1
|
Technical, Biological and Molecular Aspects of Somatic Cell Nuclear Transfer – A Review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Since the announcement of the birth of the first cloned mammal in 1997, Dolly the sheep, 24 animal species including laboratory, farm, and wild animals have been cloned. The technique for somatic cloning involves transfer of the donor nucleus of a somatic cell into an enucleated oocyte at the metaphase II (MII) stage for the generation of a new individual, genetically identical to the somatic cell donor. There is increasing interest in animal cloning for different purposes such as rescue of endangered animals, replication of superior farm animals, production of genetically engineered animals, creation of biomedical models, and basic research. However, the efficiency of cloning remains relatively low. High abortion, embryonic, and fetal mortality rates are frequently observed. Moreover, aberrant developmental patterns during or after birth are reported. Researchers attribute these abnormal phenotypes mainly to incomplete nuclear remodeling, resulting in incomplete reprogramming. Nevertheless, multiple factors influence the success of each step of the somatic cloning process. Various strategies have been used to improve the efficiency of nuclear transfer and most of the phenotypically normal born clones can survive, grow, and reproduce. This paper will present some technical, biological, and molecular aspects of somatic cloning, along with remarkable achievements and current improvements.
Collapse
|
2
|
Effects of Incubation Time and Method of Cell Cycle Synchronization on Collared Peccary Skin-Derived Fibroblast Cell Lines. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The success of cloning by somatic cell nuclear transfer depends on the efficiency of nuclear reprogramming, with the cycle stage of the donor cell playing a crucial role. Therefore, the aim was to evaluate three different approaches for cell cycle synchronization: (i) serum starvation (SS) for 1 to 4 days, (ii) contact inhibition (CI) for 1 to 3 days, and (iii) using cell cycle regulatory inhibitors (dimethyl sulfoxide, cycloheximide, cytochalasin B, or 6-dimethylaminopurine) for 1 and 2 days, in terms of their effects on synchronization in G0/G1 phases and viability of collared peccary skin fibroblasts. Flow cytometry analysis revealed that SS for 4 days (79.0% ± 1.6) and CI for 3 days (78.0% ± 1.4) increased the percentage of fibroblasts in G0/G1 compared to growing cells GC (68.1% ± 8.6). However, SS for 3 and 4 days reduced the viability evaluated by differential staining (81.4% ± 0.03 and 81.6% ± 0.06) compared to growing cells (GC, 95.9% ± 0.06). CI did not affect the viability at any of the analyzed time intervals. No cell cycle inhibitors promoted synchronization in G0/G1. These results indicate that CI for 3 days was the most efficient method for cell cycle synchronization in peccary fibroblasts.
Collapse
|
3
|
Luo T, Yu Q, Dong W, Gong Z, Tan Y, Liu W, Zou H, Gu J, Yuan Y, Bian J, Shao C, Zhu J, Liu Z. Effect of cell cycle synchronization on cadmium-induced apoptosis and necrosis in NRK-52E cells. Cell Cycle 2020; 19:3386-3397. [PMID: 33222613 DOI: 10.1080/15384101.2020.1848065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Heavy metal pollution is a problem that cannot be ignored. Due to the prevalence of cadmium in the environment and its harmful effects on humans, cadmium pollution has become a research hotspot recently. The mechanism of cadmium-induced toxicity has also drawn much attention and most studies have been conducted using whole cells, but the toxicological mechanism of cadmium remains unclear. In this study, we aimed to obtain NRK-52E cells at different growth stages by various methods and analyze the differences in cadmium toxicity. The results show that the cadmium sensitivity of cells in each phase was different and the late apoptotic rate was increased significantly after 5 µM Cd treatment. In addition, cadmium easily induces apoptosis of G0- and S-phase cells, as well as necrosis of S- and M-phase cells, but has no significant effect on G1-phase cells. Overall, we first explored the differences in the effects of cadmium on NRK-52E cells at various growth phases. Besides, the findings of this study might provide a theoretical basis for further exploration of the toxicological mechanism of cadmium.Abbreviations Cd: cadmium; CDK: cyclin-dependent kinases; DAPI 2-(4-amidinophenyl)-1H-indole-6-carboxamidine; TBST: Tris-buffered saline with Tween-20; PI: propidium iodide; DMEM: Dulbecco's Modified Eagle Medium; BCA: bicinchoninic acid.
