GFP-tagged CD9 mouse model. All protein data in this study are readily available to the scientific community in a searchable format at https://genes.winuthayanon.com/winuthayanon/oviduct_ev_proteins/. In conclusion, we identified oEVs proteins that could be tested to determine whether they can improve embryonic developmental outcomes in vivo and in vitro setting.
Collapse
Affiliation(s)
- Kalli K. Stephens
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, MO, 65201, USA
| | - Ryan M. Finnerty
- Department of OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Translational Biosciences Program, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - DeAna G. Grant
- Electron Microscopy Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Sarayut Winuthayanon
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, MO, 65201, USA
| | | | - Wipawee Winuthayanon
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, MO, 65201, USA
- Department of OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Translational Biosciences Program, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
4
|
Pan B, Qin J, Du K, Zhang L, Jia G, Ye J, Liang Q, Yang Q, Zhou G. Integrated ultrasensitive metabolomics and single-cell transcriptomics identify crucial regulators of sheep oocyte maturation and early embryo development in vitro. J Adv Res 2024:S2090-1232(24)00381-3. [PMID: 39233000 DOI: 10.1016/j.jare.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Developmental competence of oocytes matured in vitro is limited due to a lack of complete understanding of metabolism and metabolic gene expression during oocyte maturation and embryo development. Conventional metabolic analysis requires a large number of samples and is not efficiently applicable in oocytes and early embryos, thereby posing challenges in identifying key metabolites and regulating their in vitro culture system. OBJECTIVES To enhance the developmental competence of sheep oocytes, this study aimed to identify and supplement essential metabolites that were deficient in the culture systems. METHODS The metabolic characteristics of oocytes and embryos were determined using ultrasensitive metabolomics analysis on trace samples and single-cell RNA-seq. By conducting integrated analyses of metabolites in cells (oocytes and embryos) and their developmental microenvironment (follicular fluid, oviductal fluid, and in vitro culture systems), we identified key missing metabolites in the in vitro culture systems. In order to assess the impact of these key missing metabolites on oocyte development competence, we performed in vitro culture experiments. Furthermore, omics analyses were employed to elucidate the underlying mechanisms. RESULTS Our findings demonstrated that betaine, carnitine and creatine were the key missing metabolites in vitro culture systems and supplementation of betaine and L-carnitine significantly improved the blastocyst formation rate (67.48% and 48.61%). Through in vitro culture experiments and omics analyses, we have discovered that L-carnitine had the potential to promote fatty acid oxidation, reduce lipid content and lipid peroxidation level, and regulate spindle morphological grade through fatty acid degradation pathway. Additionally, betaine may participate in methylation modification and osmotic pressure regulation, thereby potentially improving oocyte maturation and early embryo development in sheep. CONCLUSION Together, these analyses identified key metabolites that promote ovine oocyte maturation and early embryo development, while also providing a new viewpoint to improve clinical applications such as oocyte maturation or embryo culture.
Collapse
Affiliation(s)
- Bo Pan
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China
| | - JianPeng Qin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China
| | - KunLin Du
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China
| | - LuYao Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China
| | - GongXue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China
| | - JiangFeng Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China
| | - QiuXia Liang
- College of Life Science, Sichuan Agricultural University, Sichuan, Ya'an 625014, PR China
| | - QiEn Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China.
| | - GuangBin Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China.
| |
Collapse
|
5
|
Mazzarella R, Cajas YN, Gonzalez Martínez ME, Rizos D. Extracellular vesicles: emerging paradigms in bovine embryo-maternal communication. Anim Reprod 2024; 21:e20240065. [PMID: 39286362 PMCID: PMC11404873 DOI: 10.1590/1984-3143-ar2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 09/19/2024] Open
Abstract
The oviduct and uterus provide an optimal environment for early embryo development, where effective communication between the embryo and the maternal reproductive tract is crucial for establishing and maintaining pregnancy. Oviductal and uterine-derived EVs play pivotal roles in this maternal-embryonic communication and in facilitating early embryo development. However, despite the ability of in vitro culture methods to produce viable embryos, the lack of exchange between the embryo and the mother often results in lower-quality embryos than those derived in vivo. Therefore, there is a pressing need to increase our understanding of the physiological mechanisms underlying embryo interaction with the oviduct and endometrium through EVs and to develop models capable of mimicking the in vivo environment. This review aims to provide up-to-date insights into the communication between the mother and pre-implantation bovine embryo, exploring their applications and perspectives in the field.
Collapse
Affiliation(s)
- Rosane Mazzarella
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish National Research Council - INIA-CSIC, Madrid, Spain
| | - Yulia Nathaly Cajas
- Department Agrarian Production, Technical University of Madrid -UPM, Madrid, Spain
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja - UTPL, Loja, Ecuador
| | - Maria Encina Gonzalez Martínez
- Department of Anatomy and Embryology, Veterinary Faculty of the Complutense University of Madrid - FV-UCM, Madrid, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Institute for Agricultural and Food Research and Technology, Spanish National Research Council - INIA-CSIC, Madrid, Spain
| |
Collapse
|
6
|
Benedetti C, Pavani KC, Gansemans Y, Azari-Dolatabad N, Pascottini OB, Peelman L, Six R, Fan Y, Guan X, Deserranno K, Fernández-Montoro A, Hamacher J, Van Nieuwerburgh F, Fair T, Hendrix A, Smits K, Van Soom A. From follicle to blastocyst: microRNA-34c from follicular fluid-derived extracellular vesicles modulates blastocyst quality. J Anim Sci Biotechnol 2024; 15:104. [PMID: 39097731 PMCID: PMC11298084 DOI: 10.1186/s40104-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/04/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Within the follicular fluid, extracellular vesicles (EVs) guide oocyte growth through their cargo microRNAs (miRNAs). Here, we investigated the role of EVs and their cargo miRNAs by linking the miRNAs found in EVs, derived from the fluid of an individual follicle, to the ability of its oocyte to become a blastocyst (competent) or not (non-competent). METHODS Bovine antral follicles were dissected, categorized as small (2-4 mm) or large (5-8 mm) and the corresponding oocytes were subjected to individual maturation, fertilization and embryo culture to the blastocyst stage. Follicular fluid was pooled in 4 groups (4 replicates) based on follicle size and competence of the corresponding oocyte to produce a blastocyst. Follicular fluid-derived EVs were isolated, characterized, and subjected to miRNA-sequencing (Illumina Miseq) to assess differential expression (DE) in the 4 groups. Functional validation of the effect of miR-34c on embryo development was performed by supplementation of mimics and inhibitors during in vitro maturation (IVM). RESULTS We identified 16 DE miRNAs linked to oocyte competence when follicular size was not considered. Within the large and small follicles, 46 DE miRNAs were driving blastocyst formation in each group. Comparison of EVs from competent small and large follicles revealed 90 DE miRNAs. Cell regulation, cell differentiation, cell cycle, and metabolic process regulation were the most enriched pathways targeted by the DE miRNAs from competent oocytes. We identified bta-miR-34c as the most abundant in follicular fluid containing competent oocytes. Supplementation of miR-34c mimic and inhibitor during IVM did not affect embryo development. However, blastocyst quality, as evidenced by higher cell numbers, was significantly improved following oocyte IVM in the presence of miR-34c mimics, while miR-34c inhibitors resulted in the opposite effect. CONCLUSION This study demonstrates the regulatory effect of miRNAs from follicular fluid-derived EVs on oocyte competence acquisition, providing a further basis for understanding the significance of miRNAs in oocyte maturation and embryonic development. Up-regulation of miR-34c in EVs from follicular fluid containing competent oocytes and the positive impact of miR-34c mimics added during IVM on the resulting blastocysts indicate its pivotal role in oocyte competence.
Collapse
Affiliation(s)
- Camilla Benedetti
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, 9000, Ghent, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, B-9000, Ghent, Belgium
| | | | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Rani Six
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Yuan Fan
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Xuefeng Guan
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000, Ghent, Belgium
| | - Koen Deserranno
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, B-9000, Ghent, Belgium
| | - Andrea Fernández-Montoro
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Joachim Hamacher
- Institute of Crop Science and Resource Conservation, Plant Pathology, Rheinische Friedrich-Wilhelms-University of Bonn, 53115, Bonn, Germany
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, B-9000, Ghent, Belgium
| | - Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, B-9000, Ghent, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
7
|
Hamdi M, Sánchez JM, Fernandez-Fuertes B, Câmara DR, Bollwein H, Rizos D, Bauersachs S, Almiñana C. Oviductal extracellular vesicles miRNA cargo varies in response to embryos and their quality. BMC Genomics 2024; 25:520. [PMID: 38802796 PMCID: PMC11129498 DOI: 10.1186/s12864-024-10429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Increasing evidence points to an active role of oviductal extracellular vesicles (oEVs) in the early embryo-maternal dialogue. However, it remains unclear whether oEVs contribute to the recognition of the presence of embryos and their quality in the oviduct. Hence, we examined whether the molecular cargo of oEVs secreted by bovine oviduct epithelial cells (BOEC) differs depending on the presence of good (≥ 8 cells, G) or poor (< 8 cells, P) quality embryos. In addition, differences in RNA profiles between G and P embryos were analyzed in attempt to distinguish oEVs and embryonic EVs cargos. METHODS For this purpose, primary BOEC were co-cultured with in vitro produced embryos (IVP) 53 h post fertilization as follows: BOEC with G embryos (BGE); BOEC with P embryos (BPE); G embryos alone (GE); P embryos alone (PE); BOEC alone (B) and medium control (M). After 24 h of co-culture, conditioned media were collected from all groups and EVs were isolated and characterized. MicroRNA profiling of EVs and embryos was performed by small RNA-sequencing. RESULTS In EVs, 84 miRNAs were identified, with 8 differentially abundant (DA) miRNAs for BGE vs. B and 4 for BPE vs. B (P-value < 0.01). In embryos, 187 miRNAs were identified, with 12 DA miRNAs for BGE vs. BPE, 3 for G vs. P, 8 for BGE vs. GE, and 11 for BPE vs. PE (P-value < 0.01). CONCLUSIONS These results indicated that oEVs are involved in the oviductal-embryo recognition and pointed to specific miRNAs with signaling and supporting roles during early embryo development.
Collapse
Affiliation(s)
- Meriem Hamdi
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, Lindau, ZH, 8315, Switzerland
| | - José María Sánchez
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Beatriz Fernandez-Fuertes
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Diogo Ribeiro Câmara
- Department of Veterinary Medicine, Federal University of Alagoas, Viçosa, AL, Brazil
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Lindau, ZH, 8315, Switzerland
| | - Dimitrios Rizos
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, Lindau, ZH, 8315, Switzerland
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse Faculty Zurich, University of Zurich, Lindau, ZH, 8315, Switzerland.
- Department of Reproductive Endocrinology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Javadi M, Gholami Farashah MS, Roshangar L, Soleimani JR. Plasma-derived extracellular vesicles improve mice embryo development. Mol Biol Rep 2024; 51:621. [PMID: 38709430 DOI: 10.1007/s11033-024-09500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/28/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND To investigate the effect of plasma-derived extracellular vesicles (EVs) or conventional medium in fertilization and early embryo development rate in mice. METHODS AND RESULTS MII oocytes (matured in vivo or in vitro conditions) were obtained from female mice. The extracellular vesicles were isolated by ultracentrifugation of plasma and were analyzed and measured for size and morphology by dynamic light scattering (DLS) and transmission electron microscopy (TEM). By western blotting analysis, the EVs proteins markers such as CD82 protein and heat shock protein 90 (HSP90) were investigated. Incorporating DiI-labeled EVs within the oocyte cytoplasm was visible at 23 h in oocyte cytoplasm. Also, the effective proteins in the early reproductive process were determined in isolated EVs by western blotting. These EVs had a positive effect on the fertilization rate (P < 0.05). The early embryo development (8 cell, morula and blastocyst stages) was higher in groups supplemented with EVs (P < 0.01). CONCLUSION Our findings showed that supplementing in vitro maturation media with EVs derived- plasma was beneficial for mice's embryo development.
