1
|
Luis-Calero M, Fernández-Hernández P, Ortiz-Rodríguez JM, Muñoz-García CC, Jardin I, Macías-García B, González-Fernández L. Description of a new quantitative method to assess mitochondrial distribution pattern in mature equine oocytes. Vet Res Commun 2024; 48:1867-1871. [PMID: 38340267 PMCID: PMC11147904 DOI: 10.1007/s11259-024-10325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The Mitochondrial distribution pattern or MDP in mammalian oocytes serves as an indicator of their cytoplasmic maturity, with a heterogeneous pattern associated with mature cytoplasm. Currently, MDP assessment involves fluorescent labelling of mitochondria followed by visual evaluation, as no quantitative method exists. Our objective was to develop a quantitative approach to assess MDP in mature equine oocytes. Equine oocytes, obtained by ovum pick up (OPU) were matured in vitro, and only metaphase II oocytes were used in the study (n = 56). Following denudation, oocytes were fixed, stained with MitoTracker™ Red CMXRos (50 nM in TCM-199 with Hank´s salts and 10% FBS) for 15 min at 38 °C, and then incubated with 2.5 µg/ml Hoechst 33342 for 10 min at 38 °C. Confocal microscope images were acquired, and the oocyte's MDP was visually classified as either homogeneous (HoD; n = 17) or heterogeneous (HeD; n = 39). For quantitative analysis, Fiji-ImageJ software was employed. Background subtraction was performed, and a 1-pixel line along the diameter was drawn to calculate the intensity profile. Fluorescence intensities were normalized, and ratios of peripheral to central fluorescence intensity were determined. Student´s t-test was used for comparations; MDP ratio was (mean ± standard error of the mean): 0.8 ± 0.02 for HoD and 0.3 ± 0.02 for HeD (p < 0.001). These results demonstrate concordance between quantitative and qualitative MDP assessment in mature equine oocytes. Our study describes a new approach to quantify mitochondrial distribution pattern and cytoplasmic maturation in mature equine oocytes.
Collapse
Affiliation(s)
- Marcos Luis-Calero
- Departamento de Medicina animal, Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G+C, Universidad de Extremadura, Cáceres, Spain
| | - Pablo Fernández-Hernández
- Departamento de Medicina animal, Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G+C, Universidad de Extremadura, Cáceres, Spain
| | | | - Carmen Cristina Muñoz-García
- Departamento de Medicina animal, Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G+C, Universidad de Extremadura, Cáceres, Spain
| | - Isaac Jardin
- Departamento de Fisiología, Grupo de Investigación Fisiología Celular, Instituto Universitario de Biomarcadores de Patologías Metabólicas y Moleculares (IBPM), Universidad de Extremadura, Cáceres, Spain
| | - Beatriz Macías-García
- Departamento de Medicina animal, Grupo de Investigación Medicina Interna Veterinaria (MINVET), Instituto de Investigación INBIO G+C, Universidad de Extremadura, Cáceres, Spain
| | - Lauro González-Fernández
- Departamento de Bioquímica y Biología Molecular y Genética, Grupo de Investigación Señalización Intracelular y Tecnología de la Reproducción (SINTREP), Instituto de Investigación INBIO G+C, Universidad de Extremadura, Av. de las Ciencias, s/n, Cáceres, 10004, Spain.