Collapse
Affiliation(s)
- Tongwang Luo
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China.,College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University , Hangzhou, P.R. China
| | - Qi Yu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Wenxuan Dong
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Zhonggui Gong
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Yun Tan
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Wenjing Liu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Chunyan Shao
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University , Hangzhou, P.R. China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University , Yangzhou, P.R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou, P.R. China.,Yangzhou University , Yangzhou, P.R. China
| |
Collapse
|
4
|
Zhang Y, Qu P, Ma X, Qiao F, Ma Y, Qing S, Zhang Y, Wang Y, Cui W. Tauroursodeoxycholic acid (TUDCA) alleviates endoplasmic reticulum stress of nuclear donor cells under serum starvation. PLoS One 2018; 13:e0196785. [PMID: 29718981 PMCID: PMC5931650 DOI: 10.1371/journal.pone.0196785] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022] Open
Abstract
Serum starvation is a routine protocol for synchronizing nuclear donor cells to G0/G1 phase during somatic cell nuclear transfer (SCNT). However, abrupt serum deprivation can cause serious stress to the cells cultured in vitro, which might result in endoplasmic reticulum (ER) stress, chromosome damage, and finally reduce the success rate of SCNT. In the present study, the effects of tauroursodeoxycholic acid (TUDCA), an effective ER stress-relieving drug, on the nuclear donor cells under serum deprivation condition as well as following SCNT procedures were first assessed in the bovine. The results showed that TUDCA significantly reduced ER stress and cell apoptosis in those nuclear donor cells. Moreover, it significantly decreased the expression of Hdac1 and Dnmt1, and increased the level of H3K9 acetylation in nuclear donor cells compared with control group. SCNT reconstructed embryos cloned from TUDCA-treated donor cells showed significantly higher fusion, cleavage, blastocyst formation rate, total cell number in day 7 blastocysts, and lower apoptotic index than that from control group. In addition, the expression of Hdac1, Dnmt1 and Bax was significantly lower in blastocysts derived from TUDCA-treated donor cells than that from control group. In conclusion, TUDCA significantly reduced the ER stress of nuclear donor cells under serum starvation condition, and significantly improved the developmental competence of following SCNT reconstructed embryos when these TUDCA-treated cells were used as the nuclear donors.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Pengxiang Qu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaonan Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Fang Qiao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yefei Ma
- Department of Gynecology and Obstetrics, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shannxi Province, PR China
| | - Suzhu Qing
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
- * E-mail: (YZ); (YW); (WC)
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Engineering Center for Animal Embryo Technology, Yangling, Shaanxi, PR China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, Shaanxi, PR China
- * E-mail: (YZ); (YW); (WC)
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States of America
- Animal Models Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, MA, United States of America
- * E-mail: (YZ); (YW); (WC)
| |
Collapse
|
5
|
Miao X, Koch G, Ait-Oudhia S, Straubinger RM, Jusko WJ. Pharmacodynamic Modeling of Cell Cycle Effects for Gemcitabine and Trabectedin Combinations in Pancreatic Cancer Cells. Front Pharmacol 2016; 7:421. [PMID: 27895579 PMCID: PMC5108803 DOI: 10.3389/fphar.2016.00421] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/24/2016] [Indexed: 12/28/2022] Open
Abstract
Combinations of gemcitabine and trabectedin exert modest synergistic cytotoxic effects on two pancreatic cancer cell lines. Here, systems pharmacodynamic (PD) models that integrate cellular response data and extend a prototype model framework were developed to characterize dynamic changes in cell cycle phases of cancer cell subpopulations in response to gemcitabine and trabectedin as single agents and in combination. Extensive experimental data were obtained for two pancreatic cancer cell lines (MiaPaCa-2 and BxPC-3), including cell proliferation rates over 0-120 h of drug exposure, and the fraction of cells in different cell cycle phases or apoptosis. Cell cycle analysis demonstrated that gemcitabine induced cell cycle arrest in S phase, and trabectedin induced transient cell cycle arrest in S phase that progressed to G2/M phase. Over time, cells in the control group accumulated in G0/G1 phase. Systems cell cycle models were developed based on observed mechanisms and were used to characterize both cell proliferation and cell numbers in the sub G1, G0/G1, S, and G2/M phases in the control and drug-treated groups. The proposed mathematical models captured well both single and joint effects of gemcitabine and trabectedin. Interaction parameters were applied to quantify unexplainable drug-drug interaction effects on cell cycle arrest in S phase and in inducing apoptosis. The developed models were able to identify and quantify the different underlying interactions between gemcitabine and trabectedin, and captured well our large datasets in the dimensions of time, drug concentrations, and cellular subpopulations.