Collapse
Affiliation(s)
- Maryam Javadi
- Department of Anatomical Sciences, Faculty of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Sadegh Gholami Farashah
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rad Soleimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Mazzarella R, Cañón-Beltrán K, Cajas YN, Hamdi M, González EM, da Silveira JC, Leal CLV, Rizos D. Extracellular vesicles-coupled miRNAs from oviduct and uterus modulate signaling pathways related to lipid metabolism and bovine early embryo development. J Anim Sci Biotechnol 2024; 15:51. [PMID: 38570884 PMCID: PMC10993494 DOI: 10.1186/s40104-024-01008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/03/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) present in oviductal (OF) and uterine fluid (UF) have been shown to enhance bovine embryo quality during in vitro culture by reducing lipid contents and modulating lipid metabolism-related genes (LMGs), while also influencing cell proliferation, suggesting their involvement on the regulation of different biological pathways. The regulation of signaling pathways related to cell differentiation, proliferation, and metabolism is crucial for early embryo development and can determine the success or failure of the pregnancy. Bioactive molecules within EVs in maternal reproductive fluids, such as microRNAs (miRNAs), may contribute to this regulatory process as they modulate gene expression through post-transcriptional mechanisms. RESULTS From the 20 differentially expressed miRNAs, 19 up-regulated in UF-EVs (bta-miR-134, bta-miR-151-3p, bta-miR-155, bta-miR-188, bta-miR-181b, bta-miR-181d, bta-miR-224, bta-miR-23b-3p, bta-miR-24-3p, bta-miR-27a-3p, bta-miR-29a, bta-miR-324, bta-miR-326, bta-miR-345-3p, bta-miR-410, bta-miR-652, bta-miR-677, bta-miR-873 and bta-miR-708) and one (bta-miR-148b) in OF-EVs. These miRNAs were predicted to modulate several pathways such as Wnt, Hippo, MAPK, and lipid metabolism and degradation. Differences in miRNAs found in OF-EVs from the early luteal phase and UF-EVs from mid-luteal phase may reflect different environments to meet the changing needs of the embryo. Additionally, miRNAs may be involved, particularly in the uterus, in the regulation of embryo lipid metabolism, immune system, and implantation. This study evaluated miRNA cargo in OF-EVs from the early luteal phase and UF-EVs from the mid-luteal phase, coinciding with embryo transit within oviduct and uterus in vivo, and its possible influence on LMGs and signaling pathways crucial for early embryo development. A total of 333 miRNAs were detected, with 11 exclusive to OF, 59 to UF, and 263 were common between both groups. CONCLUSIONS Our study suggests that miRNAs within OF- and UF-EVs could modulate bovine embryo development and quality, providing insights into the intricate maternal-embryonic communication that might be involved in modulating lipid metabolism, immune response, and implantation during early pregnancy.
Collapse
Affiliation(s)
| | - Karina Cañón-Beltrán
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain
| | - Yulia N Cajas
- Department Agrarian Production, Technical University of Madrid, UPM, Madrid, Spain
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja,, UTPL, Loja, Ecuador
| | - Meriem Hamdi
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain
| | | | | | - Claudia L V Leal
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain
- Department of Veterinary Medicine, FZEA-USP, Pirassununga, Brazil
| | - D Rizos
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain.
| |
Collapse
|
10
|
Alkan H, Tekindal MA, Demirel MA, Soyturk BI, Golbasi M, Deniz YE, Satilmis F, Alkan KK. Effect of strategies to increase progesterone levels on fertility of bovine embryo transfer recipients - A meta-analysis. Theriogenology 2024; 215:177-186. [PMID: 38086311 DOI: 10.1016/j.theriogenology.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
The pregnancy rate following embryo transfer (ET) is a very important factor in the success of embryo production programs. Different strategies were therefore developed to increase pregnancy rates. The aim of this meta-analysis was to investigate the effects of hormone treatments used to increase the success of embryo transfer programs on pregnancy rates. A meta-analysis was performed of 46 trials from 39 publications involving treated (n = 7856) and control (n = 6663) cattle. The meta-analysis explained the effect size with its 95 % confidence interval (CI) for pregnancy per embryo transfer (P/ET) after hormonal treatment under different moderators. Hormonal support was found to increase P/ET compared to the control group (P < 0.05). However, GnRH treatment was found to increase P/ET by approximately 4.3 % and hCG treatment by 8.0 %. Progesterone supplementation was not found to have a statistically significant effect on P/ET. In addition, GnRH treatment significantly increased P/ET when used to transfer in vitro or frozen-thawed embryos or in studies using cows as recipients. It was observed that hCG treatment had a positive effect on P/ET according to all moderators. Progesterone supplementation significantly increased P/ET when frozen embryos were transferred and reduced P/ET, especially in publications where fresh or in vitro produced embryos were transferred or cows were used as recipients. The results of this meta-analysis showed that the use of GnRH, and hCG, in bovine embryo transfer programs increased P/ET, whereas the use of progesterone had no effect on P/ET. However, it was found that P/ET could increase/decrease depending on the moderator.
Collapse
Affiliation(s)
- Hasan Alkan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey.
| | - Mustafa Agah Tekindal
- Department of Biostatistics, Faculty of Medicine, Izmir Katip Çelebi University, Izmir, Turkey
| | - Mehmet Akif Demirel
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Berrak Isik Soyturk
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Maide Golbasi
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Yunus Emre Deniz
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Fatma Satilmis
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Kubra Karakas Alkan
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
11
|
Aguilera C, Wong YS, Gutierrez-Reinoso MA, Velásquez AE, Melo-Báez B, Cabezas J, Caamaño D, Navarrete F, Castro FO, Rodriguez-Alvarez LL. Embryo-maternal communication mediated by extracellular vesicles in the early stages of embryonic development is modified by in vitro conditions. Theriogenology 2024; 214:43-56. [PMID: 37852113 DOI: 10.1016/j.theriogenology.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Extracellular vesicles (EVs) have become important in embryo-maternal communication during early development. The aim of this study was to evaluate the effect of an in vitro system on early bidirectional embryo-maternal communication mediated by EVs. For this purpose, two experiments were performed: one to evaluate the effect of embryonic EVs on maternal cells and the second to determine the effect of maternal EVs on early embryonic development. For the first in vitro (IVP) and in vivo (IVV) experiments, bovine blastocysts were selected and individually cultured for 48 h to collect embryonic EVs secreted during days 7-9 of embryonic development. Embryonic EVs were added to the medium of in vitro-cultured bovine endometrial cells to evaluate their effect on the expression pattern of genes associated with endometrial function and response to interferon tau (IFNT). Non-classical interferon-stimulated genes (ISGs) were only induced by in vitro-derived embryos. In the second experiment, EVs released by endometrial cells cultured in vitro (EVC) and collected from uterine fluid (EV-UF) of cows in the early luteal phase were added to the culture medium of bovine embryos produced in vitro during days 5-9 of development. The effect of maternal in vitro or in vivo-derived EVs differs in the quality of bovine embryos produced in vitro during the pre-implantation period. The expression of IFNT in bovine embryos is increased by the effect of EV-UF treatment. Additionally, EV-UF treatment induces a sustained increase in diameter during embryonic development and a tendency towards a greater number of expanded and hatched blastocysts. However, some genes related to embryo quality are induced by EVC treatment.
Collapse
Affiliation(s)
- C Aguilera
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillan, Chile
| | - Y S Wong
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillan, Chile
| | - M A Gutierrez-Reinoso
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillan, Chile
| | - A E Velásquez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillan, Chile
| | - B Melo-Báez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillan, Chile
| | - J Cabezas
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillan, Chile
| | - D Caamaño
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillan, Chile
| | - F Navarrete
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillan, Chile
| | - F O Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillan, Chile
| | - L L Rodriguez-Alvarez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepcion, Chillan, Chile.
| |
Collapse
|
12
|
Kurzella J, Miskel D, Rings F, Tholen E, Tesfaye D, Schellander K, Salilew-Wondim D, Held-Hoelker E, Große-Brinkhaus C, Hoelker M. Mitochondrial bioenergetic profiles of warmed bovine blastocysts are typically altered after cryopreservation by slow freezing and vitrification. Theriogenology 2024; 214:21-32. [PMID: 37839094 DOI: 10.1016/j.theriogenology.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
The widespread use of cryopreserved in vitro produced (IVP) bovine embryos is limited due to their low post-warming viability compared to their ex vivo derived counterparts. Therefore, the present study aimed to analyse in detail the consequences of cryopreservation (vitrification and slow freezing) on the bioenergetic profile of the embryo and its mitochondria. To accomplish that, day 7 IVP embryos were separated in a non-cryopreserved control group (fresh, n = 120, 12 replicates) or were either slow frozen (slow frozen, n = 60, 6 replicates) or vitrified (vitrified, n = 60, 6 replicates). An in-depth analysis of the bioenergetic profiles was then performed on these 3 groups, analysing pools of 10 embryos revealing that embryo cryopreservation both via vitrification and slow freezing causes profound changes in the bioenergetic profile of bovine embryos. Noteworthy, fresh embryos demonstrate a significantly (P < 0.05) higher oxygen consumption rate (OCR) compared to vitrified and slow frozen counterparts (0.858 ± 0.039 vs. 0.635 ± 0.048 vs. 0.775 ± 0.046 pmol/min/embryo). This was found to be largely due to significantly reduced mitochondrial oxygen consumption in both vitrified and deep-frozen embryos compared to fresh counterparts (0.541 ± 0.057 vs. 0.689 ± 0.044 vs. 0.808 ± 0.025 pmol/min/embryo). Conversely, slow-frozen thawed blastocysts showed 1.8-fold (P < 0.05) higher non-mitochondrial OCR rates compared to fresh embryos. Maximum mitochondrial respiration of vitrified and slow-frozen embryos was significantly reduced by almost 1.6-fold compared to fresh embryos and the proportion of ATP-linked respiration showed significantly lower values in vitrified thawed embryos compared to fresh embryos (1.1-fold, P < 0.05). Likewise, vitrification-warming and freeze-thawing reduced reactive glycolytic capacity (1.4 fold, 1.2-fold)as well as compensatory glycolytic capacity to provide energy in response to mitochondrial deficiency (1.3-fold and 1.2-fold, P < 0.05). In conclusion, the present study has, to the best of our knowledge, identified for the first time a comprehensive overview of typical altered metabolic features of the bioenergetic profile of bovine embryos after cryopreservation, which have great potential to explain the detrimental effects of cryopreservation on embryo viability. Avoidance of these detrimental effects through technical improvements is therefore suggested to be mandatory to improve the viability of bovine embryos after cryopreservation-warming.
Collapse
Affiliation(s)
- Jessica Kurzella
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany.
| | - Dennis Miskel
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany.
| | - Franca Rings
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany.
| | - Ernst Tholen
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany.
| | - Dawit Tesfaye
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 3105 Rampart Rd, Fort Collins, CO, 80521, United States.
| | - Karl Schellander
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany.
| | - Dessie Salilew-Wondim
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany; Department of Animal Science, Biotechnology and Reproduction of Farm Animals, Georg-August-University Goettingen, Burckhardtweg 2, 37077, Goettingen, Germany.
| | - Eva Held-Hoelker
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany.
| | - Christine Große-Brinkhaus
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, Bonn, 53115, Germany.
| | - Michael Hoelker
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, Georg-August-University Goettingen, Burckhardtweg 2, 37077, Goettingen, Germany.
| |
Collapse
|
13
|
Koprivec S, Majdič G. Extracellular Vesicles in Domestic Animals: Cellular Communication in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:39-57. [PMID: 37421538 DOI: 10.1007/5584_2023_779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Apoptotic and healthy cells of domestic animals release membrane-enclosed particles from their plasma membrane. These special structures, called extracellular vesicles, play an important role in intercellular communication. In the past, it was believed that their function was mainly to dispose unwanted cell contents and to help maintain cell homeostasis. However, we now know that they have important roles in health and disease and have diagnostic value as well as great potential for therapy in veterinary medicine. Extracellular vesicles facilitate cellular exchanges by delivering functional cargo molecules to nearby or distant tissues. They are produced by various cell types and are found in all body fluids. Their cargo reflects the state of the releasing parent cell, and despite their small size, this cargo is extraordinarily complex. Numerous different types of molecules contained in vesicles make them an extremely promising tool in the field of regenerative veterinary medicine. To further increase research interest and discover their full potential, some of the basic biological mechanisms behind their function need to be better understood. Only then will we be able to maximize the clinical relevance for targeted diagnostic and therapeutic purposes in various domestic animal species.