| |
Collapse
|
2
|
Tripathi SK, Nandi S, Gupta PSP, Mondal S. Antioxidants supplementation improves the quality of in vitro produced ovine embryos with amendments in key development gene expressions. Theriogenology 2023; 201:41-52. [PMID: 36827868 DOI: 10.1016/j.theriogenology.2022.11.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The present study assessed the effects of supplementation of different antioxidants on oocyte maturation, embryo production, reactive oxygen species (ROS) production and expression of key developmental genes. In this study, using ovine as an animal model, we tested the hypothesis that antioxidant supplementation enhanced the developmental competence of oocytes. Ovine oocytes aspirated from local abattoir-derived ovaries were subjected to IVM with different concentrations of antioxidants [(Melatonin, Ascorbic acid (Vit C), alpha-tocopherol (Vit E), Sodium selenite (SS)]. Oocytes matured without any antioxidant supplementation were used as controls. The oocytes were assessed for maturation rates and ROS levels. Further, embryo production rates in terms of cleavage, blastocysts and total cell numbers were evaluated after performing in vitro fertilization. Real-Time PCR analysis was used to evaluate the expression of stress related gene (SOD-1), growth related (GDF-9, BMP-15), and apoptosis-related genes (BCL-2 and BAX). We observed that maturation rates were significantly higher in alpha-tocopherol (100 μM; 92.4%) groups followed by melatonin (30 μM; 89.1%) group. However, blastocyst rates in ascorbic acid (100 μM; 19.5%), melatonin (30 μM; 18.4%), alpha-tocopherol (100 μM; 18.2%), and sodium selenite (20 μM; 16.9%) groups were significantly higher (P 0.05) than that observed in the control groups. Total cell numbers in blastocysts in the melatonin, ascorbic acid and alpha-tocopherol groups were significantly higher than those observed in sodium selenite and control groups. ROS production was reduced in groups treated with melatonin (30 μM), vitamin C (100 μM), sodium selenite (20 μM) and α-tocopherol (200 μM) compared with that observed in the control group. Supplementation of antioxidants caused the alterations in mRNA expression of growth, stress, and apoptosis related gene expression in matured oocytes. The results recommend that antioxidants alpha-tocopherol (200 μM), sodium selenite (40 μM), melatonin (30 μM) and ascorbic acid (100 μM) during IVM reduced the oxidative stress by decreasing ROS levels in oocytes, thus improving embryo quantity and quality.
Collapse
Affiliation(s)
- S K Tripathi
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India
| | - S Nandi
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India.
| | - P S P Gupta
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India
| | - S Mondal
- ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India
| |
Collapse
|
3
|
Alves JS, Diaz IDPS, da Cruz VAR, Bastos MS, de Oliveira LSM, de Albuquerque LG, de Camargo GMF, Costa RB. The effect of mitochondrial DNA polymorphisms on cattle reproduction. Mol Biol Rep 2021; 48:1005-1008. [PMID: 33393009 DOI: 10.1007/s11033-020-06068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022]
Abstract
The aim of this study was to identify SNPs located in mitochondrial DNA that are associated with reproductive traits in beef cows. A total of 1999 Nelore females genotyped with the high-density Illumina BovineHD BeadChip (Illumina Inc., San Diego, CA, USA) were used to study the association of mitochondrial DNA variants with reproductive traits using a single-step procedure. In a preliminary analysis, the present results indicate a small participation of the mitogenome in the expression of reproductive traits in beef cattle. However, possible difficulties related to the biological characteristics of mitochondrial DNA and its inheritance, genotyping, and annotation of the phenotypes studied may also explain the results.
Collapse
Affiliation(s)
- Jackeline Santos Alves
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | - Iara Del Pilar Solar Diaz
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | | | - Marisa Silva Bastos
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | | | - Lucia Galvão de Albuquerque
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, São Paulo, Brazil
| | | | - Raphael Bermal Costa
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.
| |
Collapse
|
4
|
Shahzad Q, Xu HY, Pu L, Waqas M, Wadood AA, Xie L, Lu KH, Liang X, Lu Y. Developmental potential of buffalo embryos cultured in serum free culture system. Theriogenology 2020; 149:38-45. [PMID: 32234649 DOI: 10.1016/j.theriogenology.2020.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/29/2020] [Accepted: 03/08/2020] [Indexed: 11/28/2022]
Abstract
The presence of serum in embryo culture medium has been implicated for increased embryo's sensitivity to cryopreservation, compromised viability, abnormal embryo and fetal development. Hence, designing a serum free culture system is indispensable. The present study aims to compare the efficiency of the serum and granulosa cells monolayer free commercial culture system (SFCS) with the conventional serum supplemented co-culture system (SSCS) and optimized culture system (OCS). Generally, SFCS is designed explicitly for bovine oocyte maturation and embryo culture (SF-IVM and SF-IVC), and SSCS (based on M199, SS-IVM, and SS-IVC) is utilized for buffalo in vitro embryo production. However, OCS is a newly designed culture system in which oocyte maturation is performed in serum supplemented maturation medium, and the subsequent embryos are co-cultured with granulosa cells in serum free culture medium. To evaluate the effect of serum on buffalo embryo production, buffalo oocytes, and their subsequent embryos were cultured in SSCS, SFCS, and OCS, simultaneously. The percentage of cleaved embryos cultured in SSCS and OCS was approximately 4% higher as compared to SFCS. However, OCS significantly showed the maximum proportion of embryos that developed to the blastocyst stage (7d) and hatched (6d) as compared to the SFCS and SSCS. Additionally, OCS promoted the expression of developmentally important genes (BCL2-L1 and VEGF-A), cell number, and cryo-survival ability of blastocysts in comparison with SSCS. Taken together, OCS is more suitable for the oocyte maturation and culture of buffalo embryos. However, to design the serum free culture system, it is recommended to find suitable serum alternatives for in vitro oocyte maturation.