Collapse
Affiliation(s)
- Xin Miao
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York Buffalo, NY, USA
| | - Gilbert Koch
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New YorkBuffalo, NY, USA; Pediatric Pharmacology and Pharmacometrics, University of Basel, Children's HospitalBasel, Switzerland
| | - Sihem Ait-Oudhia
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology (Orlando), College of Pharmacy, University of Florida Orlando, FL, USA
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York Buffalo, NY, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York Buffalo, NY, USA
| |
Collapse
|
6
|
Ma L, Liu X, Wang F, He X, Chen S, Li W. Different Donor Cell Culture Methods Can Influence the Developmental Ability of Cloned Sheep Embryos. PLoS One 2015; 10:e0135344. [PMID: 26291536 PMCID: PMC4546374 DOI: 10.1371/journal.pone.0135344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 07/21/2015] [Indexed: 11/28/2022] Open
Abstract
It was proposed that arresting nuclear donor cells in G0/G1 phase facilitates the development of embryos that are derived from somatic cell nuclear transfer (SCNT). Full confluency or serum starvation is commonly used to arrest in vitro cultured somatic cells in G0/G1 phase. However, it is controversial as to whether these two methods have the same efficiency in arresting somatic cells in G0/G1 phase. Moreover, it is unclear whether the cloned embryos have comparable developmental ability after somatic cells are subjected to one of these methods and then used as nuclear donors in SCNT. In the present study, in vitro cultured sheep skin fibroblasts were divided into four groups: (1) cultured to 70–80% confluency (control group), (2) cultured to full confluency, (3) starved in low serum medium for 4 d, or (4) cultured to full confluency and then further starved for 4 d. Flow cytometry was used to assay the percentage of fibroblasts in G0/G1 phase, and cell counting was used to assay the viability of the fibroblasts. Then, real-time reverse transcription PCR was used to determine the levels of expression of several cell cycle-related genes. Subsequently, the four groups of fibroblasts were separately used as nuclear donors in SCNT, and the developmental ability and the quality of the cloned embryos were compared. The results showed that the percentage of fibroblasts in G0/G1 phase, the viability of fibroblasts, and the expression levels of cell cycle-related genes was different among the four groups of fibroblasts. Moreover, the quality of the cloned embryos was comparable after these four groups of fibroblasts were separately used as nuclear donors in SCNT. However, cloned embryos derived from fibroblasts that were cultured to full confluency combined with serum starvation had the highest developmental ability. The results of the present study indicate that there are synergistic effects of full confluency and serum starvation on arresting fibroblasts in G0/G1 phase, and the short-term treatment of nuclear donor cells with these two methods could improve the efficiency of SCNT.
Collapse
Affiliation(s)
- LiBing Ma
- School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
- * E-mail:
| | - XiYu Liu
- School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - FengMei Wang
- Baotou Light Industry Vocational Technical College, Baotou, Inner Mongolia, China
| | - XiaoYing He
- School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - Shan Chen
- School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| | - WenDa Li
- School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia, China
| |
Collapse
|
7
|
Greggains GD, Lister LM, Tuppen HAL, Zhang Q, Needham LH, Prathalingam N, Hyslop LA, Craven L, Polanski Z, Murdoch AP, Turnbull DM, Herbert M. Therapeutic potential of somatic cell nuclear transfer for degenerative disease caused by mitochondrial DNA mutations. Sci Rep 2014; 4:3844. [PMID: 24457623 PMCID: PMC5379195 DOI: 10.1038/srep03844] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 12/24/2013] [Indexed: 01/16/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) hold much promise in the quest for personalised cell therapies. However, the persistence of founder cell mitochondrial DNA (mtDNA) mutations limits the potential of iPSCs in the development of treatments for mtDNA disease. This problem may be overcome by using oocytes containing healthy mtDNA, to induce somatic cell nuclear reprogramming. However, the extent to which somatic cell mtDNA persists following fusion with human oocytes is unknown. Here we show that human nuclear transfer (NT) embryos contain very low levels of somatic cell mtDNA. In light of a recent report that embryonic stem cells can be derived from human NT embryos, our results highlight the therapeutic potential of NT for mtDNA disease, and underscore the importance of using human oocytes to pursue this goal.