Collapse
Affiliation(s)
- Saša Koprivec
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Bicici E, Satilmis F, Bodu M, Demirel MA, Karakas Alkan K, Alkan H. Effect of putrescine supplementation to in vitro maturation medium on embryo development and quality in cattle. Anim Biotechnol 2023; 34:3887-3896. [PMID: 37466367 DOI: 10.1080/10495398.2023.2236660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
This study aimed to investigate the effect of putrescine supplementation to maturation medium during in vitro embryo production in cattle on maturation and embryo development/quality. Oocytes obtained from the ovaries of Holstein cattle were used in the study. Obtained cumulus-oocyte complexes were evaluated according to morphological structure, cytoplasmic features, and cumulus cell number, and only Category-I ones were used in the study. Before the in vitro maturation step, oocytes were randomly divided into two groups. In the first group (Putrescine group, n = 159), 0.5 mM putrescine was added to the maturation medium before in vitro maturation. No addition was applied to the maturation medium of the second group (Control group, n = 149). Cumulus expansion degrees of oocytes following maturation (Grade I: poor, Grade II: partial, and Grade III: complete) were determined. In addition, the meiosis of oocytes after maturation was evaluated by differential staining. Then the oocytes were left for fertilization with sperm and finally, possible zygotes were transferred to the culture medium. After determining the developmental stages and quality of the embryos after in vitro culture, only the embryos at the blastocyst stage were stained with the differential staining method to determine the cell numbers. When the cumulus expansion degrees of the groups were evaluated, the Grade III cumulus expansion rate in the putrescine group was higher than the control group (74.21% and 60.4%; respectively) and the Grade I expansion rate (11.95% and 26.17%; respectively) was found lower (p < .05). When the resumption of meiosis was evaluated according to the cumulus expansion degrees, it was determined that the rate of resumption of meiosis increased as the cumulus expansion increased. In addition, the cleavage rates of oocytes and reaching the blastocyst in the putrescine group were found to be higher than in the control group (p < .05). Moreover, inner cell mass, trophectoderm cells, and total cell counts were found to be higher in blastocysts obtained after the putrescine supplementation to the maturation medium compared to the control group (p < .05). As a result, it was determined that the putrescine supplementation to the maturation medium during in vitro embryo production in cattle increased the degree of cumulus expansion and the rate of resumption of meiosis. In addition, putrescine supplementation was thought to increase the rate of reaching the blastocyst of oocytes due to better cell development in embryos.
Collapse
Affiliation(s)
- Esra Bicici
- Department of Obstetrics and Gynecology, Selcuk University, Konya, Turkey
| | - Fatma Satilmis
- Department of Obstetrics and Gynecology, Selcuk University, Konya, Turkey
| | - Mustafa Bodu
- Department of Reproduction and Artificial Insemination, Selcuk University, Konya, Turkey
| | | | | | - Hasan Alkan
- Department of Obstetrics and Gynecology, Selcuk University, Konya, Turkey
| |
Collapse
|
15
|
Lavrentiadou SN, Sapanidou V, Tzekaki EE, Margaritis I, Tsantarliotou MP. Melatonin Protects Bovine Spermatozoa by Reinforcing Their Antioxidant Defenses. Animals (Basel) 2023; 13:3219. [PMID: 37893943 PMCID: PMC10603642 DOI: 10.3390/ani13203219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Cryopreserved semen is widely used in assisted reproductive techniques. Post-thawing spermatozoa endure oxidative stress due to the high levels of reactive oxygen and nitrogen species, which are produced during the freezing/thawing process, and the depletion of antioxidants. To counteract this depletion, supplementation of sperm preparation medium with antioxidants has been widely applied. Melatonin is a hormone with diverse biological roles and a potent antioxidant, with an ameliorative effect on spermatozoa. In the present study, we assessed the effect of melatonin on thawed bovine spermatozoa during their handling. Cryopreserved bovine spermatozoa were thawed and incubated for 60 min in the presence or absence of 100 μΜ melatonin. Also, the effect of melatonin was assessed on spermatozoa further challenged by the addition of 100 μΜ hydrogen peroxide. Spermatozoa were evaluated in terms of kinematic parameters (CASA), viability (trypan blue staining) and antioxidant capacity (glutathione and NBT assay, determination of iNOS levels by Western blot analysis). In the presence of melatonin, spermatozoa presented better kinematic parameters, as the percentage of motile and rapid spermatozoa was higher in the melatonin group. They also presented higher viability and antioxidant status, as determined by the increased cellular glutathione levels and the decreased iNOS protein levels.
Collapse
Affiliation(s)
- Sophia N. Lavrentiadou
- Laboratory of Physiology, Department of Animal Structure and Function, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.S.); (I.M.); (M.P.T.)
| | - Vasiliki Sapanidou
- Laboratory of Physiology, Department of Animal Structure and Function, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.S.); (I.M.); (M.P.T.)
| | - Elena E. Tzekaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
| | - Ioannis Margaritis
- Laboratory of Physiology, Department of Animal Structure and Function, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.S.); (I.M.); (M.P.T.)
| | - Maria P. Tsantarliotou
- Laboratory of Physiology, Department of Animal Structure and Function, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.S.); (I.M.); (M.P.T.)
| |
Collapse
|
16
|
Velazquez MA, Idriss A, Chavatte-Palmer P, Fleming TP. The mammalian preimplantation embryo: Its role in the environmental programming of postnatal health and performance. Anim Reprod Sci 2023; 256:107321. [PMID: 37647800 DOI: 10.1016/j.anireprosci.2023.107321] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
During formation of the preimplantation embryo several cellular and molecular milestones take place, making the few cells forming the early embryo vulnerable to environmental stressors than can impair epigenetic reprogramming and controls of gene expression. Although these molecular alterations can result in embryonic death, a significant developmental plasticity is present in the preimplantation embryo that promotes full-term pregnancy. Prenatal epigenetic modifications are inherited during mitosis and can perpetuate specific phenotypes during early postnatal development and adulthood. As such, the preimplantation phase is a developmental window where developmental programming can take place in response to the embryonic microenvironment present in vivo or in vitro. In this review, the relevance of the preimplantation embryo as a developmental stage where offspring health and performance can be programmed is discussed, with emphasis on malnutrition and assisted reproductive technologies; two major environmental insults with important implications for livestock production and human reproductive medicine.
Collapse
Affiliation(s)
- Miguel A Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Abdullah Idriss
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Pathology and laboratory medicine, King Faisal Specialist Hospital and Research Centre, P.O. Box 40047, MBC J-10, Jeddah 21499, Kingdom of Saudi Arabia
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | - Tom P Fleming
- Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
17
|
Liu RP, Wang J, Wang XQ, Wang CR, He SY, Xu YN, Li YH, Kim NH. Xanthoangelol promotes early embryonic development of porcine embryos by relieving endoplasmic reticulum stress and enhancing mitochondrial function. Reprod Biomed Online 2023; 47:103211. [PMID: 37246104 DOI: 10.1016/j.rbmo.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/30/2023]
Abstract
RESEARCH QUESTION Does the addition of an antioxidant agent, xanthoangelol (XAG), to the culture medium improve in-vitro development of porcine embryos? DESIGN Early porcine embryos were incubated in the presence of 0.5 μmol/l XAG in in-vitro culture (IVC) media and analysed using various techniques, including immunofluorescence staining, reactive oxygen species (ROS) detection, TdT-mediated dUTP nick-end labelling (TUNEL), and reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR). RESULTS The addition of 0.5 μmol/l XAG to IVC media increased the rate of blastocyst formation, total cell number, glutathione concentrations and proliferative capacity, while reducing reactive oxygen species concentrations, apoptosis and autophagy. In addition, upon XAG treatment, the abundance of mitochondria and mitochondrial membrane potential significantly increased (both P < 0.001), and the genes related to mitochondrial biogenesis (TFAM, NRF1 and NRF2) were significantly up-regulated (all P < 0.001). XAG treatment also significantly increased the endoplasmic reticulum abundance (P < 0.001) and reduced the concentrations of endoplasmic reticulum stress (ERS) marker GRP78 (P = 0.003) and expression of the ERS-related genes EIF2α, GRP78, CHOP, ATF6, ATF4, uXBP1 and sXBP 1 (all P < 0.001). CONCLUSION XAG promotes early embryonic development in porcine embryos in vitro by reducing oxidative stress, enhancing mitochondrial function and relieving ERS.
Collapse
Affiliation(s)
- Rong-Ping Liu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China; College of Agriculture, Yanbian University, Yanji 133002, China
| | - Xin-Qin Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Chao-Rui Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Sheng-Yan He
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Yong-Nan Xu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| | - Ying-Hua Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China.
| | - Nam-Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
18
|
Kim M, Lee J, Cai L, Choi H, Oh D, Jawad A, Hyun SH. Neurotrophin-4 promotes the specification of trophectoderm lineage after parthenogenetic activation and enhances porcine early embryonic development. Front Cell Dev Biol 2023; 11:1194596. [PMID: 37519302 PMCID: PMC10373506 DOI: 10.3389/fcell.2023.1194596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Neurotrophin-4 (NT-4), a neurotrophic factor, appears to affect early embryonic development because it is secreted not only by neurons but also by oviductal and uterine epithelial cells. However, no studies have characterized the effects of NT-4 on early embryonic development in pigs. In this study, we applied the experimental model of parthenogenetic-activation (PA)-derived embryos. Herein, we investigated the effect of NT-4 supplementation during the in vitro culture (IVC) of embryos, analyzed the transcription levels of specific genes, and outlined the first cell lineage specification for porcine PA-derived blastocysts. We confirmed that NT-4 and its receptor proteins were localized in both the inner cell mass (ICM) and trophectoderm (TE) in porcine blastocysts. Across different concentrations (0, 1, 10, and 100 ng/mL) of NT-4 supplementation, the optimal concentration of NT-4 to improve the developmental competence of porcine parthenotes was 10 ng/mL. NT-4 supplementation during porcine IVC significantly (p < 0.05) increased the proportion of TE cells by inducing the transcription of TE lineage markers (CDX2, PPAG3, and GATA3 transcripts). NT-4 also reduced blastocyst apoptosis by regulating the transcription of apoptosis-related genes (BAX and BCL2L1 transcripts) and improved blastocyst quality via the interaction of neurotrophin-, Hippo-yes-associated protein (Hippo-YAP) and mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway. Additionally, NT-4 supplementation during IVC significantly (p < 0.05) increased YAP1 transcript levels and significantly (p < 0.01) decreased LATS2 transcript levels, respectively, in the porcine PA-derived blastocysts. We also confirmed through fluorescence intensity that the YAP1 protein was significantly (p < 0.001) increased in the NT-4-treated blastocysts compared with that in the control. NT-4 also promoted differentiation into the TE lineage rather than into the ICM lineage during porcine early embryonic development. In conclusion, 10 ng/mL NT-4 supplementation enhanced blastocyst quality by regulating the apoptosis- and TE lineage specification-related genes and interacting with neurotrophin-, Hippo-YAP-, and MAPK/ERK signaling pathway during porcine in vitro embryo development.
Collapse
Affiliation(s)
- Mirae Kim
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Hwan Hyun
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
19
|
Costa M, Strumane A, Raes A, Van Soom A, Babin D, Aelterman J. Deep-Learning Based Quantification of Bovine Oocyte Quality From Microscopy Images . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082658 DOI: 10.1109/embc40787.2023.10340258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The success rate of bovine in vitro embryo reproduction is low and highly dependent on the oocyte quality. The selection of the oocyte to be fertilized is done by the embryologists' visual examination of oocytes. It is time-consuming, subjective, and inconsistent between specialists in the area. In this paper, a semi-automatic solution is proposed to score the quality of an immature oocyte. It consists of a deep learning model to classify oocyte competence. The model was trained and tested with real data, composed of images of immature oocytes and their label of whether they developed into blastocysts after fertilization. To the best of our knowledge, automated bovine oocyte classification was not attempted before, but experimental results show that our proposed solution is more robust and objective than specialists' visual assessment and comparable with other works on human oocytes.Clinical relevance- This establishes a semi-automatic real-time method to score bovine immature oocytes, based on stereo-microscopy images. Our method will significantly reduce the time of in vitro embryo production and its success.
Collapse
|
20
|
Li Y, Cai L, Guo N, Liu C, Wang M, Zhu L, Li F, Jin L, Sui C. Oviductal extracellular vesicles from women with endometriosis impair embryo development. Front Endocrinol (Lausanne) 2023; 14:1171778. [PMID: 37409222 PMCID: PMC10319124 DOI: 10.3389/fendo.2023.1171778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 07/07/2023] Open
Abstract
Objective To investigate the influence of oviductal extracellular vesicles from patients with endometriosis on early embryo development. Design In vitro experimental study. Setting University-affiliated hospital. Patients Women with and without endometriosis who underwent hysterectomy (n = 27 in total). Interventions None. Main outcome measures Oviductal extracellular vesicles from patients with endometriosis (oEV-EMT) or without endometriosis (oEV-ctrl) were isolated and co-cultured with two-cell murine embryos for 75 hours. Blastocyst rates were recorded. RNA sequencing was used to identify the differentially expressed genes in blastocysts cultured either with oEV-EMT or with oEV-ctrl. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to identify potential biological processes in embryos that oEV-EMT affects. The functions of oEV on early embryo development were determined by reactive oxygen species (ROS) levels, mitochondrial membrane potentials (MMP), total cell numbers, and apoptotic cell proportions. Results Extracellular vesicles were successfully isolated from human Fallopian tubal fluid, and their characterizations were described. The blastocyst rates were significantly decreased in the oEV-EMT group. RNA sequencing revealed that oxidative phosphorylation was down-regulated in blastocysts cultured with oEV-EMT. Analysis of oxidative stress and apoptosis at the blastocysts stage showed that embryos cultured with oEV-EMT had increased ROS levels, decreased MMP, and increased apoptotic index. Total cell numbers were not influenced. Conclusion Oviductal extracellular vesicles from patients with endometriosis negatively influence early embryo development by down-regulating oxidative phosphorylation.