Collapse
Affiliation(s)
- Qaisar Shahzad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Hui-Yan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Liping Pu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Muhammad Waqas
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Armughan Ahmed Wadood
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Long Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Xianwei Liang
- Guangxi Key Laboratory of Buffalo Genetics and Breeding, Buffalo Research Institute, Chinese Academy of Agriculture Science, Nanning, China.
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Dubeibe Marin DF, da Costa NN, di Paula Bessa Santana P, de Souza EB, Ohashi OM. Importance of lipid metabolism on oocyte maturation and early embryo development: Can we apply what we know to buffalo? Anim Reprod Sci 2019; 211:106220. [PMID: 31785645 DOI: 10.1016/j.anireprosci.2019.106220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
The knowledge about the biological events that regulate lipid metabolism in oocytes and embryos in buffalo is scarce. Lipogenesis, lipolysis, transport and oxidation of fatty acids (FAs) occur in gametes and embryonic cells of all mammalian species, as an intrinsic component of energy metabolism. In oocytes and cumulus cells, degradation of lipids is responsible for the production of ATP that is essential for the metabolic processes that lead to oocyte maturation in in vivo and in vitro culture conditions. Similarly, throughout embryo development, blastomeres have the capacity to use exogenous and/or endogenous lipid reserves to serve as an energy source necessary for early embryonic development. In addition, supplementation of culture media with L-carnitine to promote lipid metabolism during in vitro oocyte maturation and early embryonic development leads to an improved embryo quality. The limited scientific evidence available in buffalo indicates there is relatively greater oocyte lipid content as compared with many other species that undergoes a dynamic distribution during folliculogenesis and follicle maturation and that has a positive effect on oocyte maturation and embryo development when there is L-carnitine supplementation of the media. Advances in the understanding of the biological peculiarities of lipid metabolism, and the consequences of its alteration on the quality of buffalo gametes and embryos, therefore, are necessary to design specific culture media and laboratory procedures as a strategy to increase in vitro-derived embryo production rates.
Collapse
Affiliation(s)
- Diego Fernando Dubeibe Marin
- Biological Sciences Institute, Laboratory of Animal Reproduction, Federal University of Pará, (Universidade Federal do Pará-UFPA), Belém, Pará, 66075-110, Brazil.
| | - Nathalia Nogueira da Costa
- Biological Sciences Institute, Laboratory of Animal Reproduction, Federal University of Pará, (Universidade Federal do Pará-UFPA), Belém, Pará, 66075-110, Brazil
| | | | - Eduardo Baia de Souza
- Biological Sciences Institute, Laboratory of Animal Reproduction, Federal University of Pará, (Universidade Federal do Pará-UFPA), Belém, Pará, 66075-110, Brazil
| | - Otavio Mitio Ohashi
- Biological Sciences Institute, Laboratory of Animal Reproduction, Federal University of Pará, (Universidade Federal do Pará-UFPA), Belém, Pará, 66075-110, Brazil
| |
Collapse
|
6
|
Abdelnour SA, Abd El-Hack ME, Swelum AAA, Saadeldin IM, Noreldin AE, Khafaga AF, Al-Mutary MG, Arif M, Hussein ESOS. The Usefulness of Retinoic Acid Supplementation during In Vitro Oocyte Maturation for the In Vitro Embryo Production of Livestock: A Review. Animals (Basel) 2019; 9:ani9080561. [PMID: 31443306 PMCID: PMC6720576 DOI: 10.3390/ani9080561] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 01/31/2023] Open
Abstract