Collapse
Affiliation(s)
- Gareth D. Greggains
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne, UK
- Department of Gynecology, Oslo University Hospital, Rikshospitalet, Oslo 0027, Norway
| | - Lisa M. Lister
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne, UK
| | - Helen A. L. Tuppen
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | - Qi Zhang
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne, UK
| | - Louise H. Needham
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne, UK
| | - Nilendran Prathalingam
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne, UK
| | - Louise A. Hyslop
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne, UK
| | - Lyndsey Craven
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | - Zbigniew Polanski
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Krakow, Poland
| | - Alison P. Murdoch
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne, UK
| | - Douglass M. Turnbull
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | - Mary Herbert
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Mimosine As Well As Serum Starvation Can Be Used for Cell Cycle Synchronization of Sheep Granulosa Cells. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/851736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was evaluated the effect of different synchronization protocols such as serum starvation for 1–3 days, confluency and chemical inhibitors on synchronization accuracy at G0/G1, apoptosis, and DNA synthesis in sheep granulosa cells. The cells were obtained from ovarian antral follicles of slaughtered sheep and used at first and fifth passages. Flow cytometry analysis showed that confluent cells, serum starvation for 24, 48, and 72 hours, and mimosine treatment significantly increased G0/G1 phase cells when compared to normally growing cells (P<0.05). Nocodazole treatment increased the cell population in the G0/G1 stage when compared with the control group but did not change the G2/M stage population. Treatment of cells with mimosine, nocodazole, and serum starvation in three groups resulted in proliferation arrest (P<0.05). Serum starvation for 72 hours significantly promoted apoptosis in granulosa cells (P<0.05). The results of the primary culture and 5th passage were the same. The use of 48-hour serum starvation and mimosine treatments has been recommended because cell death in these groups was very similar to the control group.
Collapse
|
9
|
Solovjeva LV, Demin SJ, Pleskach NM, Kuznetsova MO, Svetlova MP. Characterization of telomeric repeats in metaphase chromosomes and interphase nuclei of Syrian Hamster Fibroblasts. Mol Cytogenet 2012; 5:37. [PMID: 22938505 PMCID: PMC3488537 DOI: 10.1186/1755-8166-5-37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/29/2012] [Indexed: 11/10/2022] Open
Abstract
Background Rodents have been reported to contain large arrays of interstitial telomeric sequences (TTAGGG)n (ITS) located in pericentromeric heterochromatin. The relative sizes of telomeric sequences at the ends of chromosomes (TS) and ITS in Syrian hamster (Mesocricetus auratus) cells have not been evaluated yet, as well as their structural organization in interphase nuclei. Results FISH signal distribution analysis was performed on DAPI-banded metaphase chromosomes of Syrian hamster fibroblasts, and relative lengths of telomere signals were estimated. Besides well-distinguished FISH signals from ITS located on chromosomes ##2, 4, 14, 20 and X that we reported earlier, low-intensity FISH signals were visualized with different frequency of detection on all other metacentric chromosomes excluding chromosome #21. The analysis of 3D-distribution of TS in interphase nuclei demonstrated that some TS foci formed clearly distinguished associations (2–3 foci in a cluster) in the nuclei of cells subjected to FISH or transfected with the plasmid expressing telomeric protein TRF1 fused with GFP. In G0 and G1/early S-phase, the average total number of GFP-TRF1 foci per nucleus was less than that of PNA FISH foci in the corresponding cell cycle phases suggesting that TRF1 overexpression might contribute to the fusion of neighboring telomeres. The mean total number of GFP-TRF1 and FISH foci per nucleus was increased during the transition from G0 to G1/early S-phase that might be the consequence of duplication of some TS. Conclusions The relative lengths of TS in Syrian hamster cells were found to be moderately variable. All but one metacentric chromosomes contain ITS in pericentromeric heterochromatin indicating that significant rearrangements of ancestral genome occurred in evolution. Visualization of GFP-TRF1 fibrils that formed bridges between distinct telomeric foci allowed suggesting that telomere associations observed in interphase cells are reversible. The data obtained in the study provide the further insight in the structure and dynamics of telomeric sequences in somatic mammalian cells.