Collapse
Affiliation(s)
- Yuehan Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Cai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Liu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Oliver MA, Peterson KD, Bhandari S, Payton RR, Edwards JL, Mathew DJ. Progesterone-stimulated endometrial cell conditioned media increases in vitro produced bovine embryo blastocyst formation. Anim Reprod Sci 2023; 254:107264. [PMID: 37285656 DOI: 10.1016/j.anireprosci.2023.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/28/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
The early bovine embryo is supported by histotroph molecules secreted by endometrial epithelial (EPI) and stroma fibroblast (SF) cells in response to luteal progesterone (P4). We hypothesized that specific histotroph molecule transcript abundance depends on cell type and P4 concentration and that endometrial cell conditioned media (CM) could improve in vitro produced (IVP) embryo development in culture. Primary bovine EPI and SF cells from seven uteri were incubated for 12 h with RPMI medium containing 0 (Control), 1, 15, or 50 ng of P4. RPMI was also incubated without cells (N-CM) and CM from EPI or SF cultures (EPI- or SF-CM) or a combination of the two (1:1; EPI/SF-CM) was used to culture IVP embryos from days 4-8 of development (n = 117). There was an effect of cell type (SLC1A1, SLC5A6, SLC7A1, FGF-2, FGF-7, CTGF, PRSS23 and NID2) and/or P4 concentration (FGF-7 and NID2) on endometrial cell histotroph molecule mRNA (P < 0.05). Compared to N-CM, blastocyst development on day 7 was greater in the EPI or SF-CM (P ≤ 0.05) and tended to be greater in the EPI/SF-CM (P = 0.07). On day 8, blastocyst development was greater only in the EPI-CM (P < 0.05). Further, culturing embryos with endometrial cell CM reduced day 8 blastocyst transcript abundance of cell adhesion molecule LGALS1 (P < 0.01). In conclusion, endometrial cell CM or histotroph molecules may be used to improve IVP embryo development in cattle.
Collapse
Affiliation(s)
- Mary A Oliver
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, USA; School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Katie D Peterson
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, USA
| | - Sadikshya Bhandari
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, USA
| | - Rebecca R Payton
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, USA
| | - J Lannett Edwards
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, USA
| | - Daniel J Mathew
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
22
|
Sapanidou V, Tsantarliotou MP, Lavrentiadou SN. A review of the use of antioxidants in bovine sperm preparation protocols. Anim Reprod Sci 2023; 251:107215. [PMID: 37001221 DOI: 10.1016/j.anireprosci.2023.107215] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Reactive oxygen species (ROS) and oxidative stress (OS), the imbalance between the production of free radicals and the cellular antioxidant defenses, are discussed in relation to their role in bovine sperm physiology. Oxidative stress has been associated to male infertility and low fertility rates in Assisted Reproductive Techniques (ART). Antioxidant supplementation is an interesting approach to overcome OS-related infertility and assisted reproduction drawbacks. Several studies have been conducted to identify the potential sources of ROS in a typical ART setting and the impact of antioxidant supplementation on semen quality and pregnancy outcome. Procedures such as freezing and thawing, centrifugation and incubation are thought to produce significant amounts of ROS with a negative impact on sperm quality parameters and reproductive competence. Given the important role of ROS in sperm function, the addition of antioxidants in sperm media to prevent OS and to improve the reproductive outcome requires attention. Currently, there is limited evidence to support the ameliorative effect of antioxidant supplementation on fertilization and embryo development in farm animals. This review summarizes the different types and concentrations of antioxidants used in sperm preparation media of bovine species and their effectiveness in neutralizing excessive ROS production while preserving physiological sperm function.
Collapse
|
23
|
Banliat C, Mahé C, Lavigne R, Com E, Pineau C, Labas V, Guyonnet B, Mermillod P, Saint-Dizier M. The proteomic analysis of bovine embryos developed in vivo or in vitro reveals the contribution of the maternal environment to early embryo. BMC Genomics 2022; 23:839. [PMID: 36536309 PMCID: PMC9764490 DOI: 10.1186/s12864-022-09076-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite many improvements with in vitro culture systems, the quality and developmental ability of mammalian embryos produced in vitro are still lower than their in vivo counterparts. Though previous studies have evidenced differences in gene expression between in vivo- and in vitro-derived bovine embryos, there is no comparison at the protein expression level. RESULTS A total of 38 pools of grade-1 quality bovine embryos at the 4-6 cell, 8-12 cell, morula, compact morula, and blastocyst stages developed either in vivo or in vitro were analyzed by nano-liquid chromatography coupled with label-free quantitative mass spectrometry, allowing for the identification of 3,028 proteins. Multivariate analysis of quantified proteins showed a clear separation of embryo pools according to their in vivo or in vitro origin at all stages. Three clusters of differentially abundant proteins (DAPs) were evidenced according to embryo origin, including 463 proteins more abundant in vivo than in vitro across development and 314 and 222 proteins more abundant in vitro than in vivo before and after the morula stage, respectively. The functional analysis of proteins found more abundant in vivo showed an enrichment in carbohydrate metabolism and cytoplasmic cellular components. Proteins found more abundant in vitro before the morula stage were mostly localized in mitochondrial matrix and involved in ATP-dependent activity, while those overabundant after the morula stage were mostly localized in the ribonucleoprotein complex and involved in protein synthesis. Oviductin and other oviductal proteins, previously shown to interact with early embryos, were among the most overabundant proteins after in vivo development. CONCLUSIONS The maternal environment led to higher degradation of mitochondrial proteins at early developmental stages, lower abundance of proteins involved in protein synthesis at the time of embryonic genome activation, and a global upregulation of carbohydrate metabolic pathways compared to in vitro production. Furthermore, embryos developed in vivo internalized large amounts of oviductin and other proteins probably originated in the oviduct as soon as the 4-6 cell stage. These data provide new insight into the molecular contribution of the mother to the developmental ability of early embryos and will help design better in vitro culture systems.
Collapse
Affiliation(s)
- Charles Banliat
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France ,Union Evolution, Rue Eric Tabarly, Noyal-Sur-Vilaine, France
| | - Coline Mahé
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France
| | - Régis Lavigne
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Rennes, France
| | - Emmanuelle Com
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Rennes, France
| | - Charles Pineau
- grid.410368.80000 0001 2191 9284Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France ,grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim Core Facility, Rennes, France
| | - Valérie Labas
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France ,Pixanim, INRAE, Tours University, CHU of Tours, Nouzilly, France
| | - Benoit Guyonnet
- Union Evolution, Rue Eric Tabarly, Noyal-Sur-Vilaine, France
| | - Pascal Mermillod
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France
| | - Marie Saint-Dizier
- grid.12366.300000 0001 2182 6141INRAE, CNRS, Tours University, IFCE, UMR PRC, Nouzilly, France
| |
Collapse
|
24
|
Leal CLV, Cañón-Beltrán K, Cajas YN, Hamdi M, Yaryes A, Millán de la Blanca MG, Beltrán-Breña P, Mazzarella R, da Silveira JC, Gutiérrez-Adán A, González EM, Rizos D. Extracellular vesicles from oviductal and uterine fluids supplementation in sequential in vitro culture improves bovine embryo quality. J Anim Sci Biotechnol 2022; 13:116. [PMID: 36280872 PMCID: PMC9594899 DOI: 10.1186/s40104-022-00763-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022] Open
Abstract
Background In vitro production of bovine embryos is a well-established technology, but the in vitro culture (IVC) system still warrants improvements, especially regarding embryo quality. This study aimed to evaluate the effect of extracellular vesicles (EVs) isolated from oviductal (OF) and uterine fluid (UF) in sequential IVC on the development and quality of bovine embryos. Zygotes were cultured in SOF supplemented with either BSA or EVs-depleted fetal calf serum (dFCS) in the presence (BSA-EV and dFCS-EV) or absence of EVs from OF (D1 to D4) and UF (D5 to D8), mimicking in vivo conditions. EVs from oviducts (early luteal phase) and uterine horns (mid-luteal phase) from slaughtered heifers were isolated by size exclusion chromatography. Blastocyst rate was recorded on days 7–8 and their quality was assessed based on lipid contents, mitochondrial activity and total cell numbers, as well as survival rate after vitrification. Relative mRNA abundance for lipid metabolism-related transcripts and levels of phosphorylated hormone-sensitive lipase (pHSL) proteins were also determined. Additionally, the expression levels of 383 miRNA in OF- and UF-EVs were assessed by qRT-PCR. Results Blastocyst yield was lower (P < 0.05) in BSA treatments compared with dFCS treatments. Survival rates after vitrification/warming were improved in dFCS-EVs (P < 0.05). EVs increased (P < 0.05) blastocysts total cell number in dFCS-EV and BSA-EV compared with respective controls (dFCS and BSA), while lipid content was decreased in dFCS-EV (P < 0.05) and mitochondrial activity did not change (P > 0.05). Lipid metabolism transcripts were affected by EVs and showed interaction with type of protein source in medium (PPARGC1B, LDLR, CD36, FASN and PNPLA2, P < 0.05). Levels of pHSL were lower in dFCS (P < 0.05). Twenty miRNA were differentially expressed between OF- and UF-EVs and only bta-miR-148b was increased in OF-EVs (P < 0.05). Conclusions Mimicking physiological conditions using EVs from OF and UF in sequential IVC does not affect embryo development but improves blastocyst quality regarding survival rate after vitrification/warming, total cell number, lipid content, and relative changes in expression of lipid metabolism transcripts and lipase activation. Finally, EVs miRNA contents may contribute to the observed effects. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00763-7.
Collapse
Affiliation(s)
- Cláudia Lima Verde Leal
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain ,grid.11899.380000 0004 1937 0722Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (FZEA-USP), Pirassununga, Brazil
| | - Karina Cañón-Beltrán
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain ,grid.442066.20000 0004 0466 9211Facultad de Ciencias Agrarias y Ambientales, Programa de Medicina Veterinaria, Fundación Universitaria Juan de Castellanos, Tunja, Colombia
| | - Yulia N. Cajas
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain ,grid.442123.20000 0001 1940 3465Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca (UC), EC010205 Cuenca, Ecuador
| | - Meriem Hamdi
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - Aracelli Yaryes
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - María Gemma Millán de la Blanca
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - Paula Beltrán-Breña
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - Rosane Mazzarella
- grid.11899.380000 0004 1937 0722Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (FZEA-USP), Pirassununga, Brazil
| | - Juliano Coelho da Silveira
- grid.11899.380000 0004 1937 0722Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo (FZEA-USP), Pirassununga, Brazil
| | - Alfonso Gutiérrez-Adán
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| | - Encina M González
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain ,grid.4795.f0000 0001 2157 7667Department of Anatomy and Embryology, Veterinary Faculty-Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Dimitrios Rizos
- grid.4711.30000 0001 2183 4846Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), 28040 Madrid, Spain
| |
Collapse
|
25
|
Davoodian N, Kadivar A, Davoodian N, Ahmadi E, Nazari H, Mehrban H. The effect of quercetin in the maturation media on cumulus-granulosa cells and the developmental competence of bovine oocytes. Theriogenology 2022; 189:262-269. [DOI: 10.1016/j.theriogenology.2022.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
|
26
|
Ordóñez-León EA, Martínez-Rodero I, García-Martínez T, López-Béjar M, Yeste M, Mercade E, Mogas T. Exopolysaccharide ID1 Improves Post-Warming Outcomes after Vitrification of In Vitro-Produced Bovine Embryos. Int J Mol Sci 2022; 23:ijms23137069. [PMID: 35806071 PMCID: PMC9266775 DOI: 10.3390/ijms23137069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
This study aimed to assess the cryoprotectant role of exopolysaccharide (EPS) ID1, produced by Antarctic Pseudomonas sp., in the vitrification of in vitro-produced (IVP) bovine embryos. IVP day 7 (D7) and day 8 (D8) expanded blastocysts derived from cow or calf oocytes were vitrified without supplementation (EPS0) or supplemented with 10 µg/mL (EPS10) or 100 µg/mL (EPS100) EPS ID1. The effect of EPS ID1 was assessed in post-warming re-expansion and hatching rates, differential cell count, apoptosis rate, and gene expression. EPS100 re-expansion rates were significantly higher than those observed for the EPS0 and EPS10 treatments, regardless of culture length or oocyte source. EPS100 hatching rate was similar to the one of the fresh blastocysts except for those D7 blastocysts derived from calf oocytes. No differences were observed among EPS ID1 treatments when the inner cell mass, trophectoderm, and total cell number were assessed. Although apoptosis rates were higher (p ≤ 0.05) in vitrified groups compared to fresh embryos, EPS100 blastocysts had a lower number (p ≤ 0.05) of apoptotic nuclei than the EPS0 or EPS10 groups. No differences in the expression of BCL2, AQP3, CX43, and SOD1 genes between treatments were observed. Vitrification without EPS ID1 supplementation produced blastocysts with significantly higher BAX gene expression, whereas treatment with 100 µg/mL EPS ID1 returned BAX levels to those observed in non-vitrified blastocysts. Our results suggest that 100 µg/mL EPS ID1 added to the vitrification media is beneficial for embryo cryopreservation because it results in higher re-expansion and hatching ability and it positively modulates apoptosis.