Simple Summary In this review, we provide the previous studies, state-of-the-art practices, and potential implications of retinoic acid for improving in vitro livestock embryo production. Abstract Retinoic acid (RA) is an indigenous metabolite and descriptive physiologically functioning constituent of vitamin A. Retinoids were documented as vital regulators for cell development and distinction, embryonic growth, and reproductive function in both male and female livestock. Previously, RA has been shown to have several positive impacts in vivo and in vitro and critically control many reproductive events, such as oocyte development, follicular growth, and early embryonic growth. In addition, RA manages apoptotic signaling and oxidative damages in cells. Recently, RA has been used widely in assisted reproductive technology fields, especially during in vitro embryo development in various mammalian species, including buffaloes, bovine, goats, sheep, pigs, and rabbits. However, the optimum concentration of RA greatly differs based on the condition of maturation media and species. Based on the obtained findings, it was generally accepted that RA enhances nuclear oocyte maturation, cleavage and maturation rates, blastocyst formation, and embryo development. As such, it possesses antioxidant properties against reactive oxygen species (ROS) and an anti-apoptotic effect through enhancing the transcription of some related genes such as superoxide dismutase, prostaglandin synthase, glutathione peroxidase, peroxiredoxins, and heme oxygenase. Therefore, the current review concludes that an addition of RA (up to 50 nM) has the potential to improve the oocyte maturation media of various species of livestock due to its antioxidant activity.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Mohsen G Al-Mutary
- Basic Sciences Department, College of Education, Imam Abdulrahman Bin Faisal University, Dammam 31451, Saudi Arabia
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - El-Sayed O S Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
7
|
Gad A, Abu Hamed S, Khalifa M, Amin A, El-Sayed A, Swiefy SA, El-Assal S. Retinoic acid improves maturation rate and upregulates the expression of antioxidant-related genes in in vitro matured buffalo ( Bubalus bubalis) oocytes. Int J Vet Sci Med 2018; 6:279-285. [PMID: 30564610 PMCID: PMC6286416 DOI: 10.1016/j.ijvsm.2018.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 02/08/2023] Open
Abstract
Retinoic acid, vitamin A metabolite, plays a role in oocyte development and maturation in different ways including gene expression alteration and/or prohibiting oxidative stress. The objective of this study was to examine the effect of 9-cis-retinoic acid (9-cisRA) on the quality and maturation rate of buffalo oocytes. Cumulus-oocyte complexes (COCs, n = 460) were collected from ovaries of slaughtered buffalos. Varying concentrations of 9-cisRA (0, 5, 50, and 200 nM) were added to the maturation medium, and the following parameters were analyzed: (i) maturation and cleavage rates, (ii) mitochondrial activity and reactive oxygen species (ROS) levels, (iii) expression level of antioxidant-related genes (PRDX1, SOD1, CAT, HOMX1, and GPX4) using RT-qPCR. Maturation rate was significantly improved in 5 nM 9-cisRA oocyte group (95.8%, P < .05) compared to control and other treatment groups (86.7% in control group). The same oocyte group exhibited significantly higher mitochondrial membrane potential activity and lower ROS accumulation level compared to other treatment groups. Antioxidant-related genes were up-regulated in oocytes matured with 5 or 50 nM 9-cisRA compared to control and 200 nM 9-cisRA groups. In contrast, 200 nM of 9-cisRA showed a clear down-regulation for antioxidant-related genes except for PRDX1. In conclusion, supplementation of 9-cisRA with a lower concentration (5 nM) to the buffalo oocytes maturation media promotes maturation rate through a protection mechanism that maintains adequate levels of antioxidant-related transcripts and improves mitochondrial activity. However, 9-cisRA has no significant effect on the cleavage rate of the treated oocytes.