Collapse
|
10
|
Amiri Yekta A, Dalman A, Eftekhari-Yazdi P, Sanati MH, Shahverdi AH, Fakheri R, Vazirinasab H, Daneshzadeh MT, Vojgani M, Zomorodipour A, Fatemi N, Vahabi Z, Mirshahvaladi S, Ataei F, Bahraminejad E, Masoudi N, Rezazadeh Valojerdi M, Gourabi H. Production of transgenic goats expressing human coagulation factor IX in the mammary glands after nuclear transfer using transfected fetal fibroblast cells. Transgenic Res 2012; 22:131-42. [PMID: 22869287 DOI: 10.1007/s11248-012-9634-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 07/02/2012] [Indexed: 11/24/2022]
Abstract
There are growing numbers of recombinant proteins that have been expressed in milk. Thus one can consider the placement of any gene of interest under the control of the regulatory elements of a milk protein gene in a dairy farm animal. Among the transgene introducing techniques, only nuclear transfer (NT) allows 100 % efficiency and bypasses the mosaicism associated with counterpart techniques. In this study, in an attempt to produce a transgenic goat carrying the human coagulation factor IX (hFIX) transgene, goat fetal fibroblasts were electroporated with a linearized marker-free construct in which the transgene was juxtaposed to β-casein promoter designed to secret the recombinant protein in goat milk. Two different lines of transfected cells were used as donors for NT to enucleated oocytes. Two transgenic goats were liveborn. DNA sequencing of the corresponding transgene locus confirmed authenticity of the cloning procedure and the complementary experiments on the whey demonstrated expression of human factor IX in the milk of transgenic goats. In conclusion, our study has provided the groundwork for a prosperous and promising approach for large-scale production and therapeutic application of hFIX expressed in transgenic goats.
Collapse
Affiliation(s)
- Amir Amiri Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, 12 Hafez St, Banihashem St, Resalat St, PO Box 19395-4644, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sucularli C, Senturk S, Ozturk M, Konu O. Dose- and time-dependent expression patterns of zebrafish orthologs of selected E2F target genes in response to serum starvation/replenishment. Mol Biol Rep 2010; 38:4111-23. [PMID: 21116857 DOI: 10.1007/s11033-010-0531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
Targets of E2F transcription factors effectively regulate the cell cycle from worms to humans. Furthermore, the dysregulation of E2F transcription modules plays a highly conserved role in cancers of human and zebrafish. Studying E2F target expression under a given cellular state, such as quiescence, might lead to a better understanding of the conserved patterns of expression in different taxa. In the present study, we used literature searches and phylogeny to identify several targets of E2F transcription factors that are known to be serum-responsive; namely, PCNA, MYBL2, MCM7, TYMS, and CTGF. The transcriptional serum response of zebrafish orthologs of these genes were quantified under different doses (i.e., 0, 0.1, 1, 3, and 10% FBS) and time points (i.e., 6, 24 and 48 hours, h) using quantitative RT-PCR (qRT-PCR) in the zebrafish fibroblast cells (ZF4). Our results indicated that mRNA expression of zebrafish pcna, mybl2, mcm7 and tyms drastically decreased while that of ctgf increased with decreasing serum levels as observed in mammals. These genes responded to serum starvation at 24 and 48 h and to the mitogenic stimuli as early as 6 h except for ctgf whose expression was significantly altered at 24 h. The zebrafish Mcm7 protein levels also were modulated by serum starvation/replenishment. The present study provides a foundation for the comparative analysis of quantitative expression patterns for genes involved in regulation of cell cycle using a zebrafish serum response model.
Collapse
Affiliation(s)
- Ceren Sucularli
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | | | | | | |
Collapse
|