Collapse
Affiliation(s)
- Erika Alina Ordóñez-León
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Cerdanyola del Vallès, ES-08193 Barcelona, Spain; (E.A.O.-L.); (I.M.-R.); (T.G.-M.)
- Brasuca In Vitro, Villahermosa MX-86040, Mexico
| | - Iris Martínez-Rodero
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Cerdanyola del Vallès, ES-08193 Barcelona, Spain; (E.A.O.-L.); (I.M.-R.); (T.G.-M.)
| | - Tania García-Martínez
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Cerdanyola del Vallès, ES-08193 Barcelona, Spain; (E.A.O.-L.); (I.M.-R.); (T.G.-M.)
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, Cerdanyola del Vallès, ES-08193 Barcelona, Spain;
| | - Marc Yeste
- Department of Biology, Institute of Food and Agricultural Technology, University of Girona, ES-17004 Girona, Spain;
| | - Elena Mercade
- Department of Biology, Health and Environment, University of Barcelona, ES-08007 Barcelona, Spain;
| | - Teresa Mogas
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Cerdanyola del Vallès, ES-08193 Barcelona, Spain; (E.A.O.-L.); (I.M.-R.); (T.G.-M.)
- Correspondence: ; Tel.: +34-696-64-51-27
| |
Collapse
|
27
|
Exogenous Melatonin in the Culture Medium Does Not Affect the Development of In Vivo-Derived Pig Embryos but Substantially Improves the Quality of In Vitro-Produced Embryos. Antioxidants (Basel) 2022; 11:antiox11061177. [PMID: 35740074 PMCID: PMC9220299 DOI: 10.3390/antiox11061177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Cloned and transgenic pigs are relevant human disease models and serve as potential donors for regenerative medicine and xenotransplantation. These technologies demand oocytes and embryos of good quality. However, the current protocols for in vitro production (IVP) of pig embryos give reduced blastocyst efficiency and embryo quality compared to in vivo controls. This is likely due to culture conditions jeopardizing embryonic homeostasis including the effect of reactive oxygen species (ROS) influence. In this study, the antioxidant melatonin (1 nM) in the maturation medium, fertilization medium, or both media was ineffective in enhancing fertilization or embryonic development parameters of in vitro fertilized oocytes. Supplementation of melatonin in the fertilization medium also had no effect on sperm function. In contrast, the addition of melatonin to the embryo culture medium accelerated the timing of embryonic development and increased the percentages of cleaved embryos and presumed zygotes that developed to the blastocyst stage. Furthermore, it increased the number of inner mass cells and the inner mass cell/total cell number ratio per blastocyst while increasing intracellular glutathione and reducing ROS and DNA damage levels in embryos. Contrarily, the addition of melatonin to the embryo culture medium had no evident effect on in vivo-derived embryos, including the developmental capacity and the quality of in vivo-derived 4-cell embryos or the percentage of genome-edited in vivo-derived zygotes achieving the blastocyst stage. In conclusion, exogenous melatonin in the embryo culture medium enhances the development and quality of in vitro-derived embryos but not in in vivo-derived embryos. Exogenous melatonin is thus recommended during embryo culture of oocytes matured and fertilized in vitro for improving porcine IVP efficiency.
Collapse
|
28
|
de Camargo J, Rodrigues R, Valente RS, Muller DB, Vireque AA, Belaz KRA, Bohrer RC, Basso AC, Eberlin MN, Fontes PK, Nogueira MFG, Sudano MJ. Evaluation of a serum-free culture medium for the enhanced vitrification cryosurvival of bovine in vitro-derived embryos. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Hennig SL, Owen JR, Lin JC, McNabb BR, Van Eenennaam AL, Murray JD. A deletion at the polled P C locus alone is not sufficient to cause a polled phenotype in cattle. Sci Rep 2022; 12:2067. [PMID: 35136148 PMCID: PMC8825853 DOI: 10.1038/s41598-022-06118-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Dehorning is a common practice in the dairy industry, but raises animal welfare concerns. A naturally occurring genetic mutation (PC allele) comprised of a 212 bp duplicated DNA sequence replacing a 10-bp sequence at the polled locus is associated with the hornless phenotype (polled) in cattle. To test the hypothesis that the 10 bp deletion alone is sufficient to result in polled, a CRISPR-Cas9 dual guide RNA approach was optimized to delete a 133 bp region including the 10 bp sequence. Timing of ribonucleoprotein complex injections at various hours post insemination (hpi) (6, 8, and 18 hpi) as well as in vitro transcribed (IVT) vs synthetic gRNAs were compared. Embryos injected 6 hpi had a significantly higher deletion rate (53%) compared to those injected 8 (12%) and 18 hpi (7%), and synthetic gRNAs had a significantly higher deletion rate (84%) compared to IVT gRNAs (53%). Embryo transfers were performed, and bovine fetuses were harvested between 3 and 5 months of gestation. All fetuses had mutations at the target site, with two of the seven having biallelic deletions, and yet they displayed horn bud development indicating that the 10 bp deletion alone is not sufficient to result in the polled phenotype.
Collapse
Affiliation(s)
- Sadie L Hennig
- Department of Animal Science, University of CA - Davis, Davis, CA, USA
| | - Joseph R Owen
- Department of Animal Science, University of CA - Davis, Davis, CA, USA
| | - Jason C Lin
- Department of Animal Science, University of CA - Davis, Davis, CA, USA
| | - Bret R McNabb
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of CA - Davis, Davis, CA, USA
| | | | - James D Murray
- Department of Animal Science, University of CA - Davis, Davis, CA, USA.
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of CA - Davis, Davis, CA, USA.
| |
Collapse
|
30
|
Diaz-Lundahl S, Sundaram AYM, Gillund P, Gilfillan GD, Olsaker I, Krogenæs A. Gene Expression in Embryos From Norwegian Red Bulls With High or Low Non Return Rate: An RNA-Seq Study of in vivo-Produced Single Embryos. Front Genet 2022; 12:780113. [PMID: 35096004 PMCID: PMC8795813 DOI: 10.3389/fgene.2021.780113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
During the last decade, paternal effects on embryo development have been found to have greater importance than previously believed. In domestic cattle, embryo mortality is an issue of concern, causing huge economical losses for the dairy cattle industry. In attempts to reveal the paternal influence on embryo death, recent approaches have used transcriptome profiling of the embryo to find genes and pathways affected by different phenotypes in the bull. For practical and economic reasons, most such studies have used in vitro produced embryos. The aim of the present study was to investigate the differences in the global transcriptome of in vivo produced embryos, derived from sires with either high or low field fertility measured as the non-return rate (NRR) on day 56 after first AI of the inseminated cows. Superovulated heifers (n = 14) in the age span of 12–15 months were artificially inseminated with semen from either high fertility (n = 6) or low fertility (n = 6) bulls. On day seven after insemination, embryos were retrieved through uterine flushing. Embryos with first grade quality and IETS stage 5 (early blastocyst), 6 (blastocyst) or 7 (expanded blastocyst) were selected for further processing. In total, RNA extracted from 24 embryos was sequenced using Illumina sequencing, followed by differential expression analysis and gene set enrichment analysis. We found 62 genes differentially expressed between the two groups (adj.p-value<0.05), of which several genes and their linked pathways could explain the different developmental capacity. Transcripts highly expressed in the embryos from low fertility bulls were related to sterol metabolism and terpenoid backbone synthesis, while transcripts highly expressed in the high fertility embryos were linked to anti-apoptosis and the regulation of cytokine signaling. The leukocyte transendothelial migration and insulin signaling pathways were associated with enrichments in both groups. We also found some highly expressed transcripts in both groups which can be considered as new candidates in the regulation of embryo development. The present study is an important step in defining the paternal influence in embryonic development. Our results suggest that the sire’s genetic contribution affects several important processes linked to pre-and peri implantation regulation in the developing embryo.
Collapse
Affiliation(s)
- Sofia Diaz-Lundahl
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Per Gillund
- Geno Breeding and AI Association, Hamar, Norway
| | - Gregor Duncan Gilfillan
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ingrid Olsaker
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Anette Krogenæs
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
31
|
Lopes JS, Soriano-Úbeda C, París-Oller E, Navarro-Serna S, Canha-Gouveia A, Sarrias-Gil L, Cerón JJ, Coy P. Year-Long Phenotypical Study of Calves Derived From Different Assisted-Reproduction Technologies. Front Vet Sci 2022; 8:739041. [PMID: 35083305 PMCID: PMC8784852 DOI: 10.3389/fvets.2021.739041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/23/2021] [Indexed: 01/06/2023] Open
Abstract
Assisted reproductive technologies play a major role in the cattle industry. An increase in the use of in vitro-derived embryos is currently being seen around the globe. But the efficiency and quality of the in vitro-derived embryos are substandard when compared to the in vivo production. Different protocols have been designed to overcome this issue, one of those being the use of reproductive fluids as supplementation to embryo culture media. In this study, in vitro-derived calves produced with reproductive fluids added to their embryo production protocol were followed for the first year of life pairwise with their in vivo control, produced by artificial insemination (AI), and their in vitro control, produced with standard supplementation in embryo production. The objective was to assess if any differences could be found in terms of growth and development as well as hematological and biochemical analytes between the different systems. All the analysed variables (physical, hematological, and biochemical) were within physiological range and very similar between calves throughout the entire experiment. However, differences were more evident between calves derived from standard in vitro production and AI. We concluded that the use of reproductive fluids as a supplementation to the embryo culture media results in calves with closer growth and development patterns to those born by AI than the use of bovine serum albumin as supplementation.
Collapse
Affiliation(s)
- Jordana S. Lopes
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Cristina Soriano-Úbeda
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Evelyne París-Oller
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Sergio Navarro-Serna
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Analuce Canha-Gouveia
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Lucía Sarrias-Gil
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
| | - José Joaquin Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Faculty of Veterinary, University of Murcia, Murcia, Spain
| | - Pilar Coy
- Physiology of Reproduction Group, Department of Physiology, Faculty of Veterinary, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, Murcia, Spain
- *Correspondence: Pilar Coy
| |
Collapse
|
32
|
Mardani P, Foroutanifar S, Abdolmohammadi A, Hajarian H. The ND1 and CYTB genes polymorphisms associated with in vitro early embryo development of Sanjabi sheep. Anim Biotechnol 2021:1-5. [PMID: 34928775 DOI: 10.1080/10495398.2021.2016431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aimed to investigate the association between polymorphisms of ND1 and CYTB genes and in vitro early embryo development of Sanjabi sheep. Blood and ovarian samples were collected from a local slaughterhouse. The cumulus-oocyte complexes with a diameter greater than 3 mm were aspirated from follicles, and in vitro maturation (IVM) and in vitro culture (IVC) rates of them were recorded. A respective 1200 bp and 980 bp fragments of ND1 and CYTB genes were genotyped using a modified single strand conformation polymorphism (SSCP) method. The results of this study revealed that four different patterns, named as A, B, C, and D were observed for both ND1 and CYTB genes. The ND1 gene polymorphisms had significant effects on the IVM and IVC rate (p < 0.05). The pattern C of the ND1 gene significantly increased the IVM rate compared to the patterns A, B and D. For the IVC, the highest and lowest means were related to the C and B patterns, respectively. The CYTB gene polymorphisms also had significant effects on IVC (p < 0.01), but the IVM did not affected (p = 0.07). Here, the pattern D had the highest and the pattern C had the lowest means for both IVM and IVC rates.