Collapse
Affiliation(s)
- Ahmed Gad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Said Abu Hamed
- Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed Khalifa
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Ahmed Amin
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ashraf El-Sayed
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
- Cairo University Research Park (CURP), Faculty of Agriculture, Giza, Egypt
| | - Swiefy A. Swiefy
- Animal Production Research Institute, Agriculture Research Center, Giza, Egypt
| | - Salah El-Assal
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Xu HY, Yang XG, Lu SS, Liang XW, Lu YQ, Zhang M, Lu KH. Treatment with acetyl-l-carnitine during in vitro maturation of buffalo oocytes improves oocyte quality and subsequent embryonic development. Theriogenology 2018; 118:80-89. [DOI: 10.1016/j.theriogenology.2018.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/27/2018] [Accepted: 05/27/2018] [Indexed: 12/31/2022]
|
9
|
Arias-Álvarez M, García-García RM, López-Tello J, Rebollar PG, Gutiérrez-Adán A, Lorenzo PL. α-Tocopherol modifies the expression of genes related to oxidative stress and apoptosis during in vitro maturation and enhances the developmental competence of rabbit oocytes. Reprod Fertil Dev 2018; 30:1728-1738. [DOI: 10.1071/rd17525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/30/2018] [Indexed: 01/09/2023] Open
Abstract
The developmental competence of in vitro maturation (IVM) oocytes can be enhanced by antioxidant agents. The present study investigated, for the first time in the rabbit model, the effect of adding α-tocopherol (0, 100, 200 and 400 µM) during IVM on putative transcripts involved in antioxidant defence (superoxide dismutase 2, mitochondrial (SOD2), glutathione peroxidase 1 (GPX1), catalase (CAT)), cell cycle regulation and apoptosis cascade (apoptosis tumour protein 53 (TP53), caspase 3, apoptosis-related cysteine protease (CASP3)), cell cycle progression (cellular cycle V-Akt murine thymoma viral oncogene homologue 1 (AKT1)), cumulus expansion (gap junction protein, alpha 1, 43 kDa (GJA1) and prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclo-oxygenase) (PTGS2)) and metabolism (glucose-6-phosphate dehydrogenase (G6PD)). Meiotic progression, mitochondrial reallocation, cumulus cell apoptosis and the developmental competence of oocytes after IVF were also assessed. Expression of SOD2, CAT, TP53, CASP3 and GJA1 was downregulated in cumulus–oocyte complexes (COCs) after IVM with 100 μM α-tocopherol compared with the group without the antioxidant. The apoptotic rate and the percentage of a non-migrated mitochondrial pattern were lower in COCs cultured with 100 μM α-tocopherol, consistent with better-quality oocytes. In fact, early embryo development was improved when 100 μM α-tocopherol was included in the IVM medium, but remained low compared with in vivo-matured oocytes. In conclusion, the addition of 100 μM α-tocopherol to the maturation medium is a suitable approach to manage oxidative stress and apoptosis, as well as for increasing the in vitro developmental competence of rabbit oocytes.
Collapse
|
10
|
Arias-Álvarez M, García-García RM, López-Tello J, Rebollar PG, Gutiérrez-Adán A, Lorenzo PL. In vivo and in vitro maturation of rabbit oocytes differently affects the gene expression profile, mitochondrial distribution, apoptosis and early embryo development. Reprod Fertil Dev 2017; 29:1667-1679. [DOI: 10.1071/rd15553] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 08/16/2016] [Indexed: 01/05/2023] Open
Abstract
In vivo-matured cumulus–oocyte complexes are valuable models in which to assess potential biomarkers of rabbit oocyte quality that contribute to enhanced IVM systems. In the present study we compared some gene markers of oocytes and cumulus cells (CCs) from immature, in vivo-matured and IVM oocytes. Moreover, apoptosis in CCs, nuclear maturation, mitochondrial reallocation and the developmental potential of oocytes after IVF were assessed. In relation to cumulus expansion, gene expression of gap junction protein, alpha 1, 43 kDa (Gja1) and prostaglandin-endoperoxide synthase 2 (Ptgs2) was significantly lower in CCs after in vivo maturation than IVM. In addition, there were differences in gene expression after in vivo maturation versus IVM in both oocytes and CCs for genes related to cell cycle regulation and apoptosis (V-Akt murine thymoma viral oncogene homologue 1 (Akt1), tumour protein 53 (Tp53), caspase 3, apoptosis-related cysteine protease (Casp3)), oxidative response (superoxide dismutase 2, mitochondrial (Sod2)) and metabolism (glucose-6-phosphate dehydrogenase (G6pd), glyceraldehyde-3-phosphate dehydrogenase (Gapdh)). In vivo-matured CCs had a lower apoptosis rate than IVM and immature CCs. Meiotic progression, mitochondrial migration to the periphery and developmental competence were higher for in vivo-matured than IVM oocytes. In conclusion, differences in oocyte developmental capacity after IVM or in vivo maturation are accompanied by significant changes in transcript abundance in oocytes and their surrounding CCs, meiotic rate, mitochondrial distribution and apoptotic index. Some of the genes investigated, such as Gja1, could be potential biomarkers for oocyte developmental competence in the rabbit model, helping improve in vitro culture systems in these species.
Collapse
|