Collapse
Affiliation(s)
- Pejman Mardani
- Department of Animal Sciences, Razi University, Kermanshah, Iran
| | | | | | - Hadi Hajarian
- Department of Animal Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
33
|
Cajas YN, Cañón-Beltrán K, de la Blanca MGM, Sánchez JM, Fernandez-Fuertes B, González EM, Rizos D. Role of reproductive fluids and extracellular vesicles in embryo–maternal interaction during early pregnancy in cattle. Reprod Fertil Dev 2021; 34:117-138. [PMID: 35231231 DOI: 10.1071/rd21275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The coordinated interaction between the developing embryo and the maternal reproductive tract is essential for the establishment and maintenance of pregnancy in mammals. An early cross-talk is established between the oviduct/uterus and the gametes and embryo. This dialogue will shape the microenvironment in which gamete transport, fertilisation, and early embryonic development occur. Due to the small size of the gametes and the early embryo relative to the volume of the oviductal and uterine lumina, collection of tissue and fluid adjacent to these cells is challenging in cattle. Thus, the combination of in vivo and in vitro models seems to be the most appropriate approach to better understand this fine dialogue. In this respect, the aim of this review is to summarise the recent findings in relation to gamete/embryo-maternal interaction during the pre-elongation period.
Collapse
Affiliation(s)
- Yulia N Cajas
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain; and Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca (UC), EC010205 Cuenca, Ecuador
| | - Karina Cañón-Beltrán
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain; and Facultad de Ciencias Agrarias y Ambientales, Programa de Medicina Veterinaria, Fundación Universitaria Juan de Castellanos (JdC), 150001 Tunja, Colombia
| | - María Gemma Millán de la Blanca
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain
| | - José M Sánchez
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain
| | - Beatriz Fernandez-Fuertes
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain
| | - Encina M González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Dimitrios Rizos
- Department of Animal Reproduction, National Center Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040 Madrid, Spain
| |
Collapse
|
34
|
Teymouri F, Foroutanifar S, Abdolmohammadi A, Hajarian H. The relationship between mitochondrial ND5 gene polymorphisms and in vitro embryo production in Sanjabi sheep. ZYGOTE 2021; 30:1-3. [PMID: 34588087 DOI: 10.1017/s096719942100071x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of this study was to investigate mitochondrial ND5 gene polymorphisms and their relationship with in vitro maturation (IVM) and in vitro culture (IVC) of Sanjabi sheep. Blood and ovarian samples of adult ewes were obtained from a local slaughterhouse. For each ovarian sample, cumulus-oocyte complexes larger than 3 mm in diameter were aspirated from follicles, and their IVM and IVC rates were recorded. A 666-bp fragment of the ND5 gene was amplified using the polymerase chain reaction. The samples were genotyped using a modified single-stranded conformation polymorphism (SSCP) method, and an association study was conducted with IVM and IVC rates. Six different SSCP patterns, designated A, B, C, D, E and F with respective frequencies of 8, 47, 4, 4, 32 and 5%, respectively, were observed. According to the results of association analysis, there was no significant association between the ND1 gene polymorphisms and the IVM and IVC rates (P > 0.05).
Collapse
Affiliation(s)
| | | | | | - Hadi Hajarian
- Department of Animal Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
35
|
Sollecito N, Alves R, Beletti M, Pereira E, Miranda M, Silva J, Borges A. Morphometry of bovine blastocysts produced in vitro in culture media with antioxidants cysteamine or oily extract of Lippia origanoides. ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT This study aimed to evaluate the ultrastructural morphometry of bovine embryos produced in vitro grown at different concentrations of antioxidants. After in vitro maturation and fertilization, the presumptive zygotes were assigned into five treatments. T1) without the addition of any antioxidants (negative control); T2) addition of 50μM/mL cysteamine; and T3, T4 and T5) adding 2.5μg/mL, 5.0μg/mL or 10.0μg/mL of the antioxidants derived from the oily extract from Lippia origanoides, respectively. On D7 of culture, the embryos in the blastocyst stage were fixed and prepared for electron transmission microscopy. These were evaluated for the proportion of cytoplasm-to-nucleus, cytoplasm-to-mitochondria, cytoplasm-to-vacuoles, cytoplasm-to-autophagic vacuoles and cytoplasm-to-lipid droplets. Blastocysts cultured in media containing oily extract of Lippia origanoides presented morphological characteristics such as high cell:mitochondria ratio and low cell:vacuoles and cell:autophagic vacuole ratio, possibly been morphological indicators of embryonic quality. Inner cell mass (ICM) from blastocysts cultured in media without any antioxidants had the highest cell:vacuole ratio. Similar results were found in the trophectoderm (TE) cells of blastocysts from treatment 2. Embryo culture media supplemented with antioxidants derived from Lippia origanoides oil produced embryos with a higher cytoplasmic proportion of organelles, such as mitochondria. Also, treatments without any antioxidants or with the addition of cysteamine presented cytoplasmic vacuolization, a characteristic related to production of poor-quality embryos.
Collapse
Affiliation(s)
| | - R.N. Alves
- Universidade Federal de Uberlândia, Brazil
| | | | | | | | | | - A.M. Borges
- Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
36
|
Ochoa E. Alteration of Genomic Imprinting after Assisted Reproductive Technologies and Long-Term Health. Life (Basel) 2021; 11:728. [PMID: 34440472 PMCID: PMC8398258 DOI: 10.3390/life11080728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
Assisted reproductive technologies (ART) are the treatment of choice for some infertile couples and even though these procedures are generally considered safe, children conceived by ART have shown higher reported risks of some perinatal and postnatal complications such as low birth weight, preterm birth, and childhood cancer. In addition, the frequency of some congenital imprinting disorders, like Beckwith-Wiedemann Syndrome and Silver-Russell Syndrome, is higher than expected in the general population after ART. Experimental evidence from animal studies suggests that ART can induce stress in the embryo and influence gene expression and DNA methylation. Human epigenome studies have generally revealed an enrichment of alterations in imprinted regions in children conceived by ART, but no global methylation alterations. ART procedures occur simultaneously with the establishment and maintenance of imprinting during embryonic development, so this may underlie the apparent sensitivity of imprinted regions to ART. The impact in adulthood of imprinting alterations that occurred during early embryonic development is still unclear, but some experimental evidence in mice showed higher risk to obesity and cardiovascular disease after the restriction of some imprinted genes in early embryonic development. This supports the hypothesis that imprinting alterations in early development might induce epigenetic programming of metabolism and affect long-term health. Given the growing use of ART, it is important to determine the impact of ART in genomic imprinting and long-term health.
Collapse
Affiliation(s)
- Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| |
Collapse
|
37
|
Nobiletin enhances the development and quality of bovine embryos in vitro during two key periods of embryonic genome activation. Sci Rep 2021; 11:11796. [PMID: 34083641 PMCID: PMC8175487 DOI: 10.1038/s41598-021-91158-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
In vitro culture can alter the development and quality of bovine embryos. Therefore, we aimed to evaluate whether nobiletin supplementation during EGA improves embryonic development and blastocyst quality and if it affects PI3K/AKT signaling pathway. In vitro zygotes were cultured in SOF + 5% FCS (Control) or supplemented with 5, 10 or 25 µM nobiletin (Nob5, Nob10, Nob25) or with 0.03% dimethyl-sulfoxide (CDMSO) during minor (2 to 8-cell stage; MNEGA) or major (8 to 16-cell stage; MJEGA) EGA phase. Blastocyst yield on Day 8 was higher in Nob5 (42.7 ± 1.0%) and Nob10 (44.4 ± 1.3%) for MNEGA phase and in Nob10 (61.0 ± 0.8%) for MJEGA phase compared to other groups. Mitochondrial activity was higher and lipid content was reduced in blastocysts produced with nobiletin, irrespective of EGA phase. The mRNA abundance of CDK2, H3-3B, H3-3A, GPX1, NFE2L2 and PPARα transcripts was increased in 8-cells, 16-cells and blastocysts from nobiletin groups. Immunofluorescence analysis revealed immunoreactive proteins for p-AKT forms (Thr308 and Ser473) in bovine blastocysts produced with nobiletin. In conclusion, nobiletin supplementation during EGA has a positive effect on preimplantation bovine embryonic development in vitro and corroborates on the quality improvement of the produced blastocysts which could be modulated by the activation of AKT signaling pathway.
Collapse
|
38
|
De Bem THC, Tinning H, Vasconcelos EJR, Wang D, Forde N. Endometrium On-a-Chip Reveals Insulin- and Glucose-induced Alterations in the Transcriptome and Proteomic Secretome. Endocrinology 2021; 162:6167824. [PMID: 33693651 PMCID: PMC8143652 DOI: 10.1210/endocr/bqab054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Indexed: 12/28/2022]
Abstract
The molecular interactions between the maternal environment and the developing embryo are key for early pregnancy success and are influenced by factors such as maternal metabolic status. Our understanding of the mechanism(s) through which these individual nutritional stressors alter endometrial function and the in utero environment for early pregnancy success is, however, limited. Here we report, for the first time, the use of an endometrium-on-a-chip microfluidics approach to produce a multicellular endometrium in vitro. Isolated endometrial cells (epithelial and stromal) from the uteri of nonpregnant cows in the early luteal phase (Days 4-7) were seeded in the upper chamber of the device (epithelial cells; 4-6 × 104 cells/mL) and stromal cells seeded in the lower chamber (1.5-2 × 104 cells/mL). Exposure of cells to different concentrations of glucose (0.5, 5.0, or 50 mM) or insulin (Vehicle, 1 or 10 ng/mL) was performed at a flow rate of 1 µL/minute for 72 hours. Quantitative differences in the cellular transcriptome and the secreted proteome of in vitro-derived uterine luminal fluid were determined by RNA-sequencing and tandem mass tagging mass spectrometry, respectively. High glucose concentrations altered 21 and 191 protein-coding genes in epithelial and stromal cells, respectively (P < .05), with a dose-dependent quantitative change in the protein secretome (1 and 23 proteins). Altering insulin concentrations resulted in limited transcriptional changes including transcripts for insulin-like binding proteins that were cell specific but altered the quantitative secretion of 196 proteins. These findings highlight 1 potential mechanism by which changes to maternal glucose and insulin alter uterine function.
Collapse
Affiliation(s)
- Tiago H C De Bem
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | | | | | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
- LeedsOmics, University of Leeds, Leeds, UK
- Correspondence: Niamh Forde, PhD, University of Leeds, LIGHT Laboratories, Clarendon Way, LS2 9JT, Leeds, UK.
| |
Collapse
|
39
|
Cambra JM, Martinez EA, Rodriguez-Martinez H, Gil MA, Cuello C. Transcriptional Profiling of Porcine Blastocysts Produced In Vitro in a Chemically Defined Culture Medium. Animals (Basel) 2021; 11:ani11051414. [PMID: 34069238 PMCID: PMC8156047 DOI: 10.3390/ani11051414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/21/2022] Open
Abstract
The development of chemically defined media is a growing trend in in vitro embryo production (IVP). Recently, traditional undefined culture medium with bovine serum albumin (BSA) has been successfully replaced by a chemically defined medium using substances with embryotrophic properties such as platelet factor 4 (PF4). Although the use of this medium sustains IVP, the impact of defined media on the embryonic transcriptome has not been fully elucidated. This study analyzed the transcriptome of porcine IVP blastocysts, cultured in defined (PF4 group) and undefined media (BSA group) by microarrays. In vivo-derived blastocysts (IVV group) were used as a standard of maximum embryo quality. The results showed no differentially expressed genes (DEG) between the PF4 and BSA groups. However, a total of 2780 and 2577 DEGs were detected when comparing the PF4 or the BSA group with the IVV group, respectively. Most of these genes were common in both in vitro groups (2132) and present in some enriched pathways, such as cell cycle, lysosome and/or metabolic pathways. These results show that IVP conditions strongly affect embryo transcriptome and that the defined culture medium with PF4 is a guaranteed replacement for traditional culture with BSA.
Collapse
Affiliation(s)
- Josep M. Cambra
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain; (J.M.C.); (E.A.M.); (C.C.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, El Palmar, 30120 Murcia, Spain
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain; (J.M.C.); (E.A.M.); (C.C.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, El Palmar, 30120 Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden;
| | - Maria A. Gil
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain; (J.M.C.); (E.A.M.); (C.C.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, El Palmar, 30120 Murcia, Spain
- Correspondence:
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research, University of Murcia, 30100 Murcia, Spain; (J.M.C.); (E.A.M.); (C.C.)
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Campus de Ciencias de la Salud, Carretera Buenavista s/n, El Palmar, 30120 Murcia, Spain
| |
Collapse
|
40
|
Ferreira-Silva JC, Oliveira Silva RL, Travassos Vieira JI, Silva JB, Tavares LS, Cavalcante Silva FA, Nunes Pena EP, Chaves MS, Moura MT, Junior TC, Benko-Iseppon AM, Figueirêdo Freitas VJ, Lemos Oliveira MA. Evaluation of quality and gene expression of goat embryos produced in vivo and in vitro after cryopreservation. Cryobiology 2021; 101:115-124. [PMID: 33964298 DOI: 10.1016/j.cryobiol.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
In the present study, we aimed to identify morphological and molecular changes of in vivo and in vitro-produced goat embryos submitted to cryopreservation. In vivo embryos were recovered by transcervical technique from superovulated goats, whereas in vitro produced embryos were produced from ovaries collected at a slaughterhouse. Embryos were frozen by two-steps slow freezing method, which is defined as freezing to -32 °C followed by transfer to liquid nitrogen. Morphological evaluation of embryos was carried out by assessing blastocoel re-expansion rate and the total number of blastomeres. The expression profile of candidate genes related to thermal and oxidative stress, apoptosis, epigenetic, and implantation control was measured using RT-qPCR based SYBR Green system. In silico analyses were performed to identify conserved genes in goat species and protein-protein interaction networks were created. In vivo-produced embryos showed greater blastocoel re-expansion and more blastomere cells (P < 0.05). The expression level of CTP2 and HSP90 genes from in vitro cryopreserved embryos was higher than their in vivo counterparts. Unlikely, no significant difference was observed in the transcription level of SOD gene between groups. The high similarity of CPT2 and HSP90 proteins to their orthologs among mammals indicates that they share conserved functions. In summary, cryopreservation negatively affects the morphology and viability of goat embryos produced in vitro and changes the CPT2 and HSP90 gene expression likely in response to the in vitro production process.
Collapse
Affiliation(s)
- José Carlos Ferreira-Silva
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil.
| | - Roberta Lane Oliveira Silva
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Brazil.
| | - Joane Isis Travassos Vieira
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil.
| | - Jéssica Barboza Silva
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Brazil.
| | - Lethicia Souza Tavares
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Brazil.
| | | | - Elton Pedro Nunes Pena
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Federal University of Pernambuco, Brazil.
| | - Maiana Silva Chaves
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil. maiana-@hotmail.com
| | - Marcelo Tigre Moura
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil.
| | - Tercilio Calsa Junior
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Federal University of Pernambuco, Brazil.
| | - Ana Maria Benko-Iseppon
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Brazil.
| | | | - Marcos Antonio Lemos Oliveira
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil.
| |
Collapse
|
41
|
Masuda Y, Hasebe R, Kuromi Y, Kobayashi M, Urataki K, Hishinuma M, Ohbayashi T, Nishimura R. Three-Dimensional Live Imaging of Bovine Preimplantation Embryos: A New Method for IVF Embryo Evaluation. Front Vet Sci 2021; 8:639249. [PMID: 33981741 PMCID: PMC8107228 DOI: 10.3389/fvets.2021.639249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/11/2021] [Indexed: 12/21/2022] Open
Abstract
Conception rates for transferred bovine embryos are lower than those for artificial insemination. Embryo transfer (ET) is widely used in cattle but many of the transferred embryos fail to develop, thus, a more effective method for selecting bovine embryos suitable for ET is required. To evaluate the developmental potential of bovine preimplantation embryos (2-cell stage embryos and blastocysts), we have used the non-invasive method of optical coherence tomography (OCT) to obtain live images. The images were used to evaluate 22 parameters of blastocysts, such as the volume of the inner cell mass and the thicknesses of the trophectoderm (TE). Bovine embryos were obtained by in vitro fertilization (IVF) of the cumulus-oocyte complexes aspirated by ovum pick-up from Japanese Black cattle. The quality of the blastocysts was examined under an inverted microscope and all were confirmed to be Code1 according to the International Embryo Transfer Society standards for embryo evaluation. The OCT images of embryos were taken at the 2-cell and blastocyst stages prior to the transfer. In OCT, the embryos were irradiated with near-infrared light for a few minutes to capture three-dimensional images. Nuclei of the 2-cell stage embryos were clearly observed by OCT, and polynuclear cells at the 2-cell stage were also clearly found. With OCT, we were able to observe embryos at the blastocyst stage and evaluate their parameters. The conception rate following OCT (15/30; 50%) is typical for ETs and no newborn calves showed neonatal overgrowth or died, indicating that the OCT did not adversely affect the ET. A principal components analysis was unable to identify the parameters associated with successful pregnancy, while by using hierarchical clustering analysis, TE volume has been suggested to be one of the parameters for the evaluation of bovine embryo. The present results show that OCT imaging can be used to investigate time-dependent changes of IVF embryos. With further improvements, it should be useful for selecting high-quality embryos for transfer.
Collapse
Affiliation(s)
- Yasumitsu Masuda
- Department of Animal Science, Tottori Livestock Research Center, Tottori, Japan
| | | | | | | | - Kanako Urataki
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Mitsugu Hishinuma
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Tetsuya Ohbayashi
- Organization for Research Initiative and Promotion, Tottori University, Tottori, Japan
| | - Ryo Nishimura
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| |
Collapse
|
42
|
van der Weijden VA, Schmidhauser M, Kurome M, Knubben J, Flöter VL, Wolf E, Ulbrich SE. Transcriptome dynamics in early in vivo developing and in vitro produced porcine embryos. BMC Genomics 2021; 22:139. [PMID: 33639836 PMCID: PMC7913449 DOI: 10.1186/s12864-021-07430-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The transcriptional changes around the time of embryonic genome activation in pre-implantation embryos indicate that this process is highly dynamic. In vitro produced porcine blastocysts are known to be less competent than in vivo developed blastocysts. To understand the conditions that compromise developmental competence of in vitro embryos, it is crucial to evaluate the transcriptional profile of porcine embryos during pre-implantation stages. In this study, we investigated the transcriptome dynamics in in vivo developed and in vitro produced 4-cell embryos, morulae and hatched blastocysts. RESULTS In vivo developed and in vitro produced embryos displayed largely similar transcriptome profiles during development. Enriched canonical pathways from the 4-cell to the morula transition that were shared between in vivo developed and in vitro produced embryos included oxidative phosphorylation and EIF2 signaling. The shared canonical pathways from the morula to the hatched blastocyst transition were 14-3-3-mediated signaling, xenobiotic metabolism general signaling pathway, and NRF2-mediated oxidative stress response. The in vivo developed and in vitro produced hatched blastocysts further were compared to identify molecular signaling pathways indicative of lower developmental competence of in vitro produced hatched blastocysts. A higher metabolic rate and expression of the arginine transporter SLC7A1 were found in in vitro produced hatched blastocysts. CONCLUSIONS Our findings suggest that embryos with compromised developmental potential are arrested at an early stage of development, while embryos developing to the hatched blastocyst stage display largely similar transcriptome profiles, irrespective of the embryo source. The hatched blastocysts derived from the in vitro fertilization-pipeline showed an enrichment in molecular signaling pathways associated with lower developmental competence, compared to the in vivo developed embryos.
Collapse
Affiliation(s)
- Vera A van der Weijden
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitätstrasse 2, CH-8092, Zurich, Switzerland
| | - Meret Schmidhauser
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitätstrasse 2, CH-8092, Zurich, Switzerland
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, and Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Johannes Knubben
- Physiology Weihenstephan, Technical University Munich, Freising, Germany
| | - Veronika L Flöter
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitätstrasse 2, CH-8092, Zurich, Switzerland.,Physiology Weihenstephan, Technical University Munich, Freising, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, and Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitätstrasse 2, CH-8092, Zurich, Switzerland.
| |
Collapse
|
43
|
Llobat L. Extracellular vesicles and domestic animal reproduction. Res Vet Sci 2021; 136:166-173. [PMID: 33647595 DOI: 10.1016/j.rvsc.2021.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/01/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023]
Abstract
Embryo implantation is a complex process in which significant changes occur continually in both the corpora lutea and in the endometrium of females and which varies depending on the embryonic, pre-implantation, or fetal stages. However, at all stages, correct maternal-embryonic communication is essential. In the last few years, a new intercellular communication tool, mediated by extracellular vesicles (EVs), has emerged. Many authors agree on the relevant role of EVs in correct communication between the mother and the embryo, as a fundamental system for the pregnancy to reach term and embryonic development to occur correctly. This review analyzes current information on known EVs, their main functions, and their role in implantation and embryonic development in domestic animals.
Collapse
Affiliation(s)
- Lola Llobat
- Grupo de Fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| |
Collapse
|
44
|
A Shorter Equilibration Period Improves Post-Warming Outcomes after Vitrification and in Straw Dilution of In Vitro-Produced Bovine Embryos. BIOLOGY 2021; 10:biology10020142. [PMID: 33579034 PMCID: PMC7916797 DOI: 10.3390/biology10020142] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
This study was designed to the optimize vitrification and in-straw warming protocol of in vitro-produced bovine embryos by comparing two different equilibration periods, short equilibrium (SE: 3 min) and long equilibrium (LE: 12 min). Outcomes recorded in vitrified day seven (D7) and day eight (D8) expanded blastocysts were survival and hatching rates, cell counts, apoptosis rate, and gene expression. While survival rates at 3 and 24 h post-warming were reduced (p < 0.05) after vitrification, the hatching rates of D7 embryos vitrified after SE were similar to the rates recorded in fresh non-vitrified blastocysts. The hatching rates of vitrified D8 blastocysts were lower (p < 0.05) than of fresh controls regardless of treatment. Total cell count, and inner cell mass and trophectoderm cell counts were similar in hatched D7 blastocysts vitrified after SE and fresh blastocysts, while vitrified D8 blastocysts yielded lower values regardless of treatment. The apoptosis rate was significantly higher in both treatment groups compared to fresh controls, although rates were lower for SE than LE. No differences emerged in BAX, AQP3, CX43, and IFNτ gene expression between the treatments, whereas a significantly greater abundance of BCL2L1 and SOD1 transcripts was observed in blastocysts vitrified after SE. A shorter equilibration vitrification protocol was found to improve post-warming outcomes and time efficiency after in-straw warming/dilution.
Collapse
|
45
|
Masuda Y, Hasebe R, Kuromi Y, Kobayashi M, Iwamoto M, Hishinuma M, Ohbayashi T, Nishimura R. Three-dimensional live imaging of bovine embryos by optical coherence tomography. J Reprod Dev 2021; 67:149-154. [PMID: 33487605 PMCID: PMC8075722 DOI: 10.1262/jrd.2020-151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While embryo transfer (ET) is widely practiced, many of the transferred embryos fail to develop in cattle. To establish a more effective method for selecting
bovine embryos for ET, here we quantified morphological parameters of living embryos using three-dimensional (3D) images non-invasively captured by optical
coherence tomography (OCT). Seven Japanese Black embryos produced by in vitro fertilization that had reached the expanded blastocyst stage
after 7 days of culture were transferred after imaged by OCT. Twenty-two parameters, including thickness and volumes of the inner cell mass, trophectoderm, and
zona pellucida, and volumes of blastocoel and whole embryo, were quantified from 3D images. Four of the seven recipients became pregnant. We suggest that these
22 parameters can be potentially employed to evaluate the quality of bovine embryos before ET.
Collapse
Affiliation(s)
- Yasumitsu Masuda
- Department of Animal Science, Tottori Livestock Research Center, Tottori 689-2503, Japan
| | - Ryo Hasebe
- SCREEN Holdings Co., Ltd., Kyoto 612-8486, Japan
| | | | | | - Misaki Iwamoto
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Mitsugu Hishinuma
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| | - Tetsuya Ohbayashi
- Organization for Research Initiative and Promotion, Tottori University, Tottori 680-8550, Japan
| | - Ryo Nishimura
- Laboratory of Theriogenology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
| |
Collapse
|
46
|
Asaadi A, Dolatabad NA, Atashi H, Raes A, Van Damme P, Hoelker M, Hendrix A, Pascottini OB, Van Soom A, Kafi M, Pavani KC. Extracellular Vesicles from Follicular and Ampullary Fluid Isolated by Density Gradient Ultracentrifugation Improve Bovine Embryo Development and Quality. Int J Mol Sci 2021; 22:E578. [PMID: 33430094 PMCID: PMC7826877 DOI: 10.3390/ijms22020578] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) have been isolated from follicular (FF) and ampullary oviduct fluid (AOF), using different isolation methods. However, it is not clear whether different purification methods can affect the functionality of resulting EVs. Here, we compared two methods (OptiPrep™ density gradient ultracentrifugation (ODG UC) and single-step size exclusion chromatography (SEC) (qEV IZON™ single column)) for the isolation of EVs from bovine FF and AOF. Additionally, we evaluated whether the addition of EVs derived either by ODG UC or SEC from FF or AOF during oocyte maturation would yield extra benefits for embryo developmental competence. The characterization of EVs isolated using ODG UC or SEC from FF and AOF did not show any differences in terms of EV sizes (40-400 nm) and concentrations (2.4 ± 0.2 × 1012-1.8 ± 0.2 × 1013 particles/mL). Blastocyst yield and quality was higher in groups supplemented with EVs isolated from FF and AOF by ODG UC, with higher total cell numbers and a lower apoptotic cell ratio compared with the other groups (p < 0.05). Supplementing in vitro maturation media with EVs derived by ODG UC from AOF was beneficial for bovine embryo development and quality.
Collapse
Affiliation(s)
- Anise Asaadi
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
- Department of Animal Reproduction, School of Veterinary Medicine, Shiraz University, Shiraz 7196484334, Iran;
| | - Nima Azari Dolatabad
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
| | - Hadi Atashi
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
- Department of Animal Science, Shiraz University, Shiraz 7144165186, Iran
| | - Annelies Raes
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
| | - Petra Van Damme
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
| | - Michael Hoelker
- Department of Animal Breeding and Husbandry, University of Bonn, 53012 Bonn, Germany;
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, 9000 Ghent, Belgium;
| | - Osvaldo Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
- Department of Veterinary Sciences, Gamete Research Center, University of Antwerp, 2610 Antwerp, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
| | - Mojtaba Kafi
- Department of Animal Reproduction, School of Veterinary Medicine, Shiraz University, Shiraz 7196484334, Iran;
| | - Krishna Chaitanya Pavani
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (N.A.D.); (H.A.); (A.R.); (P.V.D.); (O.B.P.); (A.V.S.)
| |
Collapse
|
47
|
Oocyte Selection for In Vitro Embryo Production in Bovine Species: Noninvasive Approaches for New Challenges of Oocyte Competence. Animals (Basel) 2020; 10:ani10122196. [PMID: 33255250 PMCID: PMC7760727 DOI: 10.3390/ani10122196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The efficiency of producing embryos using in vitro technologies in cattle species remains lower when compared to mice, indicating that the proportion of female gametes that fail to develop after in vitro manipulation is considerably large. Considering that the intrinsic quality of the oocyte is one of the main factors affecting embryo production, the precise identification of noninvasive markers that predict oocyte competence is of major interest. The aim of this review was to explore the current literature on different noninvasive markers associated with oocyte quality in the bovine model. Apart from some controversial findings, the presence of cycle-related structures in ovaries, a follicle size between 6 and 10 mm, a large slightly expanded investment without dark areas, large oocyte diameter (>120 microns), dark cytoplasm, and the presence of a round and smooth first polar body have been associated with better embryonic development. In addition, the combination of oocyte and zygote selection, spindle imaging, and the anti-Stokes Raman scattering microscopy together with studies decoding molecular cues in oocyte maturation have the potential to further optimize the identification of oocytes with better developmental competence for in vitro technologies in livestock species. Abstract The efficiency of producing embryos using in vitro technologies in livestock species rarely exceeds the 30–40% threshold, indicating that the proportion of oocytes that fail to develop after in vitro fertilization and culture is considerably large. Considering that the intrinsic quality of the oocyte is one of the main factors affecting blastocyst yield, the precise identification of noninvasive cellular or molecular markers that predict oocyte competence is of major interest to research and practical applications. The aim of this review was to explore the current literature on different noninvasive markers associated with oocyte quality in the bovine model. Apart from some controversial findings, the presence of cycle-related structures in ovaries, a follicle size between 6 and 10 mm, large number of surrounding cumulus cells, slightly expanded investment without dark areas, large oocyte diameter (>120 microns), dark cytoplasm, and the presence of a round and smooth first polar body have been associated with better competence. In addition, the combination of oocyte and zygote selection via brilliant cresyl blue (BCB) test, spindle imaging, and the anti-Stokes Raman scattering microscopy together with studies decoding molecular cues in oocyte maturation have the potential to further optimize the identification of oocytes with better developmental competence for in-vitro-derived technologies in livestock species.
Collapse
|
48
|
Melo-Baez B, Wong YS, Aguilera CJ, Cabezas J, Mançanares ACF, Riadi G, Castro FO, Rodriguez-Alvarez L. MicroRNAs from Extracellular Vesicles Secreted by Bovine Embryos as Early Biomarkers of Developmental Competence. Int J Mol Sci 2020; 21:ijms21238888. [PMID: 33255183 PMCID: PMC7727673 DOI: 10.3390/ijms21238888] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
During early development, embryos secrete extracellular vesicles (EVs) that participate in embryo–maternal communication. Among other molecules, EVs carry microRNAs (miRNAs) that interfere with gene expression in target cells; miRNAs participate in embryo–maternal communication. Embryo selection based on secreted miRNAs may have an impact on bovine breeding programs. This research aimed to evaluate the size, concentration, and miRNA content of EVs secreted by bovine embryos with different developmental potential, during the compaction period (days 3.5–5). Individual culture media from in vitro–produced embryos were collected at day 5, while embryos were further cultured and classified at day 7, as G1 (conditioned-culture media by embryos arrested in the 8–16-cells stage) and G2 (conditioned-culture media by embryos that reached blastocyst stages at day 7). Collected nanoparticles from embryo conditioned culture media were cataloged as EVs by their morphology and the presence of classical molecular markers. Size and concentration of EVs from G1 were higher than EVs secreted by G2. We identified 95 miRNAs; bta-miR-103, bta-miR-502a, bta-miR-100, and bta-miR-1 were upregulated in G1, whereas bta-miR-92a, bta-miR-140, bta-miR-2285a, and bta-miR-222 were downregulated. The most significant upregulated pathways were fatty acid biosynthesis and metabolism, lysine degradation, gap junction, and signaling pathways regulating pluripotency of stem cells. The characteristics of EVs secreted by bovine embryos during the compaction period vary according to embryo competence. Embryos that reach the blastocyst stage secrete fewer and smaller vesicles. Furthermore, the loading of specific miRNAs into the EVs depends on embryo developmental competence.
Collapse
Affiliation(s)
- Bárbara Melo-Baez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile; (B.M.-B.); (Y.S.W.); (C.J.A.); (J.C.); (A.C.F.M.); (F.O.C.)
| | - Yat S. Wong
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile; (B.M.-B.); (Y.S.W.); (C.J.A.); (J.C.); (A.C.F.M.); (F.O.C.)
| | - Constanza J. Aguilera
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile; (B.M.-B.); (Y.S.W.); (C.J.A.); (J.C.); (A.C.F.M.); (F.O.C.)
| | - Joel Cabezas
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile; (B.M.-B.); (Y.S.W.); (C.J.A.); (J.C.); (A.C.F.M.); (F.O.C.)
| | - Ana C. F. Mançanares
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile; (B.M.-B.); (Y.S.W.); (C.J.A.); (J.C.); (A.C.F.M.); (F.O.C.)
| | - Gonzalo Riadi
- ANID-Millennium Science Initiative Program Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Center for Bioinformatics, Simulation and Modeling, CBSM, Department of Bioinformatics, Faculty of Engineering, Campus Talca, University of Talca, Talca 3460000, Chile;
| | - Fidel O. Castro
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile; (B.M.-B.); (Y.S.W.); (C.J.A.); (J.C.); (A.C.F.M.); (F.O.C.)
| | - Lleretny Rodriguez-Alvarez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillan 3780000, Chile; (B.M.-B.); (Y.S.W.); (C.J.A.); (J.C.); (A.C.F.M.); (F.O.C.)
- Correspondence: ; Tel.: +56-242208835
| |
Collapse
|
49
|
Extracellular Vesicles, the Road toward the Improvement of ART Outcomes. Animals (Basel) 2020; 10:ani10112171. [PMID: 33233342 PMCID: PMC7700519 DOI: 10.3390/ani10112171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022] Open
Abstract
Nowadays, farm animal industries use assisted reproductive technologies (ART) as a tool to manage herds' reproductive outcomes, for a fast dissemination of genetic improvement as well as to bypass subfertility issues. ART comprise at least one of the following procedures: collection and handling of oocytes, sperm, and embryos in in vitro conditions. Therefore, in these conditions, the interaction with the oviductal environment of gametes and early embryos during fertilization and the first stages of embryo development is lost. As a result, embryos obtained in in vitro fertilization (IVF) have less quality in comparison with those obtained in vivo, and have lower chances to implant and develop into viable offspring. In addition, media currently used for IVF are very similar to those empirically developed more than five decades ago. Recently, the importance of extracellular vesicles (EVs) in the fertility process has flourished. EVs are recognized as effective intercellular vehicles for communication as they deliver their cargo of proteins, lipids, and genetic material. Thus, during their transit through the female reproductive tract both gametes, oocyte and spermatozoa (that previously encountered EVs produced by male reproductive tract) interact with EVs produced by the female reproductive tract, passing them important information that contributes to a successful fertilization and embryo development. This fact highlights that the reproductive tract EVs cargo has an important role in reproductive events, which is missing in current ART media. This review aims to recapitulate recent advances in EVs functions on the fertilization process, highlighting the latest proposals with an applied approach to enhance ART outcome through EV utilization as an additive to the media of current ART procedures.
Collapse
|
50
|
Cañón-Beltrán K, Giraldo-Giraldo J, Cajas YN, Beltrán-Breña P, Hidalgo CO, Vásquez N, Leal CLV, Gutiérrez-Adán A, González EM, Rizos D. Inhibiting diacylglycerol acyltransferase-1 reduces lipid biosynthesis in bovine blastocysts produced in vitro. Theriogenology 2020; 158:267-276. [PMID: 33002770 DOI: 10.1016/j.theriogenology.2020.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 11/28/2022]
Abstract
Diacylglycerol acyltransferase-1 (DGAT1) is one of the DGAT enzymes that catalyzes the final step in the synthesis of triacylglycerol, which is a major component of the lipid droplets in embryos. Intracellular lipids accumulated in embryos produced in vitro have been associated with reduced cryotolerance and quality. The objective of the present study was to investigate the influence of DGAT1 inhibition on embryo development, quality, and post-vitrification survival, in addition to expression profiles of selected lipid metabolism-regulating and oxidative stress genes. Bovine cumulus-oocyte complexes were matured and fertilized in vitro and were cultured in synthetic oviduct fluid (SOF) supplemented with 5% fetal calf serum (FCS) alone (Control) or with 1, 5, 10 or 50 μM DGAT1 inhibitor (A922500®; D1, D5, D10, and D50, respectively) or 0.1% dimethyl sulfoxide (CDMSO: vehicle for DGAT1 inhibitor dilution) from 54 h post-insemination until Day 8 post insemination. No differences were found in blastocyst yield on days 7 and 8 in Control, CDMSO, D10, and D50 groups. Embryos cultured with 10 or 50 μM DGAT1 inhibitor had greater mitochondrial activity (P < 0.01), and increased number of cells (P < 0.05), while the cytoplasmic lipid content was reduced (P < 0.01), the latter associated with altered expression profiles of selected genes regulating lipid metabolism or genes related with oxidative stress (transcript abundance increased for SLC2A1 and SLC2A5 and decreased for DGAT1 and GPX1). Importantly, the survival rate of blastocysts produced with 10 μM DGAT1 was higher than that of Control, CDMSO and D50 groups at 72 h after vitrification and warming (73.8 vs 57.1, 55.9 and 56.1%, respectively, P < 0.001). In conclusion, inhibition of DGAT1 synthesis in bovine embryos produced in vitro abrogates the negative effect of FCS by decreasing their lipid content, increasing mitochondria activity and improving embryo cryotolerance, as well as favoring the expression of lipid metabolism regulating and oxidative stress-related transcripts.
Collapse
Affiliation(s)
- K Cañón-Beltrán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain; Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - J Giraldo-Giraldo
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain; Reproductive Biotechnology Laboratory, School of Biosciences, Science Faculty, National University of Colombia, Medellín, Colombia
| | - Y N Cajas
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - P Beltrán-Breña
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - C O Hidalgo
- Department of Animal Selection and Reproduction, The Regional Agri-Food Research and Development Service of Asturias (SERIDA), Gijon, Spain
| | - N Vásquez
- Reproductive Biotechnology Laboratory, School of Biosciences, Science Faculty, National University of Colombia, Medellín, Colombia
| | - C L V Leal
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain; Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - A Gutiérrez-Adán
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | - E M González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain
| | - D Rizos
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain.
| |
Collapse